diff --git a/algo/algo.go b/algo/algo.go index 87c2561..5d993ec 100644 --- a/algo/algo.go +++ b/algo/algo.go @@ -38,6 +38,13 @@ func getComparisonOfMeansPics() []report.Pic { return comparisonOfMeansPicList.Pics } +// saveAlgoMeans saves algo bench means safely. +func saveAlgoMeans(sabm stats.AlgoBenchMean) { + mu.Lock() + meanStats.AlgoMeans = append(meanStats.AlgoMeans, sabm) + mu.Unlock() +} + // GetMeanStats returns a pointer of type stats.MeanStats to a sorted package // global 'meanStats'. func GetMeanStats() *stats.MeanStats { @@ -338,8 +345,11 @@ func DojDE(wg *sync.WaitGroup, m *sync.Mutex) { algoStats := make([][]stats.Stats, funcCount) // ch serves as a way to get the actual computed output. ch := make(chan []stats.Stats, funcCount) + // chAlgoMeans := make(chan *stats.AlgoBenchMean, 1) + chAlgoMeans := make(chan *stats.AlgoBenchMean, funcCount) defer close(ch) + defer close(chAlgoMeans) // jDE params. np := 50 @@ -360,7 +370,7 @@ func DojDE(wg *sync.WaitGroup, m *sync.Mutex) { // 0..17 to choose a mutation strategy, // 0..1 to select a parameter self-adaptation scheme, // np >= 4 as initial population size. - jDE.Init(-1, 30, 0, 0, np, f, cr, bench.DimensionsGA, bench.FuncNames[i], ch) + jDE.Init(-1, 30, 0, 0, np, f, cr, bench.DimensionsGA, bench.FuncNames[i], ch, chAlgoMeans) go jDE.Run() } @@ -368,8 +378,11 @@ func DojDE(wg *sync.WaitGroup, m *sync.Mutex) { // get results. for i := range algoStats { s := <-ch + aM := <-chAlgoMeans algoStats[i] = s + + saveAlgoMeans(*aM) } pCh := make(chan report.PicList, funcCount*len(bench.DimensionsGA)) diff --git a/algo/de/jDE.go b/algo/de/jDE.go index f81c891..6eeb847 100644 --- a/algo/de/jDE.go +++ b/algo/de/jDE.go @@ -6,10 +6,14 @@ package de import ( "log" "os" + "sort" "time" + "golang.org/x/exp/rand" + "git.dotya.ml/wanderer/math-optim/bench" "git.dotya.ml/wanderer/math-optim/stats" + "gonum.org/v1/gonum/stat/distuv" ) // JDE is a holder for the settings of an instance of a self-adapting @@ -37,6 +41,8 @@ type JDE struct { BenchName string // ch is a channel for writing back computed results. ch chan []stats.Stats + // chAlgoMeans is a channel for writing back algo means. + chAlgoMeans chan *stats.AlgoBenchMean // initialised denotes the initialisation state of the struct. initialised bool } @@ -58,7 +64,7 @@ const ( var jDELogger = log.New(os.Stderr, " *** δ jDE:", log.Ldate|log.Ltime|log.Lshortfile) // Init initialises the jDE algorithm, performs sanity checks on the inputs. -func (j *JDE) Init(generations, benchMinIters, mutStrategy, adptScheme, np int, f, cr float64, dimensions []int, bench string, ch chan []stats.Stats) { +func (j *JDE) Init(generations, benchMinIters, mutStrategy, adptScheme, np int, f, cr float64, dimensions []int, bench string, ch chan []stats.Stats, chAlgoMeans chan *stats.AlgoBenchMean) { if j == nil { jDELogger.Fatalln("jDE needs to be initialised before calling RunjDE, exiting...") } @@ -106,18 +112,19 @@ func (j *JDE) Init(generations, benchMinIters, mutStrategy, adptScheme, np int, j.Dimensions = dimensions j.BenchName = bench j.ch = ch + j.chAlgoMeans = chAlgoMeans j.initialised = true } // InitAndRun initialises the jDE algorithm, performs sanity checks on the // inputs and calls the Run method. -func (j *JDE) InitAndRun(generations, benchMinIters, mutStrategy, adptScheme, np int, f, cr float64, dimensions []int, bench string, ch chan []stats.Stats) { +func (j *JDE) InitAndRun(generations, benchMinIters, mutStrategy, adptScheme, np int, f, cr float64, dimensions []int, bench string, ch chan []stats.Stats, chAlgoMeans chan *stats.AlgoBenchMean) { if j == nil { jDELogger.Fatalln("jDE is nil, NewjDE() needs to be called first. exiting...") } - j.Init(generations, benchMinIters, mutStrategy, adptScheme, np, f, cr, dimensions, bench, ch) + j.Init(generations, benchMinIters, mutStrategy, adptScheme, np, f, cr, dimensions, bench, ch, chAlgoMeans) j.Run() } @@ -132,26 +139,271 @@ func (j *JDE) Run() { jDELogger.Fatalln("jDE needs to be initialised before calling Run(), exiting...") } + var jDEStats []stats.Stats + + jDEMeans := &stats.AlgoBenchMean{ + Algo: "jDE", + BenchMeans: make([]stats.BenchMean, 0, len(j.Dimensions)), + } + // run evolve for for all dimensions. for _, dim := range j.Dimensions { maxFES := bench.GetGAMaxFES(dim) + fesPerIter := int(float64(maxFES / j.NP)) + jDEStatDimX := &stats.Stats{ + Algo: "jDE", + Dimens: dim, + Iterations: j.BenchMinIters, + Generations: maxFES, + } + funcStats := &stats.FuncStats{BenchName: j.BenchName} + dimXMean := &stats.BenchMean{ + Bench: j.BenchName, + Dimens: dim, + Iterations: j.BenchMinIters, + Generations: maxFES, + Neighbours: -1, + } + benchFuncParams := bench.FunctionParams[j.BenchName] + uniDist := distuv.Uniform{ + Min: benchFuncParams.Min(), + Max: benchFuncParams.Max(), + } - // create a population with known params. - pop := newPopulation(j.BenchName, j.NP, dim) + jDELogger.Printf("running bench \"%s\" for %dD, maxFES: %d\n", + j.BenchName, dim, maxFES, + ) - // set population seed. - pop.Seed = uint64(time.Now().UnixNano()) - // initialise the population. - pop.Init() + funcStats.BenchResults = make([]stats.BenchRound, j.BenchMinIters) - j.evolve(maxFES, pop) + // rand.Seed(uint64(time.Now().UnixNano())) + // create and seed a source of preudo-randomness + src := rand.NewSource(uint64(rand.Int63())) + + // track execution duration. + start := time.Now() + + for iter := 0; iter < j.BenchMinIters; iter++ { + jDELogger.Printf("run: %d, bench: %s, %dD, started at %s", + iter, j.BenchName, dim, start, + ) + + funcStats.BenchResults[iter].Iteration = iter + + uniDist.Src = src + + // create a population with known params. + pop := newPopulation(j.BenchName, j.NP, dim) + + // set population seed. + pop.Seed = uint64(time.Now().UnixNano()) + // initialise the population. + pop.Init() + // jDELogger.Printf("%+v\n", pop.Population) + + var bestResult float64 + + // the core. + for i := 0; i < fesPerIter; i++ { + r := j.evaluate(pop) + + // distinguish the first or any of the subsequent iterations. + switch i { + case 0: + bestResult = r + + default: + jDELogger.Printf("run: %d, bench: %s, %dD, iteration: %d/%d", + iter, j.BenchName, dim, i, fesPerIter-1, + ) + + // call evolve where jDE runs. + j.evolve(pop, &uniDist) + + // take measurements of current population fitness. + r = j.evaluate(pop) + + // save if better. + if r < bestResult { + bestResult = r + } + } + + funcStats.BenchResults[iter].Results = append( + funcStats.BenchResults[iter].Results, + bestResult, + ) + // this block makes sure we properly count func evaluations for + // the purpose of correctly comparable plot comparison. i.e. + // append the winning (current best) value NP-1 (the first best + // is already saved at this point) times to represent the fact + // that while evaluating (and comparing) other population + // individuals to the current best value is taking place in the + // background, the current best value itself is kept around and + // symbolically saved as the best of the Generation. + for x := 0; x < j.NP-1; x++ { + funcStats.BenchResults[iter].Results = append( + funcStats.BenchResults[iter].Results, + bestResult, + ) + } + } + } + + elapsed := time.Since(start) + + jDELogger.Printf("completed: bench: %s, %dD, computing took %s\n", + j.BenchName, dim, elapsed, + ) + + // get mean vals. + dimXMean.MeanVals = stats.GetMeanVals(funcStats.BenchResults, maxFES) + funcStats.MeanVals = dimXMean.MeanVals + + jDEStatDimX.BenchFuncStats = append( + jDEStatDimX.BenchFuncStats, *funcStats, + ) + + jDEStats = append(jDEStats, *jDEStatDimX) + + jDEMeans.BenchMeans = append(jDEMeans.BenchMeans, *dimXMean) } + + sort.Sort(jDEMeans) + + j.chAlgoMeans <- jDEMeans + j.ch <- jDEStats +} + +// evaluate evaluates the fitness of current population. +func (j *JDE) evaluate(pop *Population) float64 { + f := bench.Functions[pop.Problem] + + bestIndividual := pop.Population[0].CurX + bestSolution := f(bestIndividual) + + for _, v := range pop.Population { + if solution := f(v.CurX); solution < bestSolution { + bestSolution = solution + } + } + + return bestSolution } // evolve evolves a population by running the jDE (self-adapting Differential // Evolution) algorithm on the passed population until termination conditions // are met. -func (j *JDE) evolve(maxFES int, pop *Population) {} +// nolint: gocognit +func (j *JDE) evolve(pop *Population, uniDist *distuv.Uniform) { + popCount := len(pop.Population) + + for i, currentIndividual := range pop.Population { + idcs := make([]int, 0, popCount-1) + + // gather indices. + for k := 0; k < popCount; k++ { + if k != i { + idcs = append(idcs, k) + } + } + + // randomly choose 3 of those idcs. + selectedIdcs := make([]int, 0) + + selectedA := false + selectedB := false + selectedC := false + + for !selectedA { + candidateA := rand.Intn(len(idcs)) % len(idcs) + + if candidateA != i { + selectedIdcs = append(selectedIdcs, candidateA) + selectedA = true + } + } + + for !selectedB { + a := selectedIdcs[0] + candidateB := rand.Intn(len(idcs)) % len(idcs) + + if candidateB != i && candidateB != a { + selectedIdcs = append(selectedIdcs, candidateB) + selectedB = true + } + } + + for !selectedC { + a := selectedIdcs[0] + b := selectedIdcs[1] + candidateC := rand.Intn(len(idcs)) % len(idcs) + + if candidateC != i && candidateC != a && candidateC != b { + selectedIdcs = append(selectedIdcs, candidateC) + selectedC = true + } + } + + // selected contains the selected population individuals. + selected := make([]PopulationIndividual, 0) + + // select individuals for rand/1/bin + for _, idx := range selectedIdcs { + for k := 0; k < popCount; k++ { + if k == idx { + selected = append(selected, pop.Population[idx]) + } + } + } + + mutant := make([]float64, pop.Dimen) + + // mutate. + for k := 0; k < pop.Dimen; k++ { + // mutant = a + mut * (b - c) + mutant[k] = selected[0].CurX[k] + (j.F * (selected[1].CurX[k] - selected[2].CurX[k])) + + // clip values to <0;1>. + switch { + case mutant[k] < 0: + mutant[k] = 0 + + case mutant[k] > 1: + mutant[k] = 1 + } + } + + crossPoints := make([]bool, pop.Dimen) + + // prepare crossover points (binomial crossover). + for k := 0; k < pop.Dimen; k++ { + if v := uniDist.Rand(); v < j.CR { + crossPoints[k] = true + } else { + crossPoints[k] = false + } + } + + trial := make([]float64, pop.Dimen) + + // recombine using crossover points. + for k := 0; k < pop.Dimen; k++ { + if crossPoints[k] { + trial[k] = currentIndividual.CurX[k] + } + } + + f := bench.Functions[pop.Problem] + currentFitness := f(currentIndividual.CurX) + trialFitness := f(trial) + + // replace if better. + if trialFitness < currentFitness { + pop.Population[i].CurX = trial + } + } +} // NewjDE returns a pointer to a new, uninitialised jDE instance. func NewjDE() *JDE { diff --git a/algo/de/population.go b/algo/de/population.go index 5bf9ac8..9b276dd 100644 --- a/algo/de/population.go +++ b/algo/de/population.go @@ -97,16 +97,29 @@ func (p *Population) SetV(n int, nuV DecisionVector) {} // Init initialises all individuals to random values. func (p *Population) Init() { - uniform := distuv.Uniform{} + benchFuncParams := bench.FunctionParams[p.Problem] + + uniform := distuv.Uniform{ + Min: benchFuncParams.Min(), + Max: benchFuncParams.Max(), + } uniform.Src = rand.NewSource(p.Seed) - for _, v := range p.Population { + jDELogger.Printf("population initialisation - popCount: %d, seed: %d\n", + len(p.Population), p.Seed, + ) + + for i, v := range p.Population { v.CurX = make([]float64, p.Dimen) - for i := 0; i < p.Dimen; i++ { - v.CurX[i] = uniform.Rand() + for j := 0; j < p.Dimen; j++ { + v.CurX[j] = uniform.Rand() } + + p.Population[i] = v } + + jDELogger.Println("population initialised") } // Reinit reinitialises all individuals. @@ -144,7 +157,7 @@ func newPopulation(benchProblem string, np, dimen int) *Population { p.Dimen = dimen // pre-alloc. - p.Population = make([]PopulationIndividual, 0, np) + p.Population = make([]PopulationIndividual, np) return p } diff --git a/run.go b/run.go index 0c5a01f..8a5e886 100644 --- a/run.go +++ b/run.go @@ -24,7 +24,8 @@ func run() { if *generate { // atm we're only doing Random search and SHC - algoCount := 2 + // algoCount := 2 + algoCount := 1 var wg sync.WaitGroup @@ -32,15 +33,16 @@ func run() { var m sync.Mutex - go algo.DoRandomSearch(&wg, &m) - go algo.DoStochasticHillClimbing(&wg, &m) - // go algo.DoStochasticHillClimbing100Neigh(&wg, &m) + // go algo.DoRandomSearch(&wg, &m) + // go algo.DoStochasticHillClimbing(&wg, &m) + // // go algo.DoStochasticHillClimbing100Neigh(&wg, &m) + go algo.DojDE(&wg, &m) wg.Wait() - pL, benchCount := algo.PrepComparisonOfMeans(&wg) + // pL, benchCount := algo.PrepComparisonOfMeans(&wg) - report.SaveComparisonOfMeans(*pL, benchCount) + // report.SaveComparisonOfMeans(*pL, benchCount) report.SaveTexAllPics() report.SaveTexAllTables() }