go(algo,de): implement jDE (wip)
All checks were successful
continuous-integration/drone/push Build is passing
All checks were successful
continuous-integration/drone/push Build is passing
This commit is contained in:
parent
cba6e62b50
commit
b742f0e091
15
algo/algo.go
15
algo/algo.go
@ -38,6 +38,13 @@ func getComparisonOfMeansPics() []report.Pic {
|
||||
return comparisonOfMeansPicList.Pics
|
||||
}
|
||||
|
||||
// saveAlgoMeans saves algo bench means safely.
|
||||
func saveAlgoMeans(sabm stats.AlgoBenchMean) {
|
||||
mu.Lock()
|
||||
meanStats.AlgoMeans = append(meanStats.AlgoMeans, sabm)
|
||||
mu.Unlock()
|
||||
}
|
||||
|
||||
// GetMeanStats returns a pointer of type stats.MeanStats to a sorted package
|
||||
// global 'meanStats'.
|
||||
func GetMeanStats() *stats.MeanStats {
|
||||
@ -338,8 +345,11 @@ func DojDE(wg *sync.WaitGroup, m *sync.Mutex) {
|
||||
algoStats := make([][]stats.Stats, funcCount)
|
||||
// ch serves as a way to get the actual computed output.
|
||||
ch := make(chan []stats.Stats, funcCount)
|
||||
// chAlgoMeans := make(chan *stats.AlgoBenchMean, 1)
|
||||
chAlgoMeans := make(chan *stats.AlgoBenchMean, funcCount)
|
||||
|
||||
defer close(ch)
|
||||
defer close(chAlgoMeans)
|
||||
|
||||
// jDE params.
|
||||
np := 50
|
||||
@ -360,7 +370,7 @@ func DojDE(wg *sync.WaitGroup, m *sync.Mutex) {
|
||||
// 0..17 to choose a mutation strategy,
|
||||
// 0..1 to select a parameter self-adaptation scheme,
|
||||
// np >= 4 as initial population size.
|
||||
jDE.Init(-1, 30, 0, 0, np, f, cr, bench.DimensionsGA, bench.FuncNames[i], ch)
|
||||
jDE.Init(-1, 30, 0, 0, np, f, cr, bench.DimensionsGA, bench.FuncNames[i], ch, chAlgoMeans)
|
||||
|
||||
go jDE.Run()
|
||||
}
|
||||
@ -368,8 +378,11 @@ func DojDE(wg *sync.WaitGroup, m *sync.Mutex) {
|
||||
// get results.
|
||||
for i := range algoStats {
|
||||
s := <-ch
|
||||
aM := <-chAlgoMeans
|
||||
|
||||
algoStats[i] = s
|
||||
|
||||
saveAlgoMeans(*aM)
|
||||
}
|
||||
|
||||
pCh := make(chan report.PicList, funcCount*len(bench.DimensionsGA))
|
||||
|
274
algo/de/jDE.go
274
algo/de/jDE.go
@ -6,10 +6,14 @@ package de
|
||||
import (
|
||||
"log"
|
||||
"os"
|
||||
"sort"
|
||||
"time"
|
||||
|
||||
"golang.org/x/exp/rand"
|
||||
|
||||
"git.dotya.ml/wanderer/math-optim/bench"
|
||||
"git.dotya.ml/wanderer/math-optim/stats"
|
||||
"gonum.org/v1/gonum/stat/distuv"
|
||||
)
|
||||
|
||||
// JDE is a holder for the settings of an instance of a self-adapting
|
||||
@ -37,6 +41,8 @@ type JDE struct {
|
||||
BenchName string
|
||||
// ch is a channel for writing back computed results.
|
||||
ch chan []stats.Stats
|
||||
// chAlgoMeans is a channel for writing back algo means.
|
||||
chAlgoMeans chan *stats.AlgoBenchMean
|
||||
// initialised denotes the initialisation state of the struct.
|
||||
initialised bool
|
||||
}
|
||||
@ -58,7 +64,7 @@ const (
|
||||
var jDELogger = log.New(os.Stderr, " *** δ jDE:", log.Ldate|log.Ltime|log.Lshortfile)
|
||||
|
||||
// Init initialises the jDE algorithm, performs sanity checks on the inputs.
|
||||
func (j *JDE) Init(generations, benchMinIters, mutStrategy, adptScheme, np int, f, cr float64, dimensions []int, bench string, ch chan []stats.Stats) {
|
||||
func (j *JDE) Init(generations, benchMinIters, mutStrategy, adptScheme, np int, f, cr float64, dimensions []int, bench string, ch chan []stats.Stats, chAlgoMeans chan *stats.AlgoBenchMean) {
|
||||
if j == nil {
|
||||
jDELogger.Fatalln("jDE needs to be initialised before calling RunjDE, exiting...")
|
||||
}
|
||||
@ -106,18 +112,19 @@ func (j *JDE) Init(generations, benchMinIters, mutStrategy, adptScheme, np int,
|
||||
j.Dimensions = dimensions
|
||||
j.BenchName = bench
|
||||
j.ch = ch
|
||||
j.chAlgoMeans = chAlgoMeans
|
||||
|
||||
j.initialised = true
|
||||
}
|
||||
|
||||
// InitAndRun initialises the jDE algorithm, performs sanity checks on the
|
||||
// inputs and calls the Run method.
|
||||
func (j *JDE) InitAndRun(generations, benchMinIters, mutStrategy, adptScheme, np int, f, cr float64, dimensions []int, bench string, ch chan []stats.Stats) {
|
||||
func (j *JDE) InitAndRun(generations, benchMinIters, mutStrategy, adptScheme, np int, f, cr float64, dimensions []int, bench string, ch chan []stats.Stats, chAlgoMeans chan *stats.AlgoBenchMean) {
|
||||
if j == nil {
|
||||
jDELogger.Fatalln("jDE is nil, NewjDE() needs to be called first. exiting...")
|
||||
}
|
||||
|
||||
j.Init(generations, benchMinIters, mutStrategy, adptScheme, np, f, cr, dimensions, bench, ch)
|
||||
j.Init(generations, benchMinIters, mutStrategy, adptScheme, np, f, cr, dimensions, bench, ch, chAlgoMeans)
|
||||
|
||||
j.Run()
|
||||
}
|
||||
@ -132,26 +139,271 @@ func (j *JDE) Run() {
|
||||
jDELogger.Fatalln("jDE needs to be initialised before calling Run(), exiting...")
|
||||
}
|
||||
|
||||
var jDEStats []stats.Stats
|
||||
|
||||
jDEMeans := &stats.AlgoBenchMean{
|
||||
Algo: "jDE",
|
||||
BenchMeans: make([]stats.BenchMean, 0, len(j.Dimensions)),
|
||||
}
|
||||
|
||||
// run evolve for for all dimensions.
|
||||
for _, dim := range j.Dimensions {
|
||||
maxFES := bench.GetGAMaxFES(dim)
|
||||
fesPerIter := int(float64(maxFES / j.NP))
|
||||
jDEStatDimX := &stats.Stats{
|
||||
Algo: "jDE",
|
||||
Dimens: dim,
|
||||
Iterations: j.BenchMinIters,
|
||||
Generations: maxFES,
|
||||
}
|
||||
funcStats := &stats.FuncStats{BenchName: j.BenchName}
|
||||
dimXMean := &stats.BenchMean{
|
||||
Bench: j.BenchName,
|
||||
Dimens: dim,
|
||||
Iterations: j.BenchMinIters,
|
||||
Generations: maxFES,
|
||||
Neighbours: -1,
|
||||
}
|
||||
benchFuncParams := bench.FunctionParams[j.BenchName]
|
||||
uniDist := distuv.Uniform{
|
||||
Min: benchFuncParams.Min(),
|
||||
Max: benchFuncParams.Max(),
|
||||
}
|
||||
|
||||
// create a population with known params.
|
||||
pop := newPopulation(j.BenchName, j.NP, dim)
|
||||
jDELogger.Printf("running bench \"%s\" for %dD, maxFES: %d\n",
|
||||
j.BenchName, dim, maxFES,
|
||||
)
|
||||
|
||||
// set population seed.
|
||||
pop.Seed = uint64(time.Now().UnixNano())
|
||||
// initialise the population.
|
||||
pop.Init()
|
||||
funcStats.BenchResults = make([]stats.BenchRound, j.BenchMinIters)
|
||||
|
||||
j.evolve(maxFES, pop)
|
||||
// rand.Seed(uint64(time.Now().UnixNano()))
|
||||
// create and seed a source of preudo-randomness
|
||||
src := rand.NewSource(uint64(rand.Int63()))
|
||||
|
||||
// track execution duration.
|
||||
start := time.Now()
|
||||
|
||||
for iter := 0; iter < j.BenchMinIters; iter++ {
|
||||
jDELogger.Printf("run: %d, bench: %s, %dD, started at %s",
|
||||
iter, j.BenchName, dim, start,
|
||||
)
|
||||
|
||||
funcStats.BenchResults[iter].Iteration = iter
|
||||
|
||||
uniDist.Src = src
|
||||
|
||||
// create a population with known params.
|
||||
pop := newPopulation(j.BenchName, j.NP, dim)
|
||||
|
||||
// set population seed.
|
||||
pop.Seed = uint64(time.Now().UnixNano())
|
||||
// initialise the population.
|
||||
pop.Init()
|
||||
// jDELogger.Printf("%+v\n", pop.Population)
|
||||
|
||||
var bestResult float64
|
||||
|
||||
// the core.
|
||||
for i := 0; i < fesPerIter; i++ {
|
||||
r := j.evaluate(pop)
|
||||
|
||||
// distinguish the first or any of the subsequent iterations.
|
||||
switch i {
|
||||
case 0:
|
||||
bestResult = r
|
||||
|
||||
default:
|
||||
jDELogger.Printf("run: %d, bench: %s, %dD, iteration: %d/%d",
|
||||
iter, j.BenchName, dim, i, fesPerIter-1,
|
||||
)
|
||||
|
||||
// call evolve where jDE runs.
|
||||
j.evolve(pop, &uniDist)
|
||||
|
||||
// take measurements of current population fitness.
|
||||
r = j.evaluate(pop)
|
||||
|
||||
// save if better.
|
||||
if r < bestResult {
|
||||
bestResult = r
|
||||
}
|
||||
}
|
||||
|
||||
funcStats.BenchResults[iter].Results = append(
|
||||
funcStats.BenchResults[iter].Results,
|
||||
bestResult,
|
||||
)
|
||||
// this block makes sure we properly count func evaluations for
|
||||
// the purpose of correctly comparable plot comparison. i.e.
|
||||
// append the winning (current best) value NP-1 (the first best
|
||||
// is already saved at this point) times to represent the fact
|
||||
// that while evaluating (and comparing) other population
|
||||
// individuals to the current best value is taking place in the
|
||||
// background, the current best value itself is kept around and
|
||||
// symbolically saved as the best of the Generation.
|
||||
for x := 0; x < j.NP-1; x++ {
|
||||
funcStats.BenchResults[iter].Results = append(
|
||||
funcStats.BenchResults[iter].Results,
|
||||
bestResult,
|
||||
)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
elapsed := time.Since(start)
|
||||
|
||||
jDELogger.Printf("completed: bench: %s, %dD, computing took %s\n",
|
||||
j.BenchName, dim, elapsed,
|
||||
)
|
||||
|
||||
// get mean vals.
|
||||
dimXMean.MeanVals = stats.GetMeanVals(funcStats.BenchResults, maxFES)
|
||||
funcStats.MeanVals = dimXMean.MeanVals
|
||||
|
||||
jDEStatDimX.BenchFuncStats = append(
|
||||
jDEStatDimX.BenchFuncStats, *funcStats,
|
||||
)
|
||||
|
||||
jDEStats = append(jDEStats, *jDEStatDimX)
|
||||
|
||||
jDEMeans.BenchMeans = append(jDEMeans.BenchMeans, *dimXMean)
|
||||
}
|
||||
|
||||
sort.Sort(jDEMeans)
|
||||
|
||||
j.chAlgoMeans <- jDEMeans
|
||||
j.ch <- jDEStats
|
||||
}
|
||||
|
||||
// evaluate evaluates the fitness of current population.
|
||||
func (j *JDE) evaluate(pop *Population) float64 {
|
||||
f := bench.Functions[pop.Problem]
|
||||
|
||||
bestIndividual := pop.Population[0].CurX
|
||||
bestSolution := f(bestIndividual)
|
||||
|
||||
for _, v := range pop.Population {
|
||||
if solution := f(v.CurX); solution < bestSolution {
|
||||
bestSolution = solution
|
||||
}
|
||||
}
|
||||
|
||||
return bestSolution
|
||||
}
|
||||
|
||||
// evolve evolves a population by running the jDE (self-adapting Differential
|
||||
// Evolution) algorithm on the passed population until termination conditions
|
||||
// are met.
|
||||
func (j *JDE) evolve(maxFES int, pop *Population) {}
|
||||
// nolint: gocognit
|
||||
func (j *JDE) evolve(pop *Population, uniDist *distuv.Uniform) {
|
||||
popCount := len(pop.Population)
|
||||
|
||||
for i, currentIndividual := range pop.Population {
|
||||
idcs := make([]int, 0, popCount-1)
|
||||
|
||||
// gather indices.
|
||||
for k := 0; k < popCount; k++ {
|
||||
if k != i {
|
||||
idcs = append(idcs, k)
|
||||
}
|
||||
}
|
||||
|
||||
// randomly choose 3 of those idcs.
|
||||
selectedIdcs := make([]int, 0)
|
||||
|
||||
selectedA := false
|
||||
selectedB := false
|
||||
selectedC := false
|
||||
|
||||
for !selectedA {
|
||||
candidateA := rand.Intn(len(idcs)) % len(idcs)
|
||||
|
||||
if candidateA != i {
|
||||
selectedIdcs = append(selectedIdcs, candidateA)
|
||||
selectedA = true
|
||||
}
|
||||
}
|
||||
|
||||
for !selectedB {
|
||||
a := selectedIdcs[0]
|
||||
candidateB := rand.Intn(len(idcs)) % len(idcs)
|
||||
|
||||
if candidateB != i && candidateB != a {
|
||||
selectedIdcs = append(selectedIdcs, candidateB)
|
||||
selectedB = true
|
||||
}
|
||||
}
|
||||
|
||||
for !selectedC {
|
||||
a := selectedIdcs[0]
|
||||
b := selectedIdcs[1]
|
||||
candidateC := rand.Intn(len(idcs)) % len(idcs)
|
||||
|
||||
if candidateC != i && candidateC != a && candidateC != b {
|
||||
selectedIdcs = append(selectedIdcs, candidateC)
|
||||
selectedC = true
|
||||
}
|
||||
}
|
||||
|
||||
// selected contains the selected population individuals.
|
||||
selected := make([]PopulationIndividual, 0)
|
||||
|
||||
// select individuals for rand/1/bin
|
||||
for _, idx := range selectedIdcs {
|
||||
for k := 0; k < popCount; k++ {
|
||||
if k == idx {
|
||||
selected = append(selected, pop.Population[idx])
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
mutant := make([]float64, pop.Dimen)
|
||||
|
||||
// mutate.
|
||||
for k := 0; k < pop.Dimen; k++ {
|
||||
// mutant = a + mut * (b - c)
|
||||
mutant[k] = selected[0].CurX[k] + (j.F * (selected[1].CurX[k] - selected[2].CurX[k]))
|
||||
|
||||
// clip values to <0;1>.
|
||||
switch {
|
||||
case mutant[k] < 0:
|
||||
mutant[k] = 0
|
||||
|
||||
case mutant[k] > 1:
|
||||
mutant[k] = 1
|
||||
}
|
||||
}
|
||||
|
||||
crossPoints := make([]bool, pop.Dimen)
|
||||
|
||||
// prepare crossover points (binomial crossover).
|
||||
for k := 0; k < pop.Dimen; k++ {
|
||||
if v := uniDist.Rand(); v < j.CR {
|
||||
crossPoints[k] = true
|
||||
} else {
|
||||
crossPoints[k] = false
|
||||
}
|
||||
}
|
||||
|
||||
trial := make([]float64, pop.Dimen)
|
||||
|
||||
// recombine using crossover points.
|
||||
for k := 0; k < pop.Dimen; k++ {
|
||||
if crossPoints[k] {
|
||||
trial[k] = currentIndividual.CurX[k]
|
||||
}
|
||||
}
|
||||
|
||||
f := bench.Functions[pop.Problem]
|
||||
currentFitness := f(currentIndividual.CurX)
|
||||
trialFitness := f(trial)
|
||||
|
||||
// replace if better.
|
||||
if trialFitness < currentFitness {
|
||||
pop.Population[i].CurX = trial
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// NewjDE returns a pointer to a new, uninitialised jDE instance.
|
||||
func NewjDE() *JDE {
|
||||
|
@ -97,16 +97,29 @@ func (p *Population) SetV(n int, nuV DecisionVector) {}
|
||||
|
||||
// Init initialises all individuals to random values.
|
||||
func (p *Population) Init() {
|
||||
uniform := distuv.Uniform{}
|
||||
benchFuncParams := bench.FunctionParams[p.Problem]
|
||||
|
||||
uniform := distuv.Uniform{
|
||||
Min: benchFuncParams.Min(),
|
||||
Max: benchFuncParams.Max(),
|
||||
}
|
||||
uniform.Src = rand.NewSource(p.Seed)
|
||||
|
||||
for _, v := range p.Population {
|
||||
jDELogger.Printf("population initialisation - popCount: %d, seed: %d\n",
|
||||
len(p.Population), p.Seed,
|
||||
)
|
||||
|
||||
for i, v := range p.Population {
|
||||
v.CurX = make([]float64, p.Dimen)
|
||||
|
||||
for i := 0; i < p.Dimen; i++ {
|
||||
v.CurX[i] = uniform.Rand()
|
||||
for j := 0; j < p.Dimen; j++ {
|
||||
v.CurX[j] = uniform.Rand()
|
||||
}
|
||||
|
||||
p.Population[i] = v
|
||||
}
|
||||
|
||||
jDELogger.Println("population initialised")
|
||||
}
|
||||
|
||||
// Reinit reinitialises all individuals.
|
||||
@ -144,7 +157,7 @@ func newPopulation(benchProblem string, np, dimen int) *Population {
|
||||
p.Dimen = dimen
|
||||
|
||||
// pre-alloc.
|
||||
p.Population = make([]PopulationIndividual, 0, np)
|
||||
p.Population = make([]PopulationIndividual, np)
|
||||
|
||||
return p
|
||||
}
|
||||
|
14
run.go
14
run.go
@ -24,7 +24,8 @@ func run() {
|
||||
|
||||
if *generate {
|
||||
// atm we're only doing Random search and SHC
|
||||
algoCount := 2
|
||||
// algoCount := 2
|
||||
algoCount := 1
|
||||
|
||||
var wg sync.WaitGroup
|
||||
|
||||
@ -32,15 +33,16 @@ func run() {
|
||||
|
||||
var m sync.Mutex
|
||||
|
||||
go algo.DoRandomSearch(&wg, &m)
|
||||
go algo.DoStochasticHillClimbing(&wg, &m)
|
||||
// go algo.DoStochasticHillClimbing100Neigh(&wg, &m)
|
||||
// go algo.DoRandomSearch(&wg, &m)
|
||||
// go algo.DoStochasticHillClimbing(&wg, &m)
|
||||
// // go algo.DoStochasticHillClimbing100Neigh(&wg, &m)
|
||||
go algo.DojDE(&wg, &m)
|
||||
|
||||
wg.Wait()
|
||||
|
||||
pL, benchCount := algo.PrepComparisonOfMeans(&wg)
|
||||
// pL, benchCount := algo.PrepComparisonOfMeans(&wg)
|
||||
|
||||
report.SaveComparisonOfMeans(*pL, benchCount)
|
||||
// report.SaveComparisonOfMeans(*pL, benchCount)
|
||||
report.SaveTexAllPics()
|
||||
report.SaveTexAllTables()
|
||||
}
|
||||
|
Loading…
Reference in New Issue
Block a user