Switched sflow plugin to our own libsflow parser. Closes #843

This commit is contained in:
Pavel Odintsov 2020-08-02 15:36:15 +01:00
parent 7b22357404
commit 37c1404f4c
6 changed files with 389 additions and 2374 deletions

17
src/fastnetmon_plugin.h Normal file
View File

@ -0,0 +1,17 @@
#pragma once
// This file consist of all important plugins which could be usefult for plugin
// development
// For support uint32_t, uint16_t
#include <sys/types.h>
#include "all_logcpp_libraries.h"
#include "fast_library.h"
#include "fast_platform.h"
// Get log4cpp logger from main programm
extern log4cpp::Category& logger;

View File

@ -5,6 +5,7 @@
#include <sys/socket.h>
enum direction { INCOMING = 0, OUTGOING, INTERNAL, OTHER };
enum source_t { UNKNOWN = 0, MIRROR = 1, SFLOW = 2, NETFLOW = 3, TERAFLOW = 4 };
// simplified packet struct for lightweight save into memory
class simple_packet_t {
@ -17,6 +18,9 @@ class simple_packet_t {
ts.tv_usec = 0;
ts.tv_sec = 0;
}
// Source plugin for this traffic type
source_t source = UNKNOWN;
uint32_t sample_ratio;
/* IPv4 */
uint32_t src_ip;
@ -24,6 +28,11 @@ class simple_packet_t {
/* IPv6 */
struct in6_addr src_ipv6;
struct in6_addr dst_ipv6;
/* ASN's */
uint32_t src_asn = 0;
uint32_t dst_asn = 0;
uint8_t ip_protocol_version; /* IPv4 or IPv6 */
uint8_t ttl;
uint16_t source_port;
@ -49,5 +58,8 @@ class simple_packet_t {
// We store packet direction here because direction calculation is very difficult task for cpu
direction packet_direction;
// IP address of device which send this flow
uint32_t agent_ip_address = 0;
};

View File

@ -1,1413 +0,0 @@
/* Copyright (c) 2002-2011 InMon Corp. Licensed under the terms of the InMon sFlow licence: */
/* http://www.inmon.com/technology/sflowlicense.txt */
/*
/////////////////////////////////////////////////////////////////////////////////
/////////////////////// sFlow Sampling Packet Data Types ////////////////////////
/////////////////////////////////////////////////////////////////////////////////
*/
#ifndef SFLOW_H
#define SFLOW_H 1
#if defined(__cplusplus)
extern "C" {
#endif
typedef struct {
uint32_t addr;
} SFLIPv4;
typedef struct {
u_char addr[16];
} SFLIPv6;
typedef union _SFLAddress_value {
SFLIPv4 ip_v4;
SFLIPv6 ip_v6;
} SFLAddress_value;
enum SFLAddress_type {
SFLADDRESSTYPE_UNDEFINED = 0,
SFLADDRESSTYPE_IP_V4 = 1,
SFLADDRESSTYPE_IP_V6 = 2
};
typedef struct _SFLAddress {
uint32_t type; /* enum SFLAddress_type */
SFLAddress_value address;
} SFLAddress;
/* Packet header data */
#define SFL_DEFAULT_HEADER_SIZE 128
#define SFL_DEFAULT_COLLECTOR_PORT 6343
#define SFL_DEFAULT_SAMPLING_RATE 400
/* The header protocol describes the format of the sampled header */
enum SFLHeader_protocol {
SFLHEADER_ETHERNET_ISO8023 = 1,
SFLHEADER_ISO88024_TOKENBUS = 2,
SFLHEADER_ISO88025_TOKENRING = 3,
SFLHEADER_FDDI = 4,
SFLHEADER_FRAME_RELAY = 5,
SFLHEADER_X25 = 6,
SFLHEADER_PPP = 7,
SFLHEADER_SMDS = 8,
SFLHEADER_AAL5 = 9,
SFLHEADER_AAL5_IP = 10, /* e.g. Cisco AAL5 mux */
SFLHEADER_IPv4 = 11,
SFLHEADER_IPv6 = 12,
SFLHEADER_MPLS = 13,
SFLHEADER_POS = 14,
SFLHEADER_IEEE80211MAC = 15,
SFLHEADER_IEEE80211_AMPDU = 16,
SFLHEADER_IEEE80211_AMSDU_SUBFRAME = 17
};
/* raw sampled header */
typedef struct _SFLSampled_header {
uint32_t header_protocol; /* (enum SFLHeader_protocol) */
uint32_t frame_length; /* Original length of packet before sampling */
uint32_t stripped; /* header/trailer bytes stripped by sender */
uint32_t header_length; /* length of sampled header bytes to follow */
uint8_t* header_bytes; /* Header bytes */
} SFLSampled_header;
/* decoded ethernet header */
typedef struct _SFLSampled_ethernet {
uint32_t eth_len; /* The length of the MAC packet excluding
lower layer encapsulations */
uint8_t src_mac[8]; /* 6 bytes + 2 pad */
uint8_t dst_mac[8];
uint32_t eth_type;
} SFLSampled_ethernet;
/* decoded IP version 4 header */
typedef struct _SFLSampled_ipv4 {
uint32_t length; /* The length of the IP packet
excluding lower layer encapsulations */
uint32_t protocol; /* IP Protocol type (for example, TCP = 6, UDP = 17) */
SFLIPv4 src_ip; /* Source IP Address */
SFLIPv4 dst_ip; /* Destination IP Address */
uint32_t src_port; /* TCP/UDP source port number or equivalent */
uint32_t dst_port; /* TCP/UDP destination port number or equivalent */
uint32_t tcp_flags; /* TCP flags */
uint32_t tos; /* IP type of service */
} SFLSampled_ipv4;
/* decoded IP version 6 data */
typedef struct _SFLSampled_ipv6 {
uint32_t length; /* The length of the IP packet
excluding lower layer encapsulations */
uint32_t protocol; /* IP Protocol type (for example, TCP = 6, UDP = 17) */
SFLIPv6 src_ip; /* Source IP Address */
SFLIPv6 dst_ip; /* Destination IP Address */
uint32_t src_port; /* TCP/UDP source port number or equivalent */
uint32_t dst_port; /* TCP/UDP destination port number or equivalent */
uint32_t tcp_flags; /* TCP flags */
uint32_t priority; /* IP priority */
} SFLSampled_ipv6;
/* Extended data types */
/* Extended switch data */
typedef struct _SFLExtended_switch {
uint32_t src_vlan; /* The 802.1Q VLAN id of incomming frame */
uint32_t src_priority; /* The 802.1p priority */
uint32_t dst_vlan; /* The 802.1Q VLAN id of outgoing frame */
uint32_t dst_priority; /* The 802.1p priority */
} SFLExtended_switch;
/* Extended router data */
typedef struct _SFLExtended_router {
SFLAddress nexthop; /* IP address of next hop router */
uint32_t src_mask; /* Source address prefix mask bits */
uint32_t dst_mask; /* Destination address prefix mask bits */
} SFLExtended_router;
/* Extended gateway data */
enum SFLExtended_as_path_segment_type {
SFLEXTENDED_AS_SET = 1, /* Unordered set of ASs */
SFLEXTENDED_AS_SEQUENCE = 2 /* Ordered sequence of ASs */
};
typedef struct _SFLExtended_as_path_segment {
uint32_t type; /* enum SFLExtended_as_path_segment_type */
uint32_t length; /* number of AS numbers in set/sequence */
union {
uint32_t* set;
uint32_t* seq;
} as;
} SFLExtended_as_path_segment;
typedef struct _SFLExtended_gateway {
SFLAddress nexthop; /* Address of the border router that should
be used for the destination network */
uint32_t as; /* AS number for this gateway */
uint32_t src_as; /* AS number of source (origin) */
uint32_t src_peer_as; /* AS number of source peer */
uint32_t dst_as_path_segments; /* number of segments in path */
SFLExtended_as_path_segment* dst_as_path; /* list of seqs or sets */
uint32_t communities_length; /* number of communities */
uint32_t* communities; /* set of communities */
uint32_t localpref; /* LocalPref associated with this route */
} SFLExtended_gateway;
typedef struct _SFLString {
uint32_t len;
char* str;
} SFLString;
/* Extended user data */
typedef struct _SFLExtended_user {
uint32_t src_charset; /* MIBEnum value of character set used to encode a string - See RFC 2978
Where possible UTF-8 encoding (MIBEnum=106) should be used. A value
of zero indicates an unknown encoding. */
SFLString src_user;
uint32_t dst_charset;
SFLString dst_user;
} SFLExtended_user;
/* Extended URL data */
enum SFLExtended_url_direction {
SFLEXTENDED_URL_SRC = 1, /* URL is associated with source address */
SFLEXTENDED_URL_DST = 2 /* URL is associated with destination address */
};
typedef struct _SFLExtended_url {
uint32_t direction; /* enum SFLExtended_url_direction */
SFLString url; /* URL associated with the packet flow.
Must be URL encoded */
SFLString host; /* The host field from the HTTP header */
} SFLExtended_url;
/* Extended MPLS data */
typedef struct _SFLLabelStack {
uint32_t depth;
uint32_t* stack; /* first entry is top of stack - see RFC 3032 for encoding */
} SFLLabelStack;
typedef struct _SFLExtended_mpls {
SFLAddress nextHop; /* Address of the next hop */
SFLLabelStack in_stack;
SFLLabelStack out_stack;
} SFLExtended_mpls;
/* Extended NAT data
Packet header records report addresses as seen at the sFlowDataSource.
The extended_nat structure reports on translated source and/or destination
addesses for this packet. If an address was not translated it should
be equal to that reported for the header. */
typedef struct _SFLExtended_nat {
SFLAddress src; /* Source address */
SFLAddress dst; /* Destination address */
} SFLExtended_nat;
typedef struct _SFLExtended_nat_port {
uint32_t src_port;
uint32_t dst_port;
} SFLExtended_nat_port;
/* additional Extended MPLS stucts */
typedef struct _SFLExtended_mpls_tunnel {
SFLString tunnel_lsp_name; /* Tunnel name */
uint32_t tunnel_id; /* Tunnel ID */
uint32_t tunnel_cos; /* Tunnel COS value */
} SFLExtended_mpls_tunnel;
typedef struct _SFLExtended_mpls_vc {
SFLString vc_instance_name; /* VC instance name */
uint32_t vll_vc_id; /* VLL/VC instance ID */
uint32_t vc_label_cos; /* VC Label COS value */
} SFLExtended_mpls_vc;
/* Extended MPLS FEC
- Definitions from MPLS-FTN-STD-MIB mplsFTNTable */
typedef struct _SFLExtended_mpls_FTN {
SFLString mplsFTNDescr;
uint32_t mplsFTNMask;
} SFLExtended_mpls_FTN;
/* Extended MPLS LVP FEC
- Definition from MPLS-LDP-STD-MIB mplsFecTable
Note: mplsFecAddrType, mplsFecAddr information available
from packet header */
typedef struct _SFLExtended_mpls_LDP_FEC {
uint32_t mplsFecAddrPrefixLength;
} SFLExtended_mpls_LDP_FEC;
/* Extended VLAN tunnel information
Record outer VLAN encapsulations that have
been stripped. extended_vlantunnel information
should only be reported if all the following conditions are satisfied:
1. The packet has nested vlan tags, AND
2. The reporting device is VLAN aware, AND
3. One or more VLAN tags have been stripped, either
because they represent proprietary encapsulations, or
because switch hardware automatically strips the outer VLAN
encapsulation.
Reporting extended_vlantunnel information is not a substitute for
reporting extended_switch information. extended_switch data must
always be reported to describe the ingress/egress VLAN information
for the packet. The extended_vlantunnel information only applies to
nested VLAN tags, and then only when one or more tags has been
stripped. */
typedef SFLLabelStack SFLVlanStack;
typedef struct _SFLExtended_vlan_tunnel {
SFLVlanStack stack; /* List of stripped 802.1Q TPID/TCI layers. Each
TPID,TCI pair is represented as a single 32 bit
integer. Layers listed from outermost to
innermost. */
} SFLExtended_vlan_tunnel;
/*
////////////////// IEEE 802.11 Extension structs ////////////////////
The 4-byte cipher_suite identifier follows the format of the cipher suite
selector value from the 802.11i (TKIP/CCMP amendment to 802.11i)
The most significant three bytes contain the OUI and the least significant
byte contains the Suite Type.
The currently assigned values are:
OUI |Suite type |Meaning
----------------------------------------------------
00-0F-AC | 0 | Use group cipher suite
00-0F-AC | 1 | WEP-40
00-0F-AC | 2 | TKIP
00-0F-AC | 3 | Reserved
00-0F-AC | 4 | CCMP
00-0F-AC | 5 | WEP-104
00-0F-AC | 6-255 | Reserved
Vendor OUI | Other | Vendor specific
Other | Any | Reserved
----------------------------------------------------
*/
typedef uint32_t SFLCipherSuite;
/* Extended wifi Payload
Used to provide unencrypted version of 802.11 MAC data. If the
MAC data is not encrypted then the agent must not include an
extended_wifi_payload structure.
If 802.11 MAC data is encrypted then the sampled_header structure
should only contain the MAC header (since encrypted data cannot
be decoded by the sFlow receiver). If the sFlow agent has access to
the unencrypted payload, it should add an extended_wifi_payload
structure containing the unencrypted data bytes from the sampled
packet header, starting at the beginning of the 802.2 LLC and not
including any trailing encryption footers. */
/* opaque = flow_data; enterprise = 0; format = 1013 */
typedef struct _SFLExtended_wifi_payload {
SFLCipherSuite cipherSuite;
SFLSampled_header header;
} SFLExtended_wifi_payload;
typedef enum {
IEEE80211_A = 1,
IEEE80211_B = 2,
IEEE80211_G = 3,
IEEE80211_N = 4,
} SFL_IEEE80211_version;
/* opaque = flow_data; enterprise = 0; format = 1014 */
#define SFL_MAX_SSID_LEN 256
typedef struct _SFLExtended_wifi_rx {
uint32_t ssid_len;
char* ssid;
char bssid[6]; /* BSSID */
SFL_IEEE80211_version version; /* version */
uint32_t channel; /* channel number */
uint64_t speed;
uint32_t rsni; /* received signal to noise ratio, see dot11FrameRprtRSNI */
uint32_t rcpi; /* received channel power, see dot11FrameRprtLastRCPI */
uint32_t packet_duration_us; /* amount of time that the successfully received pkt occupied RF
medium.*/
} SFLExtended_wifi_rx;
/* opaque = flow_data; enterprise = 0; format = 1015 */
typedef struct _SFLExtended_wifi_tx {
uint32_t ssid_len;
char* ssid; /* SSID string */
char bssid[6]; /* BSSID */
SFL_IEEE80211_version version; /* version */
uint32_t transmissions; /* number of transmissions for sampled
packet.
0 = unkown
1 = packet was successfully transmitted
on first attempt
n > 1 = n - 1 retransmissions */
uint32_t packet_duration_us; /* amount of time that the successfully
transmitted packet occupied the
RF medium */
uint32_t retrans_duration_us; /* amount of time that failed transmission
attempts occupied the RF medium */
uint32_t channel; /* channel number */
uint64_t speed;
uint32_t power_mw; /* transmit power in mW. */
} SFLExtended_wifi_tx;
/* Extended 802.11 Aggregation Data */
/* A flow_sample of an aggregated frame would consist of a packet
header for the whole frame + any other extended structures that
apply (e.g. 80211_tx/rx etc.) + an extended_wifi_aggregation
structure which would contain an array of pdu structures (one
for each PDU in the aggregate). A pdu is simply an array of
flow records, in the simplest case a packet header for each PDU,
but extended structures could be included as well. */
/* opaque = flow_data; enterprise = 0; format = 1016 */
struct _SFLFlow_Pdu; /* forward decl */
typedef struct _SFLExtended_aggregation {
uint32_t num_pdus;
struct _SFFlow_Pdu* pdus;
} SFLExtended_aggregation;
/* Extended socket information,
Must be filled in for all application transactions associated with a network socket
Omit if transaction associated with non-network IPC */
/* IPv4 Socket */
/* opaque = flow_data; enterprise = 0; format = 2100 */
typedef struct _SFLExtended_socket_ipv4 {
uint32_t protocol; /* IP Protocol (e.g. TCP = 6, UDP = 17) */
SFLIPv4 local_ip; /* local IP address */
SFLIPv4 remote_ip; /* remote IP address */
uint32_t local_port; /* TCP/UDP local port number or equivalent */
uint32_t remote_port; /* TCP/UDP remote port number of equivalent */
} SFLExtended_socket_ipv4;
#define XDRSIZ_SFLEXTENDED_SOCKET4 20
/* IPv6 Socket */
/* opaque = flow_data; enterprise = 0; format = 2101 */
typedef struct _SFLExtended_socket_ipv6 {
uint32_t protocol; /* IP Protocol (e.g. TCP = 6, UDP = 17) */
SFLIPv6 local_ip; /* local IP address */
SFLIPv6 remote_ip; /* remote IP address */
uint32_t local_port; /* TCP/UDP local port number or equivalent */
uint32_t remote_port; /* TCP/UDP remote port number of equivalent */
} SFLExtended_socket_ipv6;
#define XDRSIZ_SFLEXTENDED_SOCKET6 44
typedef enum {
MEMCACHE_PROT_OTHER = 0,
MEMCACHE_PROT_ASCII = 1,
MEMCACHE_PROT_BINARY = 2,
} SFLMemcache_prot;
typedef enum {
MEMCACHE_CMD_OTHER = 0,
MEMCACHE_CMD_SET = 1,
MEMCACHE_CMD_ADD = 2,
MEMCACHE_CMD_REPLACE = 3,
MEMCACHE_CMD_APPEND = 4,
MEMCACHE_CMD_PREPEND = 5,
MEMCACHE_CMD_CAS = 6,
MEMCACHE_CMD_GET = 7,
MEMCACHE_CMD_GETS = 8,
MEMCACHE_CMD_INCR = 9,
MEMCACHE_CMD_DECR = 10,
MEMCACHE_CMD_DELETE = 11,
MEMCACHE_CMD_STATS = 12,
MEMCACHE_CMD_FLUSH = 13,
MEMCACHE_CMD_VERSION = 14,
MEMCACHE_CMD_QUIT = 15,
MEMCACHE_CMD_TOUCH = 16,
} SFLMemcache_cmd;
enum SFLMemcache_operation_status {
MEMCACHE_OP_UNKNOWN = 0,
MEMCACHE_OP_OK = 1,
MEMCACHE_OP_ERROR = 2,
MEMCACHE_OP_CLIENT_ERROR = 3,
MEMCACHE_OP_SERVER_ERROR = 4,
MEMCACHE_OP_STORED = 5,
MEMCACHE_OP_NOT_STORED = 6,
MEMCACHE_OP_EXISTS = 7,
MEMCACHE_OP_NOT_FOUND = 8,
MEMCACHE_OP_DELETED = 9,
};
#define SFL_MAX_MEMCACHE_KEY 255
typedef struct _SFLSampled_memcache {
uint32_t protocol; /* SFLMemcache_prot */
uint32_t command; /* SFLMemcache_cmd */
SFLString key; /* up to 255 chars */
uint32_t nkeys;
uint32_t value_bytes;
uint32_t duration_uS;
uint32_t status; /* SFLMemcache_operation_status */
} SFLSampled_memcache;
typedef enum {
SFHTTP_OTHER = 0,
SFHTTP_OPTIONS = 1,
SFHTTP_GET = 2,
SFHTTP_HEAD = 3,
SFHTTP_POST = 4,
SFHTTP_PUT = 5,
SFHTTP_DELETE = 6,
SFHTTP_TRACE = 7,
SFHTTP_CONNECT = 8,
} SFLHTTP_method;
#define SFL_MAX_HTTP_URI 255
#define SFL_MAX_HTTP_HOST 64
#define SFL_MAX_HTTP_REFERRER 255
#define SFL_MAX_HTTP_USERAGENT 128
#define SFL_MAX_HTTP_XFF 64
#define SFL_MAX_HTTP_AUTHUSER 32
#define SFL_MAX_HTTP_MIMETYPE 64
typedef struct _SFLSampled_http {
SFLHTTP_method method;
uint32_t protocol; /* 1.1=1001 */
SFLString uri; /* URI exactly as it came from the client (up to 255 bytes) */
SFLString host; /* Host value from request header (<= 64 bytes) */
SFLString referrer; /* Referer value from request header (<=255 bytes) */
SFLString useragent; /* User-Agent value from request header (<= 128 bytes)*/
SFLString xff; /* X-Forwarded-For value from request header (<= 64 bytes)*/
SFLString authuser; /* RFC 1413 identity of user (<=32 bytes)*/
SFLString mimetype; /* Mime-Type (<=64 bytes) */
uint64_t req_bytes; /* Content-Length of request */
uint64_t resp_bytes; /* Content-Length of response */
uint32_t uS; /* duration of the operation (microseconds) */
uint32_t status; /* HTTP status code */
} SFLSampled_http;
typedef enum {
SFLAPP_SUCCESS = 0,
SFLAPP_OTHER = 1,
SFLAPP_TIMEOUT = 2,
SFLAPP_INTERNAL_ERROR = 3,
SFLAPP_BAD_REQUEST = 4,
SFLAPP_FORBIDDEN = 5,
SFLAPP_TOO_LARGE = 6,
SFLAPP_NOT_IMPLEMENTED = 7,
SFLAPP_NOT_FOUND = 8,
SFLAPP_UNAVAILABLE = 9,
SFLAPP_UNAUTHORIZED = 10,
} EnumSFLAPPStatus;
static const char* SFL_APP_STATUS_names[] = { "SUCCESS", "OTHER", "TIMEOUT",
"INTERNAL_ERROR", "BAD_REQUEST", "FORBIDDEN",
"TOO_LARGE", "NOT_IMPLEMENTED", "NOT_FOUND",
"UNAVAILABLE", "UNATHORIZED" };
/* Operation context */
typedef struct {
SFLString application;
SFLString operation; /* type of operation (e.g. authorization, payment) */
SFLString attributes; /* specific attributes associated operation */
} SFLSampled_APP_CTXT;
#define SFLAPP_MAX_APPLICATION_LEN 32
#define SFLAPP_MAX_OPERATION_LEN 32
#define SFLAPP_MAX_ATTRIBUTES_LEN 255
/* Sampled Enterprise Operation */
/* opaque = flow_data; enterprise = 0; format = 2202 */
typedef struct {
SFLSampled_APP_CTXT context; /* attributes describing the operation */
SFLString status_descr; /* additional text describing status (e.g. "unknown client") */
uint64_t req_bytes; /* size of request body (exclude headers) */
uint64_t resp_bytes; /* size of response body (exclude headers) */
uint32_t duration_uS; /* duration of the operation (microseconds) */
EnumSFLAPPStatus status; /* status code */
} SFLSampled_APP;
#define SFLAPP_MAX_STATUS_LEN 32
typedef struct {
SFLString actor;
} SFLSampled_APP_ACTOR;
#define SFLAPP_MAX_ACTOR_LEN 64
typedef struct _SFLExtended_vni {
uint32_t vni; /* virtual network identifier */
} SFLExtended_vni;
typedef struct _SFLExtended_decap {
uint32_t innerHeaderOffset;
} SFLExtended_decap;
enum SFLFlow_type_tag {
/* enterprise = 0, format = ... */
SFLFLOW_HEADER = 1, /* Packet headers are sampled */
SFLFLOW_ETHERNET = 2, /* MAC layer information */
SFLFLOW_IPV4 = 3, /* IP version 4 data */
SFLFLOW_IPV6 = 4, /* IP version 6 data */
SFLFLOW_EX_SWITCH = 1001, /* Extended switch information */
SFLFLOW_EX_ROUTER = 1002, /* Extended router information */
SFLFLOW_EX_GATEWAY = 1003, /* Extended gateway router information */
SFLFLOW_EX_USER = 1004, /* Extended TACAS/RADIUS user information */
SFLFLOW_EX_URL = 1005, /* Extended URL information */
SFLFLOW_EX_MPLS = 1006, /* Extended MPLS information */
SFLFLOW_EX_NAT = 1007, /* Extended NAT information */
SFLFLOW_EX_MPLS_TUNNEL = 1008, /* additional MPLS information */
SFLFLOW_EX_MPLS_VC = 1009,
SFLFLOW_EX_MPLS_FTN = 1010,
SFLFLOW_EX_MPLS_LDP_FEC = 1011,
SFLFLOW_EX_VLAN_TUNNEL = 1012, /* VLAN stack */
SFLFLOW_EX_80211_PAYLOAD = 1013,
SFLFLOW_EX_80211_RX = 1014,
SFLFLOW_EX_80211_TX = 1015,
SFLFLOW_EX_AGGREGATION = 1016,
SFLFLOW_EX_NAT_PORT = 1020, /* Extended NAT port information */
SFLFLOW_EX_L2_TUNNEL_OUT = 1021, /* http://sflow.org/sflow_tunnels.txt */
SFLFLOW_EX_L2_TUNNEL_IN = 1022,
SFLFLOW_EX_IPV4_TUNNEL_OUT = 1023,
SFLFLOW_EX_IPV4_TUNNEL_IN = 1024,
SFLFLOW_EX_IPV6_TUNNEL_OUT = 1025,
SFLFLOW_EX_IPV6_TUNNEL_IN = 1026,
SFLFLOW_EX_DECAP_OUT = 1027,
SFLFLOW_EX_DECAP_IN = 1028,
SFLFLOW_EX_VNI_OUT = 1029,
SFLFLOW_EX_VNI_IN = 1030,
SFLFLOW_EX_SOCKET4 = 2100,
SFLFLOW_EX_SOCKET6 = 2101,
SFLFLOW_EX_PROXYSOCKET4 = 2102,
SFLFLOW_EX_PROXYSOCKET6 = 2103,
SFLFLOW_MEMCACHE = 2200,
SFLFLOW_HTTP = 2201,
SFLFLOW_APP = 2202, /* transaction sample */
SFLFLOW_APP_CTXT = 2203, /* enclosing server context */
SFLFLOW_APP_ACTOR_INIT = 2204, /* initiator */
SFLFLOW_APP_ACTOR_TGT = 2205, /* target */
SFLFLOW_HTTP2 = 2206,
};
typedef union _SFLFlow_type {
SFLSampled_header header;
SFLSampled_ethernet ethernet;
SFLSampled_ipv4 ipv4;
SFLSampled_ipv6 ipv6;
SFLSampled_memcache memcache;
SFLSampled_http http;
SFLSampled_APP app;
SFLSampled_APP_CTXT appCtxt;
SFLSampled_APP_ACTOR appActor;
SFLExtended_switch sw;
SFLExtended_router router;
SFLExtended_gateway gateway;
SFLExtended_user user;
SFLExtended_url url;
SFLExtended_mpls mpls;
SFLExtended_nat nat;
SFLExtended_nat_port nat_port;
SFLExtended_mpls_tunnel mpls_tunnel;
SFLExtended_mpls_vc mpls_vc;
SFLExtended_mpls_FTN mpls_ftn;
SFLExtended_mpls_LDP_FEC mpls_ldp_fec;
SFLExtended_vlan_tunnel vlan_tunnel;
SFLExtended_wifi_payload wifi_payload;
SFLExtended_wifi_rx wifi_rx;
SFLExtended_wifi_tx wifi_tx;
SFLExtended_aggregation aggregation;
SFLExtended_socket_ipv4 socket4;
SFLExtended_socket_ipv6 socket6;
SFLExtended_vni tunnel_vni;
SFLExtended_decap tunnel_decap;
} SFLFlow_type;
typedef struct _SFLFlow_sample_element {
struct _SFLFlow_sample_element* nxt;
uint32_t tag; /* SFLFlow_type_tag */
uint32_t length;
SFLFlow_type flowType;
} SFLFlow_sample_element;
enum SFL_sample_tag {
SFLFLOW_SAMPLE = 1, /* enterprise = 0 : format = 1 */
SFLCOUNTERS_SAMPLE = 2, /* enterprise = 0 : format = 2 */
SFLFLOW_SAMPLE_EXPANDED = 3, /* enterprise = 0 : format = 3 */
SFLCOUNTERS_SAMPLE_EXPANDED = 4 /* enterprise = 0 : format = 4 */
};
typedef struct _SFLFlow_Pdu {
struct _SFLFlow_Pdu* nxt;
uint32_t num_elements;
SFLFlow_sample_element* elements;
} SFLFlow_Pdu;
/* Format of a single flow sample */
typedef struct _SFLFlow_sample {
/* uint32_t tag; */ /* SFL_sample_tag -- enterprise = 0 : format = 1 */
/* uint32_t length; */
uint32_t sequence_number; /* Incremented with each flow sample
generated */
uint32_t source_id; /* fsSourceId */
uint32_t sampling_rate; /* fsPacketSamplingRate */
uint32_t sample_pool; /* Total number of packets that could have been
sampled (i.e. packets skipped by sampling
process + total number of samples) */
uint32_t drops; /* Number of times a packet was dropped due to
lack of resources */
uint32_t input; /* SNMP ifIndex of input interface.
0 if interface is not known. */
uint32_t output; /* SNMP ifIndex of output interface,
0 if interface is not known.
Set most significant bit to indicate
multiple destination interfaces
(i.e. in case of broadcast or multicast)
and set lower order bits to indicate
number of destination interfaces.
Examples:
0x00000002 indicates ifIndex = 2
0x00000000 ifIndex unknown.
0x80000007 indicates a packet sent
to 7 interfaces.
0x80000000 indicates a packet sent to
an unknown number of
interfaces greater than 1.*/
uint32_t num_elements;
SFLFlow_sample_element* elements;
} SFLFlow_sample;
/* same thing, but the expanded version (for full 32-bit ifIndex numbers) */
typedef struct _SFLFlow_sample_expanded {
/* uint32_t tag; */ /* SFL_sample_tag -- enterprise = 0 : format = 1 */
/* uint32_t length; */
uint32_t sequence_number; /* Incremented with each flow sample
generated */
uint32_t ds_class; /* EXPANDED */
uint32_t ds_index; /* EXPANDED */
uint32_t sampling_rate; /* fsPacketSamplingRate */
uint32_t sample_pool; /* Total number of packets that could have been
sampled (i.e. packets skipped by sampling
process + total number of samples) */
uint32_t drops; /* Number of times a packet was dropped due to
lack of resources */
uint32_t inputFormat; /* EXPANDED */
uint32_t input; /* SNMP ifIndex of input interface.
0 if interface is not known. */
uint32_t outputFormat; /* EXPANDED */
uint32_t output; /* SNMP ifIndex of output interface,
0 if interface is not known. */
uint32_t num_elements;
SFLFlow_sample_element* elements;
} SFLFlow_sample_expanded;
/* Counter types */
/* Generic interface counters - see RFC 1573, 2233 */
typedef struct _SFLIf_counters {
uint32_t ifIndex;
uint32_t ifType;
uint64_t ifSpeed;
uint32_t ifDirection; /* Derived from MAU MIB (RFC 2668)
0 = unknown, 1 = full-duplex,
2 = half-duplex, 3 = in, 4 = out */
uint32_t ifStatus; /* bit field with the following bits assigned:
bit 0 = ifAdminStatus (0 = down, 1 = up)
bit 1 = ifOperStatus (0 = down, 1 = up) */
uint64_t ifInOctets;
uint32_t ifInUcastPkts;
uint32_t ifInMulticastPkts;
uint32_t ifInBroadcastPkts;
uint32_t ifInDiscards;
uint32_t ifInErrors;
uint32_t ifInUnknownProtos;
uint64_t ifOutOctets;
uint32_t ifOutUcastPkts;
uint32_t ifOutMulticastPkts;
uint32_t ifOutBroadcastPkts;
uint32_t ifOutDiscards;
uint32_t ifOutErrors;
uint32_t ifPromiscuousMode;
} SFLIf_counters;
/* Ethernet interface counters - see RFC 2358 */
typedef struct _SFLEthernet_counters {
uint32_t dot3StatsAlignmentErrors;
uint32_t dot3StatsFCSErrors;
uint32_t dot3StatsSingleCollisionFrames;
uint32_t dot3StatsMultipleCollisionFrames;
uint32_t dot3StatsSQETestErrors;
uint32_t dot3StatsDeferredTransmissions;
uint32_t dot3StatsLateCollisions;
uint32_t dot3StatsExcessiveCollisions;
uint32_t dot3StatsInternalMacTransmitErrors;
uint32_t dot3StatsCarrierSenseErrors;
uint32_t dot3StatsFrameTooLongs;
uint32_t dot3StatsInternalMacReceiveErrors;
uint32_t dot3StatsSymbolErrors;
} SFLEthernet_counters;
/* Token ring counters - see RFC 1748 */
typedef struct _SFLTokenring_counters {
uint32_t dot5StatsLineErrors;
uint32_t dot5StatsBurstErrors;
uint32_t dot5StatsACErrors;
uint32_t dot5StatsAbortTransErrors;
uint32_t dot5StatsInternalErrors;
uint32_t dot5StatsLostFrameErrors;
uint32_t dot5StatsReceiveCongestions;
uint32_t dot5StatsFrameCopiedErrors;
uint32_t dot5StatsTokenErrors;
uint32_t dot5StatsSoftErrors;
uint32_t dot5StatsHardErrors;
uint32_t dot5StatsSignalLoss;
uint32_t dot5StatsTransmitBeacons;
uint32_t dot5StatsRecoverys;
uint32_t dot5StatsLobeWires;
uint32_t dot5StatsRemoves;
uint32_t dot5StatsSingles;
uint32_t dot5StatsFreqErrors;
} SFLTokenring_counters;
/* 100 BaseVG interface counters - see RFC 2020 */
typedef struct _SFLVg_counters {
uint32_t dot12InHighPriorityFrames;
uint64_t dot12InHighPriorityOctets;
uint32_t dot12InNormPriorityFrames;
uint64_t dot12InNormPriorityOctets;
uint32_t dot12InIPMErrors;
uint32_t dot12InOversizeFrameErrors;
uint32_t dot12InDataErrors;
uint32_t dot12InNullAddressedFrames;
uint32_t dot12OutHighPriorityFrames;
uint64_t dot12OutHighPriorityOctets;
uint32_t dot12TransitionIntoTrainings;
uint64_t dot12HCInHighPriorityOctets;
uint64_t dot12HCInNormPriorityOctets;
uint64_t dot12HCOutHighPriorityOctets;
} SFLVg_counters;
typedef struct _SFLVlan_counters {
uint32_t vlan_id;
uint64_t octets;
uint32_t ucastPkts;
uint32_t multicastPkts;
uint32_t broadcastPkts;
uint32_t discards;
} SFLVlan_counters;
typedef struct _SFLWifi_counters {
uint32_t dot11TransmittedFragmentCount;
uint32_t dot11MulticastTransmittedFrameCount;
uint32_t dot11FailedCount;
uint32_t dot11RetryCount;
uint32_t dot11MultipleRetryCount;
uint32_t dot11FrameDuplicateCount;
uint32_t dot11RTSSuccessCount;
uint32_t dot11RTSFailureCount;
uint32_t dot11ACKFailureCount;
uint32_t dot11ReceivedFragmentCount;
uint32_t dot11MulticastReceivedFrameCount;
uint32_t dot11FCSErrorCount;
uint32_t dot11TransmittedFrameCount;
uint32_t dot11WEPUndecryptableCount;
uint32_t dot11QoSDiscardedFragmentCount;
uint32_t dot11AssociatedStationCount;
uint32_t dot11QoSCFPollsReceivedCount;
uint32_t dot11QoSCFPollsUnusedCount;
uint32_t dot11QoSCFPollsUnusableCount;
uint32_t dot11QoSCFPollsLostCount;
} SFLWifi_counters;
/* Processor Information */
/* opaque = counter_data; enterprise = 0; format = 1001 */
typedef struct _SFLProcessor_counters {
uint32_t five_sec_cpu; /* 5 second average CPU utilization */
uint32_t one_min_cpu; /* 1 minute average CPU utilization */
uint32_t five_min_cpu; /* 5 minute average CPU utilization */
uint64_t total_memory; /* total memory (in bytes) */
uint64_t free_memory; /* free memory (in bytes) */
} SFLProcessor_counters;
typedef struct _SFLRadio_counters {
uint32_t elapsed_time; /* elapsed time in ms */
uint32_t on_channel_time; /* time in ms spent on channel */
uint32_t on_channel_busy_time; /* time in ms spent on channel and busy */
} SFLRadio_counters;
/* host sflow */
enum SFLMachine_type {
SFLMT_unknown = 0,
SFLMT_other = 1,
SFLMT_x86 = 2,
SFLMT_x86_64 = 3,
SFLMT_ia64 = 4,
SFLMT_sparc = 5,
SFLMT_alpha = 6,
SFLMT_powerpc = 7,
SFLMT_m68k = 8,
SFLMT_mips = 9,
SFLMT_arm = 10,
SFLMT_hppa = 11,
SFLMT_s390 = 12
};
enum SFLOS_name {
SFLOS_unknown = 0,
SFLOS_other = 1,
SFLOS_linux = 2,
SFLOS_windows = 3,
SFLOS_darwin = 4,
SFLOS_hpux = 5,
SFLOS_aix = 6,
SFLOS_dragonfly = 7,
SFLOS_freebsd = 8,
SFLOS_netbsd = 9,
SFLOS_openbsd = 10,
SFLOS_osf = 11,
SFLOS_solaris = 12
};
typedef struct _SFLMacAddress {
uint8_t mac[8];
} SFLMacAddress;
typedef struct _SFLAdaptor {
uint32_t ifIndex;
uint32_t num_macs;
SFLMacAddress macs[1];
} SFLAdaptor;
typedef struct _SFLAdaptorList {
uint32_t capacity;
uint32_t num_adaptors;
SFLAdaptor** adaptors;
} SFLAdaptorList;
typedef struct _SFLHost_parent {
uint32_t dsClass; /* sFlowDataSource class */
uint32_t dsIndex; /* sFlowDataSource index */
} SFLHost_parent;
#define SFL_MAX_HOSTNAME_LEN 64
#define SFL_MAX_OSRELEASE_LEN 32
typedef struct _SFLHostId {
SFLString hostname;
u_char uuid[16];
uint32_t machine_type; /* enum SFLMachine_type */
uint32_t os_name; /* enum SFLOS_name */
SFLString os_release; /* max len 32 bytes */
} SFLHostId;
typedef struct _SFLHost_nio_counters {
uint64_t bytes_in;
uint32_t pkts_in;
uint32_t errs_in;
uint32_t drops_in;
uint64_t bytes_out;
uint32_t pkts_out;
uint32_t errs_out;
uint32_t drops_out;
} SFLHost_nio_counters;
typedef struct _SFLHost_cpu_counters {
float load_one; /* 1 minute load avg. */
float load_five; /* 5 minute load avg. */
float load_fifteen; /* 15 minute load avg. */
uint32_t proc_run; /* running threads */
uint32_t proc_total; /* total threads */
uint32_t cpu_num; /* # CPU cores */
uint32_t cpu_speed; /* speed in MHz of CPU */
uint32_t uptime; /* seconds since last reboot */
uint32_t cpu_user; /* time executing in user mode processes (ms) */
uint32_t cpu_nice; /* time executing niced processs (ms) */
uint32_t cpu_system; /* time executing kernel mode processes (ms) */
uint32_t cpu_idle; /* idle time (ms) */
uint32_t cpu_wio; /* time waiting for I/O to complete (ms) */
uint32_t cpu_intr; /* time servicing interrupts (ms) */
uint32_t cpu_sintr; /* time servicing softirqs (ms) */
uint32_t interrupts; /* interrupt count */
uint32_t contexts; /* context switch count */
} SFLHost_cpu_counters;
typedef struct _SFLHost_mem_counters {
uint64_t mem_total; /* total bytes */
uint64_t mem_free; /* free bytes */
uint64_t mem_shared; /* shared bytes */
uint64_t mem_buffers; /* buffers bytes */
uint64_t mem_cached; /* cached bytes */
uint64_t swap_total; /* swap total bytes */
uint64_t swap_free; /* swap free bytes */
uint32_t page_in; /* page in count */
uint32_t page_out; /* page out count */
uint32_t swap_in; /* swap in count */
uint32_t swap_out; /* swap out count */
} SFLHost_mem_counters;
typedef struct _SFLHost_dsk_counters {
uint64_t disk_total;
uint64_t disk_free;
uint32_t part_max_used; /* as percent * 100, so 100==1% */
uint32_t reads; /* reads issued */
uint64_t bytes_read; /* bytes read */
uint32_t read_time; /* read time (ms) */
uint32_t writes; /* writes completed */
uint64_t bytes_written; /* bytes written */
uint32_t write_time; /* write time (ms) */
} SFLHost_dsk_counters;
/* Virtual Node Statistics */
/* opaque = counter_data; enterprise = 0; format = 2100 */
typedef struct _SFLHost_vrt_node_counters {
uint32_t mhz; /* expected CPU frequency */
uint32_t cpus; /* the number of active CPUs */
uint64_t memory; /* memory size in bytes */
uint64_t memory_free; /* unassigned memory in bytes */
uint32_t num_domains; /* number of active domains */
} SFLHost_vrt_node_counters;
/* Virtual Domain Statistics */
/* opaque = counter_data; enterprise = 0; format = 2101 */
/* virDomainState imported from libvirt.h */
enum SFLVirDomainState {
SFL_VIR_DOMAIN_NOSTATE = 0, /* no state */
SFL_VIR_DOMAIN_RUNNING = 1, /* the domain is running */
SFL_VIR_DOMAIN_BLOCKED = 2, /* the domain is blocked on resource */
SFL_VIR_DOMAIN_PAUSED = 3, /* the domain is paused by user */
SFL_VIR_DOMAIN_SHUTDOWN = 4, /* the domain is being shut down */
SFL_VIR_DOMAIN_SHUTOFF = 5, /* the domain is shut off */
SFL_VIR_DOMAIN_CRASHED = 6 /* the domain is crashed */
};
typedef struct _SFLHost_vrt_cpu_counters {
uint32_t state; /* virtDomainState */
uint32_t cpuTime; /* the CPU time used in mS */
uint32_t cpuCount; /* number of virtual CPUs for the domain */
} SFLHost_vrt_cpu_counters;
/* Virtual Domain Memory statistics */
/* opaque = counter_data; enterprise = 0; format = 2102 */
typedef struct _SFLHost_vrt_mem_counters {
uint64_t memory; /* memory in bytes used by domain */
uint64_t maxMemory; /* memory in bytes allowed */
} SFLHost_vrt_mem_counters;
/* Virtual Domain Disk statistics */
/* opaque = counter_data; enterprise = 0; format = 2103 */
typedef struct _SFLHost_vrt_dsk_counters {
uint64_t capacity; /* logical size in bytes */
uint64_t allocation; /* current allocation in bytes */
uint64_t available; /* remaining free bytes */
uint32_t rd_req; /* number of read requests */
uint64_t rd_bytes; /* number of read bytes */
uint32_t wr_req; /* number of write requests */
uint64_t wr_bytes; /* number of written bytes */
uint32_t errs; /* read/write errors */
} SFLHost_vrt_dsk_counters;
/* Virtual Domain Network statistics */
/* opaque = counter_data; enterprise = 0; format = 2104 */
typedef struct _SFLHost_vrt_nio_counters {
uint64_t bytes_in;
uint32_t pkts_in;
uint32_t errs_in;
uint32_t drops_in;
uint64_t bytes_out;
uint32_t pkts_out;
uint32_t errs_out;
uint32_t drops_out;
} SFLHost_vrt_nio_counters;
/* NVML statistics */
/* opaque = counter_data; enterprise = 5703, format=1 */
typedef struct _SFLHost_gpu_nvml {
uint32_t device_count; /* see nvmlGetDeviceCount */
uint32_t processes; /* see nvmlDeviceGetComputeRunningProcesses */
uint32_t gpu_time; /* total milliseconds in which one or more kernels was executing on GPU */
uint32_t mem_time; /* total milliseconds during which global device memory was being
read/written */
uint64_t mem_total; /* bytes. see nvmlDeviceGetMemoryInfo */
uint64_t mem_free; /* bytes. see nvmlDeviceGetMemoryInfo */
uint32_t ecc_errors; /* see nvmlDeviceGetTotalEccErrors */
uint32_t energy; /* mJ. see nvmlDeviceGetPowerUsage */
uint32_t temperature; /* C. maximum across devices - see nvmlDeviceGetTemperature */
uint32_t fan_speed; /* %. maximum across devices - see nvmlDeviceGetFanSpeed */
} SFLHost_gpu_nvml;
typedef struct _SFLMemcache_counters {
uint32_t uptime; /* not in 2204 */
uint32_t rusage_user; /* not in 2204 */
uint32_t rusage_system; /* not in 2204 */
uint32_t cmd_get; /* not in 2204 */
uint32_t accepting_conns; /* not in 2204 */
uint32_t cmd_set;
uint32_t cmd_touch; /* added for 2204 */
uint32_t cmd_flush;
uint32_t get_hits;
uint32_t get_misses;
uint32_t delete_hits;
uint32_t delete_misses;
uint32_t incr_hits;
uint32_t incr_misses;
uint32_t decr_hits;
uint32_t decr_misses;
uint32_t cas_hits;
uint32_t cas_misses;
uint32_t cas_badval;
uint32_t auth_cmds;
uint32_t auth_errors;
uint32_t threads;
uint32_t conn_yields;
uint32_t listen_disabled_num;
uint32_t curr_connections;
uint32_t rejected_connections; /* added for 2204 */
uint32_t total_connections;
uint32_t connection_structures;
uint32_t evictions;
uint32_t reclaimed; /* added for 2204 */
uint32_t curr_items;
uint32_t total_items;
uint64_t bytes_read;
uint64_t bytes_written;
uint64_t bytes;
uint64_t limit_maxbytes; /* converted to 64-bit for structure 2204 */
} SFLMemcache_counters;
typedef struct _SFLHTTP_counters {
uint32_t method_option_count;
uint32_t method_get_count;
uint32_t method_head_count;
uint32_t method_post_count;
uint32_t method_put_count;
uint32_t method_delete_count;
uint32_t method_trace_count;
uint32_t methd_connect_count;
uint32_t method_other_count;
uint32_t status_1XX_count;
uint32_t status_2XX_count;
uint32_t status_3XX_count;
uint32_t status_4XX_count;
uint32_t status_5XX_count;
uint32_t status_other_count;
} SFLHTTP_counters;
/* Enterprise counters */
/* opaque = counter_data; enterprise = 0; format = 2202 */
typedef struct _SFLAPP_counters {
SFLString application;
uint32_t status_OK;
uint32_t errors_OTHER;
uint32_t errors_TIMEOUT;
uint32_t errors_INTERNAL_ERROR;
uint32_t errors_BAD_REQUEST;
uint32_t errors_FORBIDDEN;
uint32_t errors_TOO_LARGE;
uint32_t errors_NOT_IMPLEMENTED;
uint32_t errors_NOT_FOUND;
uint32_t errors_UNAVAILABLE;
uint32_t errors_UNAUTHORIZED;
} SFLAPP_counters;
/* Enterprise resource counters */
/* opaque = counter_data; enterprise = 0; format = 2203 */
typedef struct {
uint32_t user_time; /* in milliseconds */
uint32_t system_time; /* in milliseconds */
uint64_t mem_used;
uint64_t mem_max;
uint32_t fd_open;
uint32_t fd_max;
uint32_t conn_open;
uint32_t conn_max;
} SFLAPP_resources;
/* Enterprise application workers */
/* opaque = counter_data; enterprise = 0; format = 2206 */
typedef struct {
uint32_t workers_active;
uint32_t workers_idle;
uint32_t workers_max;
uint32_t req_delayed;
uint32_t req_dropped;
} SFLAPP_workers;
typedef struct _SFLJVM_ID {
SFLString vm_name;
SFLString vm_vendor;
SFLString vm_version;
} SFLJVM_ID;
#define SFLJVM_MAX_VMNAME_LEN 64
#define SFLJVM_MAX_VENDOR_LEN 32
#define SFLJVM_MAX_VERSION_LEN 32
typedef struct _SFLJMX_counters {
uint64_t hmem_initial;
uint64_t hmem_used;
uint64_t hmem_committed;
uint64_t hmem_max;
uint64_t nhmem_initial;
uint64_t nhmem_used;
uint64_t nhmem_committed;
uint64_t nhmem_max;
uint32_t gc_count;
uint32_t gc_ms;
uint32_t cls_loaded;
uint32_t cls_total;
uint32_t cls_unloaded;
uint32_t comp_ms;
uint32_t thread_live;
uint32_t thread_daemon;
uint32_t thread_started;
uint32_t fds_open;
uint32_t fds_max;
} SFLJMX_counters;
#define XDRSIZ_JMX_COUNTERS 108
typedef struct _SFLVdi_counters {
uint32_t sessions_current; /* number of current sessions */
uint32_t sessions_total; /* total sessions started */
uint32_t sessions_duration; /* cumulative session time (in seconds)
across all sessions, such that average
session duration = sessions_duration
/ sessions_total */
uint32_t rx_bytes; /* total bytes received */
uint32_t tx_bytes; /* total bytes sent */
uint32_t rx_packets; /* total packet received */
uint32_t tx_packets; /* total packets sent */
uint32_t rx_packets_lost; /* total received packets lost */
uint32_t tx_packets_lost; /* total sent packets lost */
uint32_t rtt_min_ms; /* minimum round trip latency with client
across all current sessions
measured in milliseconds */
uint32_t rtt_max_ms; /* maximum round trip latency with client
across all current sessions
measured in millisecond */
uint32_t rtt_avg_ms; /* average round trip latency with client
across all current sessions
measured in milliseconds */
uint32_t audio_rx_bytes; /* total bytes of audio data received */
uint32_t audio_tx_bytes; /* total bytes of audio data sent */
uint32_t audio_tx_limit; /* administrative limit on audio transmission
bandwidth (in bits per second) */
uint32_t img_rx_bytes; /* total bytes of imaging data recieved */
uint32_t img_tx_bytes; /* total bytes of imaging data sent */
uint32_t img_frames; /* total image frames encoded */
uint32_t img_qual_min; /* minimum image encoding quality across
current sessions, on a scale of 0 to 100 */
uint32_t img_qual_max; /* best image encoding quality across
current sessions, on a scale of 0 to 100 */
uint32_t img_qual_avg; /* average image encoding quality across
current sessions, on a scale of 0 to 100 */
uint32_t usb_rx_bytes; /* total bytes of usb data received */
uint32_t usb_tx_bytes; /* total bytes of usb data sent */
} SFLVdi_counters;
/* LAG Port Statistics - see IEEE8023-LAG-MIB */
/* opaque = counter_data; enterprise = 0; format = 7 */
typedef union _SFLLACP_portState {
uint32_t all;
struct {
uint8_t actorAdmin;
uint8_t actorOper;
uint8_t partnerAdmin;
uint8_t partnerOper;
} v;
} SFLLACP_portState;
typedef struct _SFLLACP_counters {
uint8_t actorSystemID[8]; /* 6 bytes + 2 pad */
uint8_t partnerSystemID[8]; /* 6 bytes + 2 pad */
uint32_t attachedAggID;
SFLLACP_portState portState;
uint32_t LACPDUsRx;
uint32_t markerPDUsRx;
uint32_t markerResponsePDUsRx;
uint32_t unknownRx;
uint32_t illegalRx;
uint32_t LACPDUsTx;
uint32_t markerPDUsTx;
uint32_t markerResponsePDUsTx;
} SFLLACP_counters;
#define XDRSIZ_LACP_COUNTERS 56
/* port name */
/* opaque = counter_data; enterprise = 0; format = 1005 */
typedef struct {
SFLString portName;
} SFLPortName;
#define SFL_MAX_PORTNAME_LEN 255
/* Counters data */
enum SFLCounters_type_tag {
/* enterprise = 0, format = ... */
SFLCOUNTERS_GENERIC = 1,
SFLCOUNTERS_ETHERNET = 2,
SFLCOUNTERS_TOKENRING = 3,
SFLCOUNTERS_VG = 4,
SFLCOUNTERS_VLAN = 5,
SFLCOUNTERS_80211 = 6,
SFLCOUNTERS_LACP = 7,
SFLCOUNTERS_PROCESSOR = 1001,
SFLCOUNTERS_RADIO = 1002,
SFLCOUNTERS_PORTNAME = 1005,
SFLCOUNTERS_HOST_HID = 2000, /* host id */
SFLCOUNTERS_ADAPTORS = 2001, /* host adaptors */
SFLCOUNTERS_HOST_PAR = 2002, /* host parent */
SFLCOUNTERS_HOST_CPU = 2003, /* host cpu */
SFLCOUNTERS_HOST_MEM = 2004, /* host memory */
SFLCOUNTERS_HOST_DSK = 2005, /* host storage I/O */
SFLCOUNTERS_HOST_NIO = 2006, /* host network I/O */
SFLCOUNTERS_HOST_VRT_NODE = 2100, /* host virt node */
SFLCOUNTERS_HOST_VRT_CPU = 2101, /* host virt cpu */
SFLCOUNTERS_HOST_VRT_MEM = 2102, /* host virt mem */
SFLCOUNTERS_HOST_VRT_DSK = 2103, /* host virt storage */
SFLCOUNTERS_HOST_VRT_NIO = 2104, /* host virt network I/O */
SFLCOUNTERS_JVM = 2105, /* java runtime */
SFLCOUNTERS_JMX = 2106, /* java JMX stats */
SFLCOUNTERS_MEMCACHE = 2200, /* memcached (deprecated) */
SFLCOUNTERS_HTTP = 2201, /* http */
SFLCOUNTERS_APP = 2202,
SFLCOUNTERS_APP_RESOURCE = 2203,
SFLCOUNTERS_MEMCACHE2 = 2204, /* memcached */
SFLCOUNTERS_VDI = 2205,
SFLCOUNTERS_APP_WORKERS = 2206,
SFLCOUNTERS_HOST_GPU_NVML = (5703 << 12) + 1, /* = 23359489 */
};
typedef union _SFLCounters_type {
SFLIf_counters generic;
SFLEthernet_counters ethernet;
SFLTokenring_counters tokenring;
SFLVg_counters vg;
SFLVlan_counters vlan;
SFLWifi_counters wifi;
SFLProcessor_counters processor;
SFLRadio_counters radio;
SFLHostId hostId;
SFLAdaptorList* adaptors;
SFLHost_parent host_par;
SFLHost_cpu_counters host_cpu;
SFLHost_mem_counters host_mem;
SFLHost_dsk_counters host_dsk;
SFLHost_nio_counters host_nio;
SFLHost_vrt_node_counters host_vrt_node;
SFLHost_vrt_cpu_counters host_vrt_cpu;
SFLHost_vrt_mem_counters host_vrt_mem;
SFLHost_vrt_dsk_counters host_vrt_dsk;
SFLHost_vrt_nio_counters host_vrt_nio;
SFLHost_gpu_nvml host_gpu_nvml;
SFLMemcache_counters memcache;
SFLHTTP_counters http;
SFLJVM_ID jvm;
SFLJMX_counters jmx;
SFLAPP_counters app;
SFLAPP_resources appResources;
SFLAPP_workers appWorkers;
SFLVdi_counters vdi;
SFLLACP_counters lacp;
SFLPortName portName;
} SFLCounters_type;
typedef struct _SFLCounters_sample_element {
struct _SFLCounters_sample_element* nxt; /* linked list */
uint32_t tag; /* SFLCounters_type_tag */
uint32_t length;
SFLCounters_type counterBlock;
} SFLCounters_sample_element;
typedef struct _SFLCounters_sample {
/* uint32_t tag; */ /* SFL_sample_tag -- enterprise = 0 : format = 2 */
/* uint32_t length; */
uint32_t sequence_number; /* Incremented with each counters sample
generated by this source_id */
uint32_t source_id; /* fsSourceId */
uint32_t num_elements;
SFLCounters_sample_element* elements;
} SFLCounters_sample;
/* same thing, but the expanded version, so ds_index can be a full 32 bits */
typedef struct _SFLCounters_sample_expanded {
/* uint32_t tag; */ /* SFL_sample_tag -- enterprise = 0 : format = 2 */
/* uint32_t length; */
uint32_t sequence_number; /* Incremented with each counters sample
generated by this source_id */
uint32_t ds_class; /* EXPANDED */
uint32_t ds_index; /* EXPANDED */
uint32_t num_elements;
SFLCounters_sample_element* elements;
} SFLCounters_sample_expanded;
#define SFLADD_ELEMENT(_sm, _el) \
do { \
(_el)->nxt = (_sm)->elements; \
(_sm)->elements = (_el); \
} while (0)
/* Format of a sample datagram */
enum SFLDatagram_version {
SFLDATAGRAM_VERSION2 = 2,
SFLDATAGRAM_VERSION4 = 4,
SFLDATAGRAM_VERSION5 = 5
};
typedef struct _SFLSample_datagram_hdr {
uint32_t datagram_version; /* (enum SFLDatagram_version) = VERSION5 = 5 */
SFLAddress agent_address; /* IP address of sampling agent */
uint32_t sub_agent_id; /* Used to distinguishing between datagram
streams from separate agent sub entities
within an device. */
uint32_t sequence_number; /* Incremented with each sample datagram
generated */
uint32_t uptime; /* Current time (in milliseconds since device
last booted). Should be set as close to
datagram transmission time as possible.*/
uint32_t num_records; /* Number of tag-len-val flow/counter records to follow */
} SFLSample_datagram_hdr;
#define SFL_MAX_DATAGRAM_SIZE 1500
#define SFL_MIN_DATAGRAM_SIZE 200
#define SFL_DEFAULT_DATAGRAM_SIZE 1400
#define SFL_DATA_PAD 400
#if defined(__cplusplus)
} /* extern "C" */
#endif
#endif /* SFLOW_H */

View File

@ -1,141 +1,147 @@
#include <climits>
#include <inttypes.h>
#include <iomanip>
#include <iostream>
#include <sys/types.h>
#include <type_traits>
#include "../libsflow/libsflow.h"
#include "sflow_collector.h"
// sflowtool-3.32
#include "sflow.h"
// custom sFLOW data structures
#include "sflow_data.h"
#include "../fast_library.h"
#include <arpa/inet.h>
#include <netinet/in.h>
#include <sys/socket.h>
// UDP server
#include <netinet/in.h>
#include <setjmp.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/socket.h>
#include "../fast_library.h"
#include "../all_logcpp_libraries.h"
#ifdef ENABLE_LUA_HOOKS
lua_State* sflow_lua_state = NULL;
bool sflow_lua_hooks_enabled = false;
std::string sflow_lua_hooks_path = "/usr/src/fastnetmon/src/sflow_hooks.lua";
#endif
// Ethertype of outer tag in QinQ
uint32_t sflow_qinq_ethertype = 0x8100;
// Disable QinQ processing by default
bool sflow_qinq_process = false;
// sFLOW v4 specification: http://www.sflow.org/rfc3176.txt
std::string plugin_name = "sflow";
std::string plugin_log_prefix = plugin_name + ": ";
// Get logger from main program
extern log4cpp::Category& logger;
#include "../simple_packet_parser_ng.h"
// Global configuration map
extern std::map<std::string, std::string> configuration_map;
// Enable debug messages in log
bool debug_sflow_parser = false;
// Number of raw packets received without any errors
uint64_t raw_udp_packets_received = 0;
uint32_t getData32(SFSample* sample);
bool skipTLVRecord(SFSample* sample, uint32_t tag, uint32_t len);
bool readFlowSample(SFSample* sample, int expanded);
void readFlowSample_header(SFSample* sample);
void decode_ipv4_protocol(SFSample* sample);
void decode_ipv6_protocol(SFSample* sample);
void print_simple_packet(simple_packet_t& packet);
// Number of failed receives
uint64_t udp_receive_errors = 0;
// sFLOW v4 specification: http://www.sflow.org/rfc3176.txt
std::string plugin_name = "sflow";
std::string plugin_log_prefix = plugin_name + ": ";
uint64_t sflow_total_packets = 0;
// Incorrectly crafted sflow packets
uint64_t sflow_bad_packets = 0;
// Number of flow samples, i.e. with packet headers
uint64_t sflow_flow_samples = 0;
// Number of broken flow samples
uint64_t sflow_bad_flow_samples = 0;
// Number of packets where we have padding at the end of packet
uint64_t sflow_with_padding_at_the_end_of_packet = 0;
// Number of packets with padding inside flow sample
uint64_t sflow_padding_flow_sample = 0;
// Number of packet headers from flow samples which could not be decoded correctly
uint64_t sflow_parse_error_nested_header = 0;
// Number of counter samples, i.e. with port counters
uint64_t sflow_counter_sample = 0;
uint64_t sflow_raw_packet_headers_total = 0;
// Number of records with extended information from routers
uint64_t sflow_extended_router_data_records = 0;
// For switch data
uint64_t sflow_extended_switch_data_records = 0;
// For gateway data
uint64_t sflow_extended_gateway_data_records = 0;
// Prototypes
bool process_sflow_counter_sample(uint8_t* data_pointer,
size_t data_length,
bool expanded,
const sflow_packet_header_unified_accessor& sflow_header_accessor);
process_packet_pointer sflow_process_func_ptr = NULL;
// #include <sys/prctl.h>
void start_sflow_collector(std::string interface_for_binding, unsigned int sflow_port);
// Initialize sflow module, we need it for allocation per module structures
void init_sflow_module() {
}
// Deinitilize sflow module, we need it for deallocation module structures
void deinit_sflow_module() {
}
void start_sflow_collection(process_packet_pointer func_ptr) {
std::string interface_for_binding = "0.0.0.0";
std::string sflow_ports = "";
logger << log4cpp::Priority::INFO << plugin_log_prefix << "plugin started";
// prctl(PR_SET_NAME,"fastnetmon_sflow", 0, 0, 0);
sflow_process_func_ptr = func_ptr;
std::string sflow_ports_string = "";
if (configuration_map.count("sflow_port") != 0) {
sflow_ports = configuration_map["sflow_port"];
sflow_ports_string = configuration_map["sflow_port"];
}
if (configuration_map.count("sflow_host") != 0) {
interface_for_binding = configuration_map["sflow_host"];
std::vector<std::string> sflow_ports_for_listen;
boost::split(sflow_ports_for_listen, sflow_ports_string, boost::is_any_of(","), boost::token_compress_on);
std::vector<unsigned int> sflow_ports;
for (auto port_string: sflow_ports_for_listen) {
unsigned int sflow_port = convert_string_to_integer(port_string);
if (sflow_port == 0) {
logger << log4cpp::Priority::ERROR << plugin_log_prefix << "Cannot parse port: " << port_string;
continue;
}
sflow_ports.push_back(sflow_port);
}
if (configuration_map.count("sflow_qinq_process") != 0) {
if (configuration_map["sflow_qinq_process"] == "on") {
sflow_qinq_process = true;
logger << log4cpp::Priority::INFO << plugin_log_prefix << "qinq processing enabled";
if (configuration_map.count("sflow_qinq_ethertype") != 0) {
if (convert_hex_as_string_to_uint(configuration_map["sflow_qinq_ethertype"], sflow_qinq_ethertype)) {
logger << log4cpp::Priority::WARN << plugin_log_prefix
<< "can't parse value in sflow_qinq_ethertype variable";
logger << log4cpp::Priority::INFO << plugin_log_prefix << "disable qinq processing";
sflow_qinq_process = false;
}
}
}
if (sflow_ports.size() == 0) {
logger << log4cpp::Priority::ERROR << plugin_log_prefix << "Please specify least single port for sflow_port field!";
return;
}
#ifdef ENABLE_LUA_HOOKS
if (configuration_map.count("sflow_lua_hooks_path") != 0) {
sflow_lua_hooks_path = configuration_map["sflow_lua_hooks_path"];
sflow_lua_hooks_enabled = true;
}
#endif
#ifdef ENABLE_LUA_HOOKS
if (sflow_lua_hooks_enabled) {
sflow_lua_state = init_lua_jit(sflow_lua_hooks_path);
if (sflow_lua_state == NULL) {
sflow_lua_hooks_enabled = false;
}
}
#endif
logger << log4cpp::Priority::INFO << plugin_log_prefix << "We parsed "
<< sflow_ports.size() << " ports for sflow";
boost::thread_group sflow_collector_threads;
std::vector<std::string> ports_for_listen;
boost::split(ports_for_listen, sflow_ports, boost::is_any_of(","), boost::token_compress_on);
logger << log4cpp::Priority::INFO << plugin_log_prefix << "We will listen on "
<< ports_for_listen.size() << " ports";
<< sflow_ports.size() << " ports";
for (std::vector<std::string>::iterator port = ports_for_listen.begin();
port != ports_for_listen.end(); ++port) {
unsigned int sflow_port = convert_string_to_integer(*port);
std::string sflow_host;
if (sflow_port == 0) {
sflow_port = 6343;
}
if (configuration_map.count("sflow_host") != 0) {
sflow_host = configuration_map["sflow_host"];
}
for (auto sflow_port: sflow_ports) {
sflow_collector_threads.add_thread(
new boost::thread(start_sflow_collector, interface_for_binding, sflow_port));
new boost::thread(start_sflow_collector, sflow_host, sflow_port));
}
sflow_collector_threads.join_all();
@ -143,8 +149,8 @@ void start_sflow_collection(process_packet_pointer func_ptr) {
void start_sflow_collector(std::string interface_for_binding, unsigned int sflow_port) {
logger << log4cpp::Priority::INFO << plugin_log_prefix << "plugin will listen on "
<< interface_for_binding << ":" << sflow_port << " udp port";
logger << log4cpp::Priority::INFO << plugin_log_prefix << "plugin will listen on " << interface_for_binding << ":"
<< sflow_port << " udp port";
unsigned int udp_buffer_size = 65536;
char udp_buffer[udp_buffer_size];
@ -163,10 +169,11 @@ void start_sflow_collector(std::string interface_for_binding, unsigned int sflow
}
servaddr.sin_port = htons(sflow_port);
int bind_result = bind(sockfd, (struct sockaddr*)&servaddr, sizeof(servaddr));
int bind_result = bind(sockfd, (struct sockaddr*)&servaddr, sizeof(servaddr));
if (bind_result) {
logger << log4cpp::Priority::ERROR << plugin_log_prefix << "can't listen port: " << sflow_port;
logger << log4cpp::Priority::ERROR << plugin_log_prefix << "can't listen port: " << sflow_port << " on host "
<< interface_for_binding;
return;
}
@ -176,36 +183,35 @@ void start_sflow_collector(std::string interface_for_binding, unsigned int sflow
/* We should specify timeout there for correct toolkit shutdown */
/* Because otherwise recvfrom will stay in blocked mode forever */
struct timeval tv;
tv.tv_sec = 5; /* X Secs Timeout */
tv.tv_sec = 1; /* X Secs Timeout */
tv.tv_usec = 0; // Not init'ing this can cause strange errors
setsockopt(sockfd, SOL_SOCKET, SO_RCVTIMEO, (char*)&tv, sizeof(struct timeval));
while (true) {
struct sockaddr_in cliaddr;
socklen_t address_len = sizeof(cliaddr);
struct sockaddr_in client_addr;
socklen_t address_len = sizeof(client_addr);
int received_bytes =
recvfrom(sockfd, udp_buffer, udp_buffer_size, 0, (struct sockaddr*)&cliaddr, &address_len);
int received_bytes = recvfrom(sockfd, udp_buffer, udp_buffer_size, 0, (struct sockaddr*)&client_addr, &address_len);
if (received_bytes > 0) {
// printf("We receive %d\n", received_bytes);
raw_udp_packets_received++;
SFSample sample;
memset(&sample, 0, sizeof(sample));
sample.rawSample = (uint8_t*)udp_buffer;
sample.rawSampleLen = received_bytes;
uint32_t client_ipv4_address = 0;
if (address_len == sizeof(struct sockaddr_in)) {
struct sockaddr_in* peer4 = (struct sockaddr_in*)&cliaddr;
sample.sourceIP.type = SFLADDRESSTYPE_IP_V4;
memcpy(&sample.sourceIP.address.ip_v4, &peer4->sin_addr, 4);
read_sflow_datagram(&sample);
if (client_addr.sin_family == AF_INET) {
client_ipv4_address = client_addr.sin_addr.s_addr;
// logger << log4cpp::Priority::ERROR << "client ip: " << convert_ip_as_uint_to_string(client_ipv4_address);
} else if (client_addr.sin_family == AF_INET6) {
// We do not support them now
} else {
// We do not support an IPv6
// Should not happen
}
parse_sflow_v5_packet((uint8_t*)udp_buffer, received_bytes, client_ipv4_address);
} else {
udp_receive_errors++;
if (received_bytes == -1) {
if (errno == EAGAIN) {
@ -221,713 +227,322 @@ void start_sflow_collector(std::string interface_for_binding, unsigned int sflow
}
}
uint32_t getData32_nobswap(SFSample* sample) {
uint32_t ans = *(sample->datap)++;
// make sure we didn't run off the end of the datagram. Thanks to
// Sven Eschenberg for spotting a bug/overrun-vulnerabilty that was here before.
if ((uint8_t*)sample->datap > sample->endp) {
// SFABORT(sample, SF_ABORT_EOS);
// Error!!!
logger << log4cpp::Priority::ERROR << plugin_log_prefix << "we tried to read data in bad place! Fault!";
return 0;
}
bool process_sflow_flow_sample(uint8_t* data_pointer,
size_t data_length,
bool expanded,
const sflow_packet_header_unified_accessor& sflow_header_accessor,
uint32_t client_ipv4_address) {
uint8_t* current_packet_end = data_pointer + data_length;
return ans;
}
sflow_sample_header_unified_accessor_t sflow_sample_header_unified_accessor;
bool skipBytes(SFSample* sample, uint32_t skip) {
int quads = (skip + 3) / 4;
sample->datap += quads;
if (skip > sample->rawSampleLen || (uint8_t*)sample->datap > sample->endp) {
// SFABORT(sample, SF_ABORT_EOS);
logger << log4cpp::Priority::ERROR
<< plugin_log_prefix << "very dangerous error from skipBytes function! We try to read from restricted memory region";
bool read_sflow_sample_header_unified_result =
read_sflow_sample_header_unified(sflow_sample_header_unified_accessor, data_pointer, data_length, expanded);
if (!read_sflow_sample_header_unified_result) {
sflow_bad_flow_samples++;
logger << log4cpp::Priority::ERROR << plugin_log_prefix << "could not read sample header from the packet";
return false;
}
return true;
}
uint32_t getAddress(SFSample* sample, SFLAddress* address) {
address->type = getData32(sample);
if (address->type == SFLADDRESSTYPE_IP_V4) {
address->address.ip_v4.addr = getData32_nobswap(sample);
} else {
memcpy(&address->address.ip_v6.addr, sample->datap, 16);
skipBytes(sample, 16);
}
return address->type;
}
uint32_t getData32(SFSample* sample) {
return ntohl(getData32_nobswap(sample));
}
bool readFlowSample_v2v4(SFSample* sample) {
sample->samplesGenerated = getData32(sample);
uint32_t samplerId = getData32(sample);
sample->ds_class = samplerId >> 24;
sample->ds_index = samplerId & 0x00ffffff;
sample->meanSkipCount = getData32(sample);
sample->samplePool = getData32(sample);
sample->dropEvents = getData32(sample);
sample->inputPort = getData32(sample);
sample->outputPort = getData32(sample);
sample->packet_data_tag = getData32(sample);
switch (sample->packet_data_tag) {
case INMPACKETTYPE_HEADER:
readFlowSample_header(sample);
break;
case INMPACKETTYPE_IPV4:
logger << log4cpp::Priority::ERROR << plugin_log_prefix << "hit INMPACKETTYPE_IPV4, very strange";
return false;
break;
case INMPACKETTYPE_IPV6:
logger << log4cpp::Priority::ERROR << plugin_log_prefix << "hit INMPACKETTYPE_IPV6, very strange";
return false;
break;
default:
logger << log4cpp::Priority::ERROR << plugin_log_prefix << "unexpected packet_data_tag";
return false;
break;
}
sample->extended_data_tag = 0;
// We should read this data
sample->num_extended = getData32(sample);
if (sample->num_extended > 0) {
logger << log4cpp::Priority::ERROR << plugin_log_prefix << "we have "
<< sample->num_extended << " extended fields";
logger << log4cpp::Priority::ERROR << plugin_log_prefix << "and sorry we haven't support for it :(";
if (sflow_sample_header_unified_accessor.get_number_of_flow_records() == 0) {
sflow_bad_flow_samples++;
logger << log4cpp::Priority::ERROR << plugin_log_prefix << "for some strange reasons we got zero flow records";
return false;
}
return true;
}
uint8_t* flow_record_zone_start = data_pointer + sflow_sample_header_unified_accessor.get_original_payload_length();
void read_sflow_datagram(SFSample* sample) {
sample->datap = (uint32_t*)sample->rawSample;
sample->endp = (uint8_t*)sample->rawSample + sample->rawSampleLen;
vector_tuple_t vector_tuple;
vector_tuple.reserve(sflow_sample_header_unified_accessor.get_number_of_flow_records());
sample->datagramVersion = getData32(sample);
// printf("sFLOW version %d\n", sample->datagramVersion);
bool padding_found = false;
if (sample->datagramVersion != 5 && sample->datagramVersion != 4) {
logger << log4cpp::Priority::ERROR << plugin_log_prefix << "we do not support sFLOW v<< "
<< sample->datagramVersion << " because it's too old. Please change version to sFLOW 4 or 5";
return;
bool get_records_result =
get_records(vector_tuple, flow_record_zone_start,
sflow_sample_header_unified_accessor.get_number_of_flow_records(), current_packet_end, padding_found);
// I think that it's pretty important to have counter for this case
if (padding_found) {
sflow_padding_flow_sample++;
}
/* get the agent address */
getAddress(sample, &sample->agent_addr);
/* version 5 has an agent sub-id as well */
if (sample->datagramVersion >= 5) {
sample->agentSubId = getData32(sample);
// sf_log(sample,"agentSubId %u\n", sample->agentSubId);
} else {
sample->agentSubId = 0;
if (!get_records_result) {
sflow_bad_flow_samples++;
logger << log4cpp::Priority::ERROR << plugin_log_prefix << "Could not get records for some reasons";
return false;
}
sample->sequenceNo = getData32(sample); /* this is the packet sequence number */
sample->sysUpTime = getData32(sample);
uint32_t samplesInPacket = getData32(sample);
simple_packet_t packet;
packet.source = SFLOW;
// printf("We have %d samples in packet\n", samplesInPacket);
packet.agent_ip_address = client_ipv4_address;
uint32_t samp = 0;
for (; samp < samplesInPacket; samp++) {
if ((uint8_t*)sample->datap >= sample->endp) {
logger
<< log4cpp::Priority::INFO << plugin_log_prefix
<< "we tried to read data outside packet! It's very dangerous, we stop all operations";
return;
}
for (auto record : vector_tuple) {
int32_t record_type = std::get<0>(record);
uint8_t* payload_ptr = std::get<1>(record);
int32_t record_length = std::get<2>(record);
// printf("Sample #%d\n", samp);
// std::cout << "flow record " << " record_type: " << record_type
// << " record_length: " << record_length << std::endl;
/* just read the tag, then call the approriate decode fn */
sample->sampleType = getData32(sample);
if (sample->datagramVersion >= 5) {
switch (sample->sampleType) {
case SFLFLOW_SAMPLE:
// skipBytes(sample, getData32(sample));
if (!readFlowSample(sample, 0)) {
logger << log4cpp::Priority::ERROR << plugin_log_prefix << "we failed in SFLFLOW_SAMPLE handler";
return;
}
// raw packet header we support only it
if (record_type == SFLOW_RECORD_TYPE_RAW_PACKET_HEADER) {
sflow_raw_packet_headers_total++;
break;
case SFLCOUNTERS_SAMPLE:
// We do not need counters for our task, skip it
if (!skipBytes(sample, getData32(sample))) {
logger << log4cpp::Priority::ERROR << plugin_log_prefix
<< "we failed in SFLCOUNTERS_SAMPLE handler";
return;
}
sflow_raw_protocol_header_t sflow_raw_protocol_header;
memcpy(&sflow_raw_protocol_header, payload_ptr, sizeof(sflow_raw_protocol_header_t));
break;
case SFLFLOW_SAMPLE_EXPANDED:
// skipBytes(sample, getData32(sample));
if (!readFlowSample(sample, 1)) {
logger << log4cpp::Priority::ERROR << plugin_log_prefix
<< "we failed in SFLFLOW_SAMPLE_EXPANDED handler";
return;
}
sflow_raw_protocol_header.network_to_host_byte_order();
sflow_raw_protocol_header.print();
break;
case SFLCOUNTERS_SAMPLE_EXPANDED:
// We do not need counters for our task, skip it
if (!skipBytes(sample, getData32(sample))) {
logger << log4cpp::Priority::ERROR << plugin_log_prefix
<< "we failed in SFLCOUNTERS_SAMPLE_EXPANDED handler";
return;
}
uint8_t* header_payload_pointer = payload_ptr + sizeof(sflow_raw_protocol_header_t);
break;
default:
if (!skipTLVRecord(sample, sample->sampleType, getData32(sample))) {
logger << log4cpp::Priority::ERROR << plugin_log_prefix
<< "we failed in default handler in skipTLVRecord";
return;
}
break;
bool use_packet_length_from_wire = true;
// We could enable this new parser for testing purposes
auto result = parse_raw_packet_to_simple_packet_full_ng(header_payload_pointer,
sflow_raw_protocol_header.frame_length_before_sampling,
sflow_raw_protocol_header.header_size, packet,
use_packet_length_from_wire);
if (result != network_data_stuctures::parser_code_t::success) {
sflow_parse_error_nested_header++;
logger << log4cpp::Priority::DEBUG << plugin_log_prefix
<< "Cannot parse nested packet using ng parser: " << parser_code_to_string(result);
return false;
}
} else {
// sFLOW v2 or v4 here
switch (sample->sampleType) {
case FLOWSAMPLE:
if (!readFlowSample_v2v4(sample)) {
// We have some troubles with old sFLOW parser
return;
}
break;
case COUNTERSSAMPLE:
logger << log4cpp::Priority::ERROR << plugin_log_prefix << "we haven't support for COUNTERSSAMPLE for "
<< "sFLOW v4 and ignore it completely";
return;
break;
default:
logger << log4cpp::Priority::ERROR << plugin_log_prefix
<< "unexpected sample type: " << sample->sampleType;
return;
break;
}
}
}
}
bool skipTLVRecord(SFSample* sample, uint32_t tag, uint32_t len) {
return skipBytes(sample, len);
}
// Pass pointer to raw header to FastNetMon processing functions
packet.packet_payload_pointer = header_payload_pointer;
packet.packet_payload_full_length = sflow_raw_protocol_header.frame_length_before_sampling;
packet.packet_payload_length = sflow_raw_protocol_header.header_size;
packet.sample_ratio = sflow_sample_header_unified_accessor.sampling_rate;
bool length_check(SFSample* sample, const char* description, uint8_t* start, int len) {
uint32_t actualLen = (uint8_t*)sample->datap - start;
uint32_t adjustedLen = ((len + 3) >> 2) << 2;
// std::cout << print_simple_packet(packet) << std::endl;
if (actualLen != adjustedLen) {
logger << log4cpp::Priority::ERROR << plugin_log_prefix << description
<< " length error: expected " << len << " found " << actualLen;
return false;
}
} else if (record_type == SFLOW_RECORD_TYPE_EXTENDED_ROUTER_DATA) {
sflow_extended_router_data_records++;
} else if (record_type == SFLOW_RECORD_TYPE_EXTENDED_SWITCH_DATA) {
sflow_extended_switch_data_records++;
} else if (record_type == SFLOW_RECORD_TYPE_EXTENDED_GATEWAY_DATA) {
sflow_extended_gateway_data_records++;
return true;
}
if (record_length < sizeof(uint32_t)) {
logger << log4cpp::Priority::ERROR << "Extended gateway data is too short: " << record_length;
bool readFlowSample(SFSample* sample, int expanded) {
uint32_t num_elements, sampleLength;
uint8_t* sampleStart;
sampleLength = getData32(sample);
sampleStart = (uint8_t*)sample->datap;
sample->samplesGenerated = getData32(sample);
if (expanded) {
sample->ds_class = getData32(sample);
sample->ds_index = getData32(sample);
} else {
uint32_t samplerId = getData32(sample);
sample->ds_class = samplerId >> 24;
sample->ds_index = samplerId & 0x00ffffff;
}
sample->meanSkipCount = getData32(sample);
// printf("Sample ratio: %d\n", sample->meanSkipCount);
sample->samplePool = getData32(sample);
sample->dropEvents = getData32(sample);
if (expanded) {
sample->inputPortFormat = getData32(sample);
sample->inputPort = getData32(sample);
sample->outputPortFormat = getData32(sample);
sample->outputPort = getData32(sample);
} else {
uint32_t inp, outp;
inp = getData32(sample);
outp = getData32(sample);
sample->inputPortFormat = inp >> 30;
sample->outputPortFormat = outp >> 30;
sample->inputPort = inp & 0x3fffffff;
sample->outputPort = outp & 0x3fffffff;
}
num_elements = getData32(sample);
uint32_t el;
for (el = 0; el < num_elements; el++) {
uint32_t tag, length;
uint8_t* start;
char buf[51];
tag = sample->elementType = getData32(sample);
length = getData32(sample);
start = (uint8_t*)sample->datap;
// tag analyze
if (tag == SFLFLOW_HEADER) {
// process data
readFlowSample_header(sample);
} else {
if (!skipTLVRecord(sample, tag, length)) {
return false;
}
}
if (!length_check(sample, "flow_sample_element", start, length)) {
return false;
// First field here is address type for nexthop
uint32_t nexthop_address_type = 0;
memcpy(&nexthop_address_type, payload_ptr, sizeof(uint32_t));
if (fast_ntoh(nexthop_address_type) == SFLOW_ADDRESS_TYPE_IPv4) {
// We can parse first more important for us fields from gateway structure
if (record_length < sizeof(sflow_extended_gateway_information_t)) {
logger << log4cpp::Priority::ERROR << "Extended gateway data is too short for IPv structure: " << record_length;
return false;
}
// We're ready to parse it
sflow_extended_gateway_information_t* gateway_details = (sflow_extended_gateway_information_t*)payload_ptr;
packet.src_asn = fast_ntoh(gateway_details->router_asn);
packet.dst_asn = fast_ntoh(gateway_details->source_asn);
}
// logger << log4cpp::Priority::DEBUG << "Address type: " << fast_ntoh(*address_type);
} else {
// unknown type
}
}
if (!length_check(sample, "flow_sample", sampleStart, sampleLength)) {
return false;
}
sflow_process_func_ptr(packet);
return true;
}
#define NFT_ETHHDR_SIZ 14
#define NFT_8022_SIZ 3
#define NFT_MAX_8023_LEN 1500
// Read sFLOW packet header
// Awesome description about v5 format from AMX-IX folks:
// Header structure from AMS-IX folks:
// http://www.sflow.org/developers/diagrams/sFlowV5Datagram.pdf
void parse_sflow_v5_packet(uint8_t* payload_ptr, unsigned int payload_length, uint32_t client_ipv4_address) {
sflow_packet_header_unified_accessor sflow_header_accessor;
uint8_t* total_packet_end = payload_ptr + payload_length;
#define NFT_MIN_SIZ (NFT_ETHHDR_SIZ + sizeof(struct myiphdr))
// Increase total number of packets
sflow_total_packets++;
void decode_link_layer(SFSample* sample) {
uint8_t* start = (uint8_t*)sample->header;
uint8_t* end = start + sample->headerLen;
uint8_t* ptr = start;
uint16_t type_len;
bool read_sflow_header_result = read_sflow_header(payload_ptr, payload_length, sflow_header_accessor);
/* assume not found */
sample->gotIPV4 = 0;
sample->gotIPV6 = 0;
if (sample->headerLen < NFT_ETHHDR_SIZ) {
/* not enough for an Ethernet header */
if (!read_sflow_header_result) {
logger << log4cpp::Priority::ERROR << plugin_log_prefix << "could not read sflow packet header correctly";
sflow_bad_packets++;
return;
}
// sf_log(sample,"dstMAC %02x%02x%02x%02x%02x%02x\n", ptr[0], ptr[1], ptr[2], ptr[3], ptr[4],
// ptr[5]);
memcpy(sample->eth_dst, ptr, 6);
ptr += 6;
// sf_log(sample,"srcMAC %02x%02x%02x%02x%02x%02x\n", ptr[0], ptr[1], ptr[2], ptr[3], ptr[4],
// ptr[5]);
memcpy(sample->eth_src, ptr, 6);
ptr += 6;
type_len = (ptr[0] << 8) + ptr[1];
ptr += 2;
if (sflow_qinq_process && type_len == sflow_qinq_ethertype && ((ptr[2] << 8) + ptr[3]) == 0x8100) {
/* Outer VLAN tag - next two bytes */
uint32_t vlanData = (ptr[0] << 8) + ptr[1];
uint32_t vlan = vlanData & 0x0fff;
uint32_t priority = vlanData >> 13;
ptr += 2;
sample->in_outer_vlan = vlan;
/* now get the type_len again (next two bytes) */
type_len = (ptr[0] << 8) + ptr[1];
ptr += 2;
}
if (type_len == 0x8100) {
/* Inner VLAN tag - next two bytes */
uint32_t vlanData = (ptr[0] << 8) + ptr[1];
uint32_t vlan = vlanData & 0x0fff;
uint32_t priority = vlanData >> 13;
ptr += 2;
/* _____________________________________ */
/* | pri | c | vlan-id | */
/* ------------------------------------- */
/* [priority = 3bits] [Canonical Format Flag = 1bit] [vlan-id = 12 bits] */
// sf_log(sample,"decodedVLAN %u\n", vlan);
// sf_log(sample,"decodedPriority %u\n", priority);
sample->in_vlan = vlan;
/* now get the type_len again (next two bytes) */
type_len = (ptr[0] << 8) + ptr[1];
ptr += 2;
}
/* assume type_len is an ethernet-type now */
sample->eth_type = type_len;
if (type_len == 0x0800) {
/* IPV4 */
if ((end - ptr) < sizeof(struct myiphdr)) {
return;
}
/* look at first byte of header.... */
/* ___________________________ */
/* | version | hdrlen | */
/* --------------------------- */
if ((*ptr >> 4) != 4) return; /* not version 4 */
if ((*ptr & 15) < 5) return; /* not IP (hdr len must be 5 quads or more) */
/* survived all the tests - store the offset to the start of the ip header */
sample->gotIPV4 = 1;
sample->offsetToIPV4 = (ptr - start);
}
if (type_len == 0x86DD) {
/* IPV6 */
/* look at first byte of header.... */
if ((*ptr >> 4) != 6) return; /* not version 6 */
/* survived all the tests - store the offset to the start of the ip6 header */
sample->gotIPV6 = 1;
sample->offsetToIPV6 = (ptr - start);
printf("IPv6\n");
}
// printf("vlan: %d\n",sample->in_vlan);
}
void readFlowSample_header(SFSample* sample) {
sample->headerProtocol = getData32(sample);
sample->sampledPacketSize = getData32(sample);
if (sample->datagramVersion > 4) {
/* stripped count introduced in sFlow version 5 */
sample->stripped = getData32(sample);
}
sample->headerLen = getData32(sample);
sample->header = (uint8_t*)sample->datap; /* just point at the header */
skipBytes(sample, sample->headerLen);
if (sample->headerProtocol == SFLHEADER_ETHERNET_ISO8023) {
// Detect IPv4 or IPv6 here
decode_link_layer(sample);
// Process IP packets next
if (sample->gotIPV4) {
decode_ipv4_protocol(sample);
}
if (sample->gotIPV6) {
decode_ipv6_protocol(sample);
}
} else {
if (sflow_header_accessor.get_datagram_samples_count() <= 0) {
logger << log4cpp::Priority::ERROR << plugin_log_prefix
<< "not supported protocol: " << sample->headerProtocol;
return;
}
}
char* IP_to_a(uint32_t ipaddr, char* buf) {
uint8_t* ip = (uint8_t*)&ipaddr;
/* should really be: snprintf(buf, buflen,...) but snprintf() is not always available */
sprintf(buf, "%u.%u.%u.%u", ip[0], ip[1], ip[2], ip[3]);
return buf;
}
char* printAddress(SFLAddress* address, char* buf) {
switch (address->type) {
case SFLADDRESSTYPE_IP_V4:
IP_to_a(address->address.ip_v4.addr, buf);
break;
case SFLADDRESSTYPE_IP_V6: {
uint8_t* b = address->address.ip_v6.addr;
/* should really be: snprintf(buf, buflen,...) but snprintf() is not always available */
sprintf(buf, "%02x%02x:%02x%02x:%02x%02x:%02x%02x:%02x%02x:%02x%02x:%02x%02x:%02x%02x",
b[0], b[1], b[2], b[3], b[4], b[5], b[6], b[7], b[8], b[9], b[10], b[11], b[12],
b[13], b[14], b[15]);
} break;
default:
sprintf(buf, "-");
}
return buf;
}
void decodeIPLayer4(SFSample* sample, uint8_t* ptr) {
uint8_t* end = sample->header + sample->headerLen;
if (ptr > (end - 8)) {
/* not enough header bytes left */
<< "Strange number of sFLOW samples: " << sflow_header_accessor.get_datagram_samples_count();
sflow_bad_packets++;
return;
}
simple_packet_t current_packet;
vector_sample_tuple_t samples_vector;
samples_vector.reserve(sflow_header_accessor.get_datagram_samples_count());
if (sample->gotIPV6) {
current_packet.ip_protocol_version = 6;
uint8_t* samples_block_start = payload_ptr + sflow_header_accessor.get_original_payload_length();
memcpy(current_packet.src_ipv6.s6_addr, sample->ipsrc.address.ip_v6.addr, 16);
memcpy(current_packet.dst_ipv6.s6_addr, sample->ipdst.address.ip_v6.addr, 16);
} else {
current_packet.ip_protocol_version = 4;
bool discovered_padding = false;
current_packet.src_ip = sample->ipsrc.address.ip_v4.addr;
current_packet.dst_ip = sample->ipdst.address.ip_v4.addr;
bool get_all_samples_result = get_all_samples(samples_vector, samples_block_start, total_packet_end,
sflow_header_accessor.get_datagram_samples_count(), discovered_padding);
if (!get_all_samples_result) {
logger << log4cpp::Priority::ERROR << plugin_log_prefix << "we could not extract all samples from packet";
sflow_bad_packets++;
return;
}
// Because sFLOW data is near real time we could get current time
gettimeofday(&current_packet.ts, NULL);
current_packet.flags = 0;
current_packet.number_of_packets = 1;
current_packet.length = sample->sampledPacketSize;
current_packet.sample_ratio = sample->meanSkipCount;
switch (sample->dcd_ipProtocol) {
case 1: {
// ICMP
current_packet.protocol = IPPROTO_ICMP;
struct myicmphdr icmp;
memcpy(&icmp, ptr, sizeof(icmp));
// printf("ICMPType %u\n", icmp.type);
// printf("ICMPCode %u\n", icmp.code);
sample->dcd_sport = icmp.type;
sample->dcd_dport = icmp.code;
sample->offsetToPayload = ptr + sizeof(icmp) - sample->header;
} break;
case 6: {
// TCP
current_packet.protocol = IPPROTO_TCP;
struct mytcphdr tcp;
int headerBytes;
memcpy(&tcp, ptr, sizeof(tcp));
sample->dcd_sport = ntohs(tcp.th_sport);
sample->dcd_dport = ntohs(tcp.th_dport);
current_packet.source_port = sample->dcd_sport;
current_packet.destination_port = sample->dcd_dport;
// TODO: flags could be broken because our flags parser implemented with PF_RING style flags
// PF_RING
current_packet.flags = tcp.th_flags;
sample->dcd_tcpFlags = tcp.th_flags;
// printf("TCPSrcPort %u\n", sample->dcd_sport);
// printf("TCPDstPort %u\n",sample->dcd_dport);
// printf("TCPFlags %u\n", sample->dcd_tcpFlags);
headerBytes = (tcp.th_off_and_unused >> 4) * 4;
ptr += headerBytes;
sample->offsetToPayload = ptr - sample->header;
} break;
case 17: {
// UDP
current_packet.protocol = IPPROTO_UDP;
struct myudphdr udp;
memcpy(&udp, ptr, sizeof(udp));
sample->dcd_sport = ntohs(udp.uh_sport);
sample->dcd_dport = ntohs(udp.uh_dport);
current_packet.source_port = sample->dcd_sport;
current_packet.destination_port = sample->dcd_dport;
sample->udp_pduLen = ntohs(udp.uh_ulen);
// printf("UDPSrcPort %u\n", sample->dcd_sport);
// printf("UDPDstPort %u\n", sample->dcd_dport);
// printf("UDPBytes %u\n", sample->udp_pduLen);
sample->offsetToPayload = ptr + sizeof(udp) - sample->header;
} break;
default: /* some other protcol */
sample->offsetToPayload = ptr - sample->header;
break;
if (discovered_padding) {
sflow_with_padding_at_the_end_of_packet++;
}
#ifdef ENABLE_LUA_HOOKS
// sample->inputPort = fast_ntoh(sample->inputPort);
// sample->outputPort = fast_ntoh(sample->outputPort);
for (auto sample : samples_vector) {
// enterprise, sample_format, data start address, data region length
// std::cout << "We process #" << i << " sample with format " << format
// << " enterprise " << enterprise
// << " and length " << sample_length << std::endl;
if (sflow_lua_hooks_enabled) {
// This code could be used only for tests with pcap_reader
if (sflow_lua_state == NULL) {
sflow_lua_state = init_lua_jit(sflow_lua_hooks_path);
}
int32_t enterprise = std::get<0>(sample);
int32_t integer_format = std::get<1>(sample);
uint8_t* data_pointer = std::get<2>(sample);
size_t data_length = std::get<3>(sample);
if (call_lua_function("process_sflow", sflow_lua_state,
convert_ip_as_uint_to_string(sample->sourceIP.address.ip_v4.addr), (void*)sample)) {
// We will process this packet
uint8_t* current_packet_end = data_pointer + data_length;
if (enterprise == 0) {
sflow_sample_type_t sample_format = sflow_sample_type_from_integer(integer_format);
if (sample_format == sflow_sample_type_t::BROKEN_TYPE) {
logger << log4cpp::Priority::ERROR << plugin_log_prefix << "we got broken format type number: " << integer_format;
return;
}
// Move this code to separate function!!!
if (sample_format == sflow_sample_type_t::FLOW_SAMPLE) {
// std::cout << "We got flow sample" << std::endl;
process_sflow_flow_sample(data_pointer, data_length, false, sflow_header_accessor, client_ipv4_address);
sflow_flow_samples++;
} else if (sample_format == sflow_sample_type_t::COUNTER_SAMPLE) {
// std::cout << "We got counter sample" << std::endl;
// TODO: add support for sflow counetrs
// process_sflow_counter_sample(data_pointer, data_length, false, sflow_header_accessor);
sflow_counter_sample++;
} else if (sample_format == sflow_sample_type_t::EXPANDED_FLOW_SAMPLE) {
// std::cout << "We got expanded flow sample" << std::endl;
process_sflow_flow_sample(data_pointer, data_length, true, sflow_header_accessor, client_ipv4_address);
sflow_flow_samples++;
} else if (sample_format == sflow_sample_type_t::EXPANDED_COUNTER_SAMPLE) {
// TODO:add support for sflow counetrs
// std::cout << "We got expanded counter sample" << std::endl;
////process_sflow_counter_sample(data_pointer, data_length, true, sflow_header_accessor);
sflow_counter_sample++;
} else {
logger << log4cpp::Priority::ERROR << plugin_log_prefix << "we got broken format type: " << integer_format;
}
} else {
logger << log4cpp::Priority::DEBUG << "We will drop this packets because LUA script decided to do it";
return;
// do nothing because we haven't support for custom sFLOW data formats
}
}
#endif
// Call external handler function
sflow_process_func_ptr(current_packet);
}
void decode_ipv6_protocol(SFSample* sample) {
uint8_t* ptr = sample->header + sample->offsetToIPV6;
uint8_t* end = sample->header + sample->headerLen;
bool process_sflow_counter_sample(uint8_t* data_pointer,
size_t data_length,
bool expanded,
const sflow_packet_header_unified_accessor& sflow_header_accessor) {
sflow_counter_header_unified_accessor_t sflow_counter_header_unified_accessor;
int ipVersion = (*ptr >> 4);
bool read_sflow_counter_header_result =
read_sflow_counter_header(data_pointer, data_length, expanded, sflow_counter_header_unified_accessor);
if (ipVersion != 6) {
logger << log4cpp::Priority::ERROR << plugin_log_prefix
<< "sFLOW header decode error: unexpected IP version: " << ipVersion;
return;
if (!read_sflow_counter_header_result) {
logger << log4cpp::Priority::ERROR << plugin_log_prefix << "could not read sflow counter header";
return false;
}
/* get the tos (priority) */
sample->dcd_ipTos = *ptr++ & 15;
if (debug_sflow_parser) {
logger << log4cpp::Priority::INFO << plugin_log_prefix << "IPTOS: " << sample->dcd_ipTos;
if (sflow_counter_header_unified_accessor.get_number_of_counter_records() == 0) {
logger << log4cpp::Priority::ERROR << plugin_log_prefix << "get zero number of counter records";
return false;
}
/* 24-bit label */
uint32_t label = *ptr++;
label <<= 8;
label += *ptr++;
label <<= 8;
label += *ptr++;
counter_record_sample_vector_t counter_record_sample_vector;
counter_record_sample_vector.reserve(sflow_counter_header_unified_accessor.get_number_of_counter_records());
if (debug_sflow_parser) {
logger << log4cpp::Priority::INFO << plugin_log_prefix << "IP6_label: " << label;
bool get_all_counter_records_result =
get_all_counter_records(counter_record_sample_vector,
data_pointer + sflow_counter_header_unified_accessor.get_original_payload_length(),
data_pointer + data_length,
sflow_counter_header_unified_accessor.get_number_of_counter_records());
if (!get_all_counter_records_result) {
logger << log4cpp::Priority::ERROR << plugin_log_prefix << "could not get all counter records";
return false;
}
/* payload */
uint16_t payloadLen = (ptr[0] << 8) + ptr[1];
ptr += 2;
for (auto counter_record : counter_record_sample_vector) {
uint32_t enterprise = 0;
uint32_t format = 0;
ssize_t length = 0;
uint8_t* data_pointer = nullptr;
/* if payload is zero, that implies a jumbo payload */
if (debug_sflow_parser) {
if (payloadLen == 0) {
logger << log4cpp::Priority::INFO << plugin_log_prefix << "IPV6_payloadLen <jumbo>";
std::tie(enterprise, format, length, data_pointer) = counter_record;
if (enterprise == 0) {
sample_counter_types_t sample_type = sample_counter_types_t::BROKEN_COUNTER;
;
if (format == 1) {
sample_type = sample_counter_types_t::GENERIC_INTERFACE_COUNTERS;
} else if (format == 2) {
sample_type = sample_counter_types_t::ETHERNET_INTERFACE_COUNTERS;
}
if (sample_type == sample_counter_types_t::ETHERNET_INTERFACE_COUNTERS) {
// std::cout << "ETHERNET_INTERFACE_COUNTERS" << std::endl;
if (sizeof(ethernet_sflow_interface_counters_t) != length) {
logger << log4cpp::Priority::ERROR << plugin_log_prefix << "we haven't enough data for ethernet counter packet";
return false;
}
ethernet_sflow_interface_counters_t ethernet_counters(data_pointer);
// std::cout << ethernet_counters.print() << std::endl;
}
if (sample_type == sample_counter_types_t::GENERIC_INTERFACE_COUNTERS) {
// std::cout << "GENERIC_INTERFACE_COUNTERS" << std::endl;
if (sizeof(generic_sflow_interface_counters_t) != length) {
logger << log4cpp::Priority::ERROR << plugin_log_prefix << "we haven't enough data for generic packet";
return false;
}
generic_sflow_interface_counters_t generic_sflow_interface_counters(data_pointer);
// std::cout << generic_sflow_interface_counters.print() << std::endl;
}
} else {
logger << log4cpp::Priority::INFO << plugin_log_prefix << "IPV6_payloadLen " << payloadLen;
}
}
/* next header */
uint32_t nextHeader = *ptr++;
/* TTL */
sample->dcd_ipTTL = *ptr++;
// sf_log(sample,"IPTTL %u\n", sample->dcd_ipTTL);
/* src and dst address */
// char buf[101];
sample->ipsrc.type = SFLADDRESSTYPE_IP_V6;
memcpy(&sample->ipsrc.address, ptr, 16);
ptr += 16;
if (debug_sflow_parser) {
char buf[101];
logger << log4cpp::Priority::INFO << plugin_log_prefix
<< "srcIP6: " << printAddress(&sample->ipsrc, buf);
}
sample->ipdst.type = SFLADDRESSTYPE_IP_V6;
memcpy(&sample->ipdst.address, ptr, 16);
ptr += 16;
if (debug_sflow_parser) {
char buf[101];
logger << log4cpp::Priority::INFO << plugin_log_prefix
<< "dstIP6: " << printAddress(&sample->ipdst, buf);
}
/* skip over some common header extensions...
http://searchnetworking.techtarget.com/originalContent/0,289142,sid7_gci870277,00.html */
while (nextHeader == 0 || /* hop */
nextHeader == 43 || /* routing */
nextHeader == 44 || /* fragment */
/* nextHeader == 50 => encryption - don't bother coz we'll not be able to read any further */
nextHeader == 51 || /* auth */
nextHeader == 60) { /* destination options */
uint32_t optionLen, skip;
if (debug_sflow_parser) {
logger << log4cpp::Priority::INFO << plugin_log_prefix << "IP6HeaderExtension: " << nextHeader;
logger << log4cpp::Priority::ERROR << plugin_log_prefix << "we do not support vendor specific enterprise numbers";
}
nextHeader = ptr[0];
optionLen = 8 * (ptr[1] + 1); /* second byte gives option len in 8-byte chunks, not counting first 8 */
skip = optionLen - 2;
ptr += skip;
if (ptr > end) return; /* ran off the end of the header */
// std::cout << "Counter record" << std::endl;
}
/* now that we have eliminated the extension headers, nextHeader should have what we want to
remember as the ip protocol... */
sample->dcd_ipProtocol = nextHeader;
if (debug_sflow_parser) {
logger << log4cpp::Priority::INFO << plugin_log_prefix << "IPProtocol: " << sample->dcd_ipProtocol;
}
decodeIPLayer4(sample, ptr);
}
void decode_ipv4_protocol(SFSample* sample) {
char buf[51];
uint8_t* ptr = sample->header + sample->offsetToIPV4;
/* Create a local copy of the IP header (cannot overlay structure in case it is not
quad-aligned...some platforms would core-dump if we tried that). It's OK coz this probably performs just as well anyway. */
struct myiphdr ip;
memcpy(&ip, ptr, sizeof(ip));
/* Value copy all ip elements into sample */
sample->ipsrc.type = SFLADDRESSTYPE_IP_V4;
sample->ipsrc.address.ip_v4.addr = ip.saddr;
sample->ipdst.type = SFLADDRESSTYPE_IP_V4;
sample->ipdst.address.ip_v4.addr = ip.daddr;
sample->dcd_ipProtocol = ip.protocol;
sample->dcd_ipTos = ip.tos;
sample->dcd_ipTTL = ip.ttl;
// printf("ip.tot_len %d\n", ntohs(ip.tot_len));
/* Log out the decoded IP fields */
// printf("srcIP %s\n", printAddress(&sample->ipsrc, buf));
// printf("dstIP %s\n", printAddress(&sample->ipdst, buf));
// printf("IPProtocol %u\n", sample->dcd_ipProtocol);
// printf("IPTOS %u\n", sample->dcd_ipTos);
// printf("IPTTL %u\n", sample->dcd_ipTTL);
/* check for fragments */
sample->ip_fragmentOffset = ntohs(ip.frag_off) & 0x1FFF;
if (sample->ip_fragmentOffset > 0) {
// printf("IPFragmentOffset %u\n", sample->ip_fragmentOffset);
} else {
/* advance the pointer to the next protocol layer */
/* ip headerLen is expressed as a number of quads */
ptr += (ip.version_and_headerLen & 0x0f) * 4;
decodeIPLayer4(sample, ptr);
}
return true;
}

View File

@ -1,12 +1,11 @@
#ifndef SFLOW_PLUGIN_H
#define SFLOW_PLUGIN_H
#pragma once
#include "../fastnetmon_types.h"
#include "sflow_data.h"
#include <stdint.h>
void start_sflow_collection(process_packet_pointer func_ptr);
void init_sflow_module();
void deinit_sflow_module();
// For tests
void read_sflow_datagram(SFSample* sample);
#endif
// New code for v5 only
void parse_sflow_v5_packet(uint8_t* payload_ptr, unsigned int payload_length, uint32_t client_ipv4_address);

View File

@ -1,215 +0,0 @@
#ifndef SFLOW_DATA_H
#define SFLOW_DATA_H
#include "sflow.h"
#include <setjmp.h>
// Packet headers for sFLOW v4
enum INMPacket_information_type {
INMPACKETTYPE_HEADER = 1, /* Packet headers are sampled */
INMPACKETTYPE_IPV4 = 2, /* IP version 4 data */
INMPACKETTYPE_IPV6 = 3 /* IP version 4 data */
};
/* when I turn on optimisation with the Microsoft compiler it seems to change
the values of these enumerated types and break the program - not sure why */
enum INMSample_types { FLOWSAMPLE = 1, COUNTERSSAMPLE = 2 };
/* same for tcp */
struct mytcphdr {
uint16_t th_sport; /* source port */
uint16_t th_dport; /* destination port */
uint32_t th_seq; /* sequence number */
uint32_t th_ack; /* acknowledgement number */
uint8_t th_off_and_unused;
uint8_t th_flags;
uint16_t th_win; /* window */
uint16_t th_sum; /* checksum */
uint16_t th_urp; /* urgent pointer */
};
/* and UDP */
struct myudphdr {
uint16_t uh_sport; /* source port */
uint16_t uh_dport; /* destination port */
uint16_t uh_ulen; /* udp length */
uint16_t uh_sum; /* udp checksum */
};
/* and ICMP */
struct myicmphdr {
uint8_t type; /* message type */
uint8_t code; /* type sub-code */
/* ignore the rest */
};
/* define my own IP header struct - to ease portability */
struct myiphdr {
uint8_t version_and_headerLen;
uint8_t tos;
uint16_t tot_len;
uint16_t id;
uint16_t frag_off;
uint8_t ttl;
uint8_t protocol;
uint16_t check;
uint32_t saddr;
uint32_t daddr;
};
#define SASAMPLE_EXTENDED_DATA_SWITCH 1
#define SASAMPLE_EXTENDED_DATA_ROUTER 4
#define SASAMPLE_EXTENDED_DATA_GATEWAY 8
#define SASAMPLE_EXTENDED_DATA_USER 16
#define SASAMPLE_EXTENDED_DATA_URL 32
#define SASAMPLE_EXTENDED_DATA_MPLS 64
#define SASAMPLE_EXTENDED_DATA_NAT 128
#define SASAMPLE_EXTENDED_DATA_MPLS_TUNNEL 256
#define SASAMPLE_EXTENDED_DATA_MPLS_VC 512
#define SASAMPLE_EXTENDED_DATA_MPLS_FTN 1024
#define SASAMPLE_EXTENDED_DATA_MPLS_LDP_FEC 2048
#define SASAMPLE_EXTENDED_DATA_VLAN_TUNNEL 4096
#define SASAMPLE_EXTENDED_DATA_NAT_PORT 8192
#define SA_MAX_EXTENDED_USER_LEN 200
#define SA_MAX_EXTENDED_URL_LEN 200
#define SA_MAX_EXTENDED_HOST_LEN 200
typedef struct _SFSample {
SFLAddress sourceIP;
SFLAddress agent_addr;
uint32_t agentSubId;
/* the raw pdu */
uint8_t* rawSample;
uint32_t rawSampleLen;
uint8_t* endp;
time_t pcapTimestamp;
/* decode cursor */
uint32_t* datap;
uint32_t datagramVersion;
uint32_t sampleType;
uint32_t elementType;
uint32_t ds_class;
uint32_t ds_index;
/* generic interface counter sample */
SFLIf_counters ifCounters;
/* sample stream info */
uint32_t sysUpTime;
uint32_t sequenceNo;
uint32_t sampledPacketSize;
uint32_t samplesGenerated;
uint32_t meanSkipCount;
uint32_t samplePool;
uint32_t dropEvents;
/* the sampled header */
uint32_t packet_data_tag;
uint32_t headerProtocol;
uint8_t* header;
int headerLen;
uint32_t stripped;
/* header decode */
int gotIPV4;
int gotIPV4Struct;
int offsetToIPV4;
int gotIPV6;
int gotIPV6Struct;
int offsetToIPV6;
int offsetToPayload;
SFLAddress ipsrc;
SFLAddress ipdst;
uint32_t dcd_ipProtocol;
uint32_t dcd_ipTos;
uint32_t dcd_ipTTL;
uint32_t dcd_sport;
uint32_t dcd_dport;
uint32_t dcd_tcpFlags;
uint32_t ip_fragmentOffset;
uint32_t udp_pduLen;
/* ports */
uint32_t inputPortFormat;
uint32_t outputPortFormat;
uint32_t inputPort;
uint32_t outputPort;
/* ethernet */
uint32_t eth_type;
uint32_t eth_len;
uint8_t eth_src[8];
uint8_t eth_dst[8];
/* vlan */
uint32_t in_outer_vlan;
uint32_t in_vlan;
uint32_t in_priority;
uint32_t internalPriority;
uint32_t out_vlan;
uint32_t out_priority;
int vlanFilterReject;
/* extended data fields */
uint32_t num_extended;
uint32_t extended_data_tag;
/* IP forwarding info */
SFLAddress nextHop;
uint32_t srcMask;
uint32_t dstMask;
/* BGP info */
SFLAddress bgp_nextHop;
uint32_t my_as;
uint32_t src_as;
uint32_t src_peer_as;
uint32_t dst_as_path_len;
uint32_t* dst_as_path;
/* note: version 4 dst as path segments just get printed, not stored here, however
* the dst_peer and dst_as are filled in, since those are used for netflow encoding
*/
uint32_t dst_peer_as;
uint32_t dst_as;
uint32_t communities_len;
uint32_t* communities;
uint32_t localpref;
/* user id */
uint32_t src_user_charset;
uint32_t src_user_len;
char src_user[SA_MAX_EXTENDED_USER_LEN + 1];
uint32_t dst_user_charset;
uint32_t dst_user_len;
char dst_user[SA_MAX_EXTENDED_USER_LEN + 1];
/* url */
uint32_t url_direction;
uint32_t url_len;
char url[SA_MAX_EXTENDED_URL_LEN + 1];
uint32_t host_len;
char host[SA_MAX_EXTENDED_HOST_LEN + 1];
/* mpls */
SFLAddress mpls_nextHop;
/* nat */
SFLAddress nat_src;
SFLAddress nat_dst;
/* counter blocks */
uint32_t statsSamplingInterval;
uint32_t counterBlockVersion;
/* exception handler context */
// jmp_buf env;
} SFSample;
#endif // SFLOW_DATA_H