py,matlab: rework funcs, add correct Simulink data

* create a proper p1.mat project
* create a proper Simulink p1.slx
* add new and correct Simulink simulation output data, previous Simulink data was garbage
* save re-generated pictures with fresh Simulink data in data/m.csv and
  reworked python functions (there were errors in the implementation)
* standardise picture naming to one that makes more sense
This commit is contained in:
leo 2023-01-27 01:48:36 +01:00
parent b79ed267ca
commit 25f2fbc831
Signed by: wanderer
SSH Key Fingerprint: SHA256:Dp8+iwKHSlrMEHzE3bJnPng70I7LEsa3IJXRH/U+idQ
39 changed files with 619 additions and 559 deletions

@ -1,502 +0,0 @@
u,y
0, 1.16495351050
0.002437650102, 0.626839082632431
0.008395843283, 0.0750801546776829
0.015369616460, 0.351606902768522
0.022730589547, -0.696512535163682
0.028813760378, 1.69614248074708
0.036563856464, 0.0590597779813507
0.047318507723, 1.79707178369482
0.061147554372, 0.264068528817227
0.078163401976, 0.871673288690637
0.096261993907, -1.44617153933933
0.111735168943, -0.701165345682908
0.121565555451, 1.24598212043782
0.131725217197, -0.638976995013557
0.142211712999, 0.577350218771609
0.151681754307, -0.360029625711573
0.160716167547, -0.135576294466487
0.167886889755, -1.34933848038518
0.171231346696, -1.2704498962834
0.168693748945, 0.984570272925253
0.165562877141, -0.0448806138288563
0.164337412110, -0.798944516671106
0.161206391390, -0.765172428787515
0.154835418743, 0.861734897324192
0.148929917772, -0.056225124358975
0.144869306572, 0.513478173674302
0.141848472866, 0.396680865935824
0.140719553349, 0.756218970285488
0.141867363294, 0.400486023191097
0.145123629989, -1.34138072237857
0.145966826978, 0.375041023696104
0.144594656477, 1.12516181787503
0.146238434776, 0.728641591773905
0.151390958435, -2.37745429376543
0.152493584307, -0.2737824157439
0.147879344784, -0.322939921204497
0.142144179988, 0.317987915650739
0.136613961698, -0.511172207780701
0.130856756787, -0.00204134534943296
0.124267314965, 1.60651096111924
0.121318250836, 0.847648634500925
0.123461443513, 0.268100811901575
0.127579647734, -0.923489085784077
0.129853484698, -0.0704993877786937
0.129757114526, 0.147891351014747
0.129653919835, -0.557093642241282
0.128515569111, -0.336705699002853
0.125435688056, 0.415227462723156
0.122576085139, 1.55781353712321
0.123852754052, -2.44429889786556
0.122939016755, -1.09819538779932
0.114626505936, 1.12264785794487
0.106834248795, 0.581667258045274
0.102942874357, -0.271354295524753
0.099798533957, 0.414191307229504
0.097045619581, -0.9778142274614
0.093148932685, -1.02146617386615
0.085257131870, 0.317687979852042
0.076369479354, 1.51610779815003
0.071810788526, 0.749432452588256
0.072133335010, -0.507700386669636
0.072803128708, 0.885299448191509
0.074141500577, -0.248093553237236
0.076575157758, -0.726248999742084
0.076708895656, -0.445040300996161
0.074312512545, -0.612911120338436
0.069787044783, -0.209144084593638
0.063787378857, 0.562147834450359
0.058862329796, -1.06392288788104
0.053118019361, 0.351588948379816
0.046258309048, 1.13299992600868
0.042896890422, 0.149994248007729
0.042336929319, 0.703144053247466
0.043535001657, -0.0524115849986887
0.045917496951, 2.01849612400777
0.052189035471, 0.924159404893175
0.064014376318, -1.81411470285124
0.073028542853, 0.0349733202851668
0.077687106470, -1.80786206032125
0.078205955207, 1.02819254604578
0.077038781225, 0.394600308811932
0.078772419228, 0.639405642088516
0.082422167553, 0.874212894863609
0.088842433978, 1.75240173032956
0.100150745402, -0.320050826432137
0.113452326798, -0.137413808144866
0.124739049313, 0.615769628086716
0.136083452424, 0.977894069845197
0.149762606270, -1.11534771220514
0.161956532695, -0.550021448804486
0.169656722394, 0.0398848528457967
0.175551822103, -2.48284251425654
0.175684696865, 1.1586547052479
0.172917608577, -1.02627946669326
0.170322844067, 1.15348698823792
0.167988858787, -0.786456613020222
0.166295402297, 0.634808587961935
0.164210834664, 0.820409761532064
0.165057365382, -0.1760265104556
0.166925966004, 0.562473874646301
0.169252932089, -0.127442875395491
0.172068759188, 0.554171560978313
0.175352459051, -1.09734431922164
0.177004186748, -0.731301400074801
0.174525642752, 1.40473191961681
0.173422514001, -0.620214209475792
0.173728788728, 0.237148765008739
0.173003426288, -1.58684699003103
0.169253667587, -0.401484809800359
0.161446644087, -0.770692268923938
0.151522248966, -0.262680506066512
0.139948752978, 0.97648954365997
0.130486739789, 0.97781504112928
0.125538406346, 1.17002111026506
0.125204310822, 0.159310862415417
0.127444648766, 0.499520851464531
0.130725604793, -1.05537507065933
0.132412454344, -0.450743202815186
0.130700902499, 1.27037824216999
0.130664425803, 0.898693600923036
0.134926542239, 0.438705097860831
0.141463077026, -1.247344316402
0.145640317139, 0.324666916936102
0.147459533302, 0.390070410090458
0.150429647152, -0.405138316773605
0.152936896456, 0.29231487728345
0.154844331836, 2.56591024212381
0.162373215975, -0.457815643580367
0.173444067928, -1.61082701428916
0.179206551340, -2.6695237824109
0.175447462164, -0.759696648513815
0.164661475616, -0.674720856431937
0.151427948195, -1.17168719453355
0.135067581543, 2.0329300161552
0.121508676910, 0.968481047964462
0.114897302108, 0.67029199696923
0.111964731886, 0.420146041651794
0.111328699373, -2.87275126966852
0.105430307869, 1.68587408040699
0.097451100502, 0.0279245535239945
0.093390713809, -0.902030581228208
0.087651061950, -2.0532574915262
0.076046759587, 0.0890862976754639
0.061128674666, 2.08709913164975
0.051703984047, 0.365118460310679
0.047886206277, 0.846105526166482
0.046782095050, -0.184537657075523
0.047032271024, 1.03071442386955
0.048980062085, -1.52762265242938
0.049635535521, 0.964938959209115
0.049075197267, 0.526162503357523
0.051558436526, -0.184454117395808
0.054488526440, 0.198782828309268
0.057180571196, 1.59042683994639
0.063342317173, 0.0321916398987534
0.072308973385, 0.889163671412164
0.082484148658, -1.29915248991681
0.090942491967, 1.1825731043571
0.098512389634, 1.81747170621213
0.111643965373, -0.584302129859883
0.126207288037, -1.01067381655234
0.136283969412, -0.96049831249978
0.141403220568, 0.691159584398091
0.145458329680, -0.758618207013852
0.148858180576, -0.0969717327553058
0.150065480586, -1.40694904501744
0.147840514883, 1.03081245622456
0.144847329758, -0.759874404010818
0.142376987002, 0.874127225087956
0.140157148282, 0.761126995060121
0.141275833370, -0.165923454845674
0.143330622321, 0.300907437364548
0.145336788234, -0.322467327359368
0.146944367792, -0.368411284834508
0.146808772234, 1.14789527732987
0.148129334780, 0.0414302603415892
0.151586786956, -1.0980496536524
0.152383915314, 1.5667237455951
0.153950773334, -1.04842344829233
0.156204784867, 0.422723684679005
0.156830418858, -0.844414378203565
0.156293525717, -0.311629756199873
0.153200747174, 0.397810483954791
0.150305651236, 1.04978596179258
0.150412418065, -0.340795562628553
0.151736338000, 0.336296999435117
0.152767175115, -0.22136078228451
0.153740292939, 0.0166494938853639
0.154016925969, -1.19236123978469
0.151601182701, -0.131646296653231
0.146431214801, 1.48752430265133
0.144259421436, -0.836821230675096
0.143326824455, -1.30098190278336
0.137828804627, 1.57413185505183
0.133155409143, 1.16603996393892
0.134276893596, 0.786429694906372
0.139164064125, -1.4616387546644
0.142070893230, 1.5544659179464
0.144847678247, -0.597535383863608
0.149159188694, -1.21056787319236
0.149213833634, -0.702668798421263
0.145115185445, 0.356429388492137
0.140409126883, 0.652635669110502
0.137927833052, 0.215671160597416
0.137212237575, -0.263896185758453
0.136245286757, 1.80244023504604
0.138389545689, -0.642984171828691
0.142532611173, 0.109555050008099
0.145109035229, -0.719037696468626
0.146027075041, 0.42062757324897
0.146091498895, -1.93113368611571
0.142768659404, 0.660299784504416
0.136913941575, 0250959707945
0.130316257900, -0.102970644581647
0.121525577060, -1.05980153695263
0.110745352423, -1.23856593640737
0.095798488423, -1.88923605714065
0.075266047215, -0.973584554332184
0.050147893251, 0.212115838661386
0.025146751358, 0.493441990887632
0.003300379345, 1.54717659047233
-0.012798840152, 0.64493274830479
-0.023259792052, -2.14835899491811
-0.036145181528, -1.02884452543621
-0.054634945638, -0.141582115521168
-0.074173207421, -2.52670612285393
-0.097838690014, -0.312981492764229
-0.125555473247, -0.593617618531314
-0.153070087993, 0.332322161717666
-0.178994433943, 0.558850703293451
-0.201036462964, 0.899883573546132
-0.218256962314, -0.200898855586523
-0.232571131239, -0.233734974678244
-0.246477477930, 1.44990660185245
-0.256529039872, 1.83613202602166
-0.258729419507, -0.382918259160919
-0.257470999475, 0.155082744517634
-0.256402277551, -0.964648249056896
-0.256755399754, 0.0387564312898232
-0.258620144675, 0.765458387074111
-0.258318909656, -0.594524007839467
-0.257362335567, 0.130245975190898
-0.257059135844, 0.0350135051326026
-0.256083070313, -0.624674138678894
-0.256056842007, -0.539775240747624
-0.258085267418, 1.87995711256767
-0.256787179519, -1.00384945408178
-0.253483888809, -0.497445877674741
-0.253150888189, -1.50439715265069
-0.256656194612, -0.095449298936398
-0.262839625469, 0.396727053727293
-0.267599323196, -0.527114907886174
-0.271954360470, 0.344571055586828
-0.275990281756, -0.723290526415817
-0.280176932994, 1.26819336319293
-0.282512909723, -0.0312426582958191
-0.281772517871, 0.778211737167248
-0.279130159251, 2.18048355295766
-0.270132436477, 0.437813681537626
-0.256011191594, 1.33332898358725
-0.238825956004, 0.25107813911086
-0.219246474708, -0.31047090817812
-0.200851139533, -0.923003723808715
-0.186012782406, -0.384775736018753
-0.174631975962, 1.15818057089116
-0.162157703160, 0.862500188414089
-0.146148597273, -1.0347056249275
-0.131444438343, -0.192672883298642
-0.120090068300, -1.29972277987507
-0.112466215832, 0.306595916028864
-0.107227002444, 0.968992176157493
-0.099547087986, -0.747317126758189
-0.091843226234, -2.79602442297918
-0.091921437466, 0.696731553587482
-0.096122621866, 3.20690754366444
-0.091767663676, 0.536007044749823
-0.079912301146, 0.298450535720106
-0.067044346501, 0.284043160995206
-0.053766880031, 0.959664371348602
-0.038742145700, 2.08759311209632
-0.018370666205, 1.52468053170777
0.008077642447, -0.19526079003233
0.035398271230, 0.017260315800898
0.060423842076, 0.246340438601764
0.084191651893, -0.85448472108985
0.104920247870, 1.15778270176474
0.124751947167, 0.161907723250136
0.145748957434, 1.55706375548542
0.168686519827, -0.193543855158581
0.192586771017, 1.65130117445043
0.217633776060, 9877818089585
0.240054943325, 1.82252476317015
0.260533446237, -1.51841513419531
0.279787668565, -1.05107060879933
0.292026989384, 0.0499305134332341
0.300976857684, -1.45474886952808
0.305952803751, 0.466545849753956
0.308167761339, 0.545436841452861
0.311899783023, 1.32031907308504
0.318821767071, -0.404494327876404
0.326678395264, 0.418468509073849
0.333592212287, 0.247348749631458
0.340942137775, 0.704110315408186
0.349294101704, 0.631938853341633
0.359349774455, -0.992362112719315
0.367431551204, 1.76670836879512
0.376118825477, -0.382103635072939
0.386498999978, -0.911425420031351
0.392942893608, -0.99608998411821
0.394454280928, 1.19514263014412
0.395783246271, -0.159447782443431
0.398583314813, 2.70402604824876
0.405973222447, -0.198499915965497
0.417403676830, -0.141404614026417
0.426769249941, 0.411267926557381
0.435472498079, -1.17905965667049
0.441348592413, -0.277775505971886
0.443220810847, -1.58105341380234
0.440477048640, 1.04902234978446
0.436279772986, 0.302689036171394
0.434547190985, -1.2265023410583
0.430387020475, 0.0696000950977379
0.423559899164, -0.396516210293235
0.415932014924, 1.38880676152053
0.410352457004, 1.36442229049003
0.410284555190, 0.658152637292666
0.413820761084, 0.491313668926088
0.418915546015, 0.800733701087079
0.425761005345, -0.767268996676585
0.431578213797, 0.364419504046213
0.435594252607, -0.397913854767017
0.438644907186, 0.864279576409738
0.441876005683, -0.177618078276664
0.445669478722, 1.87438052046941
0.452146247219, 0.172400234691113
0.461743785855, 1.27174349438397
0.473056510182, -0.0353443679957601
0.485461757512, -1.50132883642184
0.493128844930, 0.365373411191592
0.497284510153, -0.19865985600102
0.500799006197, -1.38972170325751
0.500066943861, 0.229327812227314
0.496336276692, 0.27119023696723
0.493214588926, -0.366360220282281
0.489415672212, 1.37696039157049
0.487336648285, -0.797532756562798
0.485873766457, -0.936740611780525
0.480252236186, -0.00243346548885311
0.472437081466, 0.396086165525258
0.465333222315, -0.508693172275514
0.457822454974, -0.268285778746198
0.448597540250, -1.08214045362097
0.436577596965, 2.0141337202912
0.426787878929, 1.94403112557594
0.425267921866, -1.52152941634798
0.424054848947, 1.93931842629592
0.423289936067, -0.895840360657292
0.424082200489, -0.304157582743064
0.421768341982, 0.555253123177884
0.419572941733, -0.324246850701504
0.417406512035, 1.3388143671464
0.416952934661, 1.22229851347237
0.421249003940, -1.59597816278256
0.423826091105, -1.06773032044443
0.420146042384, -0.759919212299574
0.412368715760, 0.420988804468649
0.403887258791, -0.433373058325242
0.395387058365, 0.706251990240337
0.387520097282, 0.227856907314769
0.381581074778, -1.01699185125668
0.373862959073, 0.139860372563678
0.364376192207, -0.748088838235889
0.353761498896, -0.628974933137322
0.340546207120, 1.39483065417115
0.329405980136, -1.64769114004944
0.317981837602, -2.0149858438662
0.299323897204, 0.491716880786256
0.278451324949, -1.55497527509082
0.256384719111, -0.140609080683032
0.232014444932, 0.244943668795265
0.209229580576, -0.267458499968963
0.187667830310, -0.570245479900343
0.165594055120, -0.187266786888368
0.143256690341, 1.20855664796684
0.124407966076, -0.638854660397775
0.107819707025, 0.605540298516075
0.092188101299, -0.624480544088508
0.077437561426, 0.572228121730057
0.063518536522, -0.724410495952223
0.050124872846, 1.19219550553089
0.038599929052, 0.186746737068576
0.030642992921, 1.59493888226368
0.026911301935, 0.321307055691725
0.027330959813, 0.866840733181726
0.030154374588, 1.29184357610292
0.037215922358, 0.434312653452443
0.047287719465, -0.386206929335472
0.056679282967, -0.112563759811723
0.064320624244, -0.964333079249251
0.069098670754, -2.05725119297094
0.067176925245, 0.149996068326108
0.061405429160, 0.542037570810974
0.057387838287, 0.254408816480612
0.055207962718, -0.307240693819985
0.052979177728, -0.417111829581745
0.049330431108, 1.1368048328939
0.047391696994, 0.391313809093235
0.048662880478, 1.6051478186749
0.053937650853, 0.825892307356857
0.063782329232, 1.47039035572011
0.077624694166, -1.3789068923399
0.090524829029, -0.260172069009687
0.099049005217, 0.994768172763982
0.108398943305, 1.83403368186403
0.122825141588, -1.71591031873495
0.136244389832, 0.0869317058746623
0.145226591682, 1.95567435281059
0.157659225746, 0.161453769615341
0.173351221735, -0.628688359125364
0.186736845361, -1.43882446533843
0.194646978130, -0.0665959685875582
0.198664237024, 0.373380862806066
0.202775904797, 0.217314078186247
0.207542221532, -0.179456822070788
0.211762364776, 0.025672907009552
0.215086696037, 0.642066361973082
0.219281314662, 0.923086649379001
0.226127922443, -1.55510777372328
0.230822866118, 0.663594032788892
0.233087027541, -0.609499611051491
0.234954295816, 0.565239403309624
0.236306330140, -0.610781446255285
0.237116267057, 1.23111146649211
0.238871588598, 0.994299745127407
0.244772632045, -0.803474713644619
0.250279781594, -0.591204478397533
0.252183462287, 1.69154640779536
0.255939811467, 0.953355517329614
0.264535517552, -1.93005493739851
0.270083308508, 0.512844987283966
0.272005847961, 0.393682448572881
0.275292518897, -0.905426500446262
0.276882903002, -1.27447327679615
0.273465110156, 0.346546103379725
0.268027007640, -1.19523544023497
0.260801363047, 0.6672014423187
0.252668239643, -0.0677937745985269
0.245968872022, -1.73566010510706
0.235621886196, 0.806348573332824
0.223804248868, -0.914800737775521
0.212226120628, -0.514012560294795
0.198208850877, 1.89626061482575
0.187802288523, -0.253229992452281
0.181198886435, -0.174530598889962
0.173918291148, 0.978788421188577
0.168591331292, 1.28955367629478
0.168097468101, -0.530575044642476
0.168930578718, -0.692971494442308
0.166939239274, -0.859806234581962
0.161639988027, 0.529038063144839
0.155833421619, -0.227851983329631
0.150816496612, 0.376770329260843
0.146260339405, 1.22155618170185
0.145142567279, 1.09828777438716
0.148695862862, -0.853014335153324
0.152258374225, -0.904204301130295
0.151730434971, 0.698670395828124
0.150644157620, 0.482597708373328
0.151862480561, 0.811695978956173
0.155471994013, 0.32788264791102
0.160962938133, -1.58691667313653
0.163202796421, -0.920783046820398
0.159894056769, -0.614273757141473
0.153426232265, -0.334671554333678
0.145237358122, 0.0803446246354682
0.136897081984, -0.0475550782944156
0.129007693760, -0.614735621954271
0.120100837153, 0.240361970143272
0.110889319217, 0.125016815934406
0.102912664478, -0.223604591765641
0.095131576155, -0.391039478921063
0.086480621936, -1.38204535952843
0.074615915065, 1.07629163893956
0.062894520875, 1.26946565999934
0.056749939328, 0.487268352635843
0.054564157104, -0.956373570476764
0.051448249204, 0.45180747328207
0.047467505092, -1.25377763146753
0.041995388573, 0.256434631609721
0.034817410715, 0.421228929285213
0.029491641219, 1.04235979065273
0.027534160844, 1.20912040659216
0.030333540091, 0.780954540014887
0.037002797859, -1.17989975493881
0.042288047642, 1.00145005880789
0.046835336073, -1.02490474147858
0.050906197616, -1.05684555786868
0.050320670823, 2.88772349284138
0.053589257736, -0.267744313845742
0.061898740886, -0.488540043601896
0.067980725678, 0.419420246666344
1 u y
2 0 1.16495351050
3 0.002437650102 0.626839082632431
4 0.008395843283 0.0750801546776829
5 0.015369616460 0.351606902768522
6 0.022730589547 -0.696512535163682
7 0.028813760378 1.69614248074708
8 0.036563856464 0.0590597779813507
9 0.047318507723 1.79707178369482
10 0.061147554372 0.264068528817227
11 0.078163401976 0.871673288690637
12 0.096261993907 -1.44617153933933
13 0.111735168943 -0.701165345682908
14 0.121565555451 1.24598212043782
15 0.131725217197 -0.638976995013557
16 0.142211712999 0.577350218771609
17 0.151681754307 -0.360029625711573
18 0.160716167547 -0.135576294466487
19 0.167886889755 -1.34933848038518
20 0.171231346696 -1.2704498962834
21 0.168693748945 0.984570272925253
22 0.165562877141 -0.0448806138288563
23 0.164337412110 -0.798944516671106
24 0.161206391390 -0.765172428787515
25 0.154835418743 0.861734897324192
26 0.148929917772 -0.056225124358975
27 0.144869306572 0.513478173674302
28 0.141848472866 0.396680865935824
29 0.140719553349 0.756218970285488
30 0.141867363294 0.400486023191097
31 0.145123629989 -1.34138072237857
32 0.145966826978 0.375041023696104
33 0.144594656477 1.12516181787503
34 0.146238434776 0.728641591773905
35 0.151390958435 -2.37745429376543
36 0.152493584307 -0.2737824157439
37 0.147879344784 -0.322939921204497
38 0.142144179988 0.317987915650739
39 0.136613961698 -0.511172207780701
40 0.130856756787 -0.00204134534943296
41 0.124267314965 1.60651096111924
42 0.121318250836 0.847648634500925
43 0.123461443513 0.268100811901575
44 0.127579647734 -0.923489085784077
45 0.129853484698 -0.0704993877786937
46 0.129757114526 0.147891351014747
47 0.129653919835 -0.557093642241282
48 0.128515569111 -0.336705699002853
49 0.125435688056 0.415227462723156
50 0.122576085139 1.55781353712321
51 0.123852754052 -2.44429889786556
52 0.122939016755 -1.09819538779932
53 0.114626505936 1.12264785794487
54 0.106834248795 0.581667258045274
55 0.102942874357 -0.271354295524753
56 0.099798533957 0.414191307229504
57 0.097045619581 -0.9778142274614
58 0.093148932685 -1.02146617386615
59 0.085257131870 0.317687979852042
60 0.076369479354 1.51610779815003
61 0.071810788526 0.749432452588256
62 0.072133335010 -0.507700386669636
63 0.072803128708 0.885299448191509
64 0.074141500577 -0.248093553237236
65 0.076575157758 -0.726248999742084
66 0.076708895656 -0.445040300996161
67 0.074312512545 -0.612911120338436
68 0.069787044783 -0.209144084593638
69 0.063787378857 0.562147834450359
70 0.058862329796 -1.06392288788104
71 0.053118019361 0.351588948379816
72 0.046258309048 1.13299992600868
73 0.042896890422 0.149994248007729
74 0.042336929319 0.703144053247466
75 0.043535001657 -0.0524115849986887
76 0.045917496951 2.01849612400777
77 0.052189035471 0.924159404893175
78 0.064014376318 -1.81411470285124
79 0.073028542853 0.0349733202851668
80 0.077687106470 -1.80786206032125
81 0.078205955207 1.02819254604578
82 0.077038781225 0.394600308811932
83 0.078772419228 0.639405642088516
84 0.082422167553 0.874212894863609
85 0.088842433978 1.75240173032956
86 0.100150745402 -0.320050826432137
87 0.113452326798 -0.137413808144866
88 0.124739049313 0.615769628086716
89 0.136083452424 0.977894069845197
90 0.149762606270 -1.11534771220514
91 0.161956532695 -0.550021448804486
92 0.169656722394 0.0398848528457967
93 0.175551822103 -2.48284251425654
94 0.175684696865 1.1586547052479
95 0.172917608577 -1.02627946669326
96 0.170322844067 1.15348698823792
97 0.167988858787 -0.786456613020222
98 0.166295402297 0.634808587961935
99 0.164210834664 0.820409761532064
100 0.165057365382 -0.1760265104556
101 0.166925966004 0.562473874646301
102 0.169252932089 -0.127442875395491
103 0.172068759188 0.554171560978313
104 0.175352459051 -1.09734431922164
105 0.177004186748 -0.731301400074801
106 0.174525642752 1.40473191961681
107 0.173422514001 -0.620214209475792
108 0.173728788728 0.237148765008739
109 0.173003426288 -1.58684699003103
110 0.169253667587 -0.401484809800359
111 0.161446644087 -0.770692268923938
112 0.151522248966 -0.262680506066512
113 0.139948752978 0.97648954365997
114 0.130486739789 0.97781504112928
115 0.125538406346 1.17002111026506
116 0.125204310822 0.159310862415417
117 0.127444648766 0.499520851464531
118 0.130725604793 -1.05537507065933
119 0.132412454344 -0.450743202815186
120 0.130700902499 1.27037824216999
121 0.130664425803 0.898693600923036
122 0.134926542239 0.438705097860831
123 0.141463077026 -1.247344316402
124 0.145640317139 0.324666916936102
125 0.147459533302 0.390070410090458
126 0.150429647152 -0.405138316773605
127 0.152936896456 0.29231487728345
128 0.154844331836 2.56591024212381
129 0.162373215975 -0.457815643580367
130 0.173444067928 -1.61082701428916
131 0.179206551340 -2.6695237824109
132 0.175447462164 -0.759696648513815
133 0.164661475616 -0.674720856431937
134 0.151427948195 -1.17168719453355
135 0.135067581543 2.0329300161552
136 0.121508676910 0.968481047964462
137 0.114897302108 0.67029199696923
138 0.111964731886 0.420146041651794
139 0.111328699373 -2.87275126966852
140 0.105430307869 1.68587408040699
141 0.097451100502 0.0279245535239945
142 0.093390713809 -0.902030581228208
143 0.087651061950 -2.0532574915262
144 0.076046759587 0.0890862976754639
145 0.061128674666 2.08709913164975
146 0.051703984047 0.365118460310679
147 0.047886206277 0.846105526166482
148 0.046782095050 -0.184537657075523
149 0.047032271024 1.03071442386955
150 0.048980062085 -1.52762265242938
151 0.049635535521 0.964938959209115
152 0.049075197267 0.526162503357523
153 0.051558436526 -0.184454117395808
154 0.054488526440 0.198782828309268
155 0.057180571196 1.59042683994639
156 0.063342317173 0.0321916398987534
157 0.072308973385 0.889163671412164
158 0.082484148658 -1.29915248991681
159 0.090942491967 1.1825731043571
160 0.098512389634 1.81747170621213
161 0.111643965373 -0.584302129859883
162 0.126207288037 -1.01067381655234
163 0.136283969412 -0.96049831249978
164 0.141403220568 0.691159584398091
165 0.145458329680 -0.758618207013852
166 0.148858180576 -0.0969717327553058
167 0.150065480586 -1.40694904501744
168 0.147840514883 1.03081245622456
169 0.144847329758 -0.759874404010818
170 0.142376987002 0.874127225087956
171 0.140157148282 0.761126995060121
172 0.141275833370 -0.165923454845674
173 0.143330622321 0.300907437364548
174 0.145336788234 -0.322467327359368
175 0.146944367792 -0.368411284834508
176 0.146808772234 1.14789527732987
177 0.148129334780 0.0414302603415892
178 0.151586786956 -1.0980496536524
179 0.152383915314 1.5667237455951
180 0.153950773334 -1.04842344829233
181 0.156204784867 0.422723684679005
182 0.156830418858 -0.844414378203565
183 0.156293525717 -0.311629756199873
184 0.153200747174 0.397810483954791
185 0.150305651236 1.04978596179258
186 0.150412418065 -0.340795562628553
187 0.151736338000 0.336296999435117
188 0.152767175115 -0.22136078228451
189 0.153740292939 0.0166494938853639
190 0.154016925969 -1.19236123978469
191 0.151601182701 -0.131646296653231
192 0.146431214801 1.48752430265133
193 0.144259421436 -0.836821230675096
194 0.143326824455 -1.30098190278336
195 0.137828804627 1.57413185505183
196 0.133155409143 1.16603996393892
197 0.134276893596 0.786429694906372
198 0.139164064125 -1.4616387546644
199 0.142070893230 1.5544659179464
200 0.144847678247 -0.597535383863608
201 0.149159188694 -1.21056787319236
202 0.149213833634 -0.702668798421263
203 0.145115185445 0.356429388492137
204 0.140409126883 0.652635669110502
205 0.137927833052 0.215671160597416
206 0.137212237575 -0.263896185758453
207 0.136245286757 1.80244023504604
208 0.138389545689 -0.642984171828691
209 0.142532611173 0.109555050008099
210 0.145109035229 -0.719037696468626
211 0.146027075041 0.42062757324897
212 0.146091498895 -1.93113368611571
213 0.142768659404 0.660299784504416
214 0.136913941575 0250959707945
215 0.130316257900 -0.102970644581647
216 0.121525577060 -1.05980153695263
217 0.110745352423 -1.23856593640737
218 0.095798488423 -1.88923605714065
219 0.075266047215 -0.973584554332184
220 0.050147893251 0.212115838661386
221 0.025146751358 0.493441990887632
222 0.003300379345 1.54717659047233
223 -0.012798840152 0.64493274830479
224 -0.023259792052 -2.14835899491811
225 -0.036145181528 -1.02884452543621
226 -0.054634945638 -0.141582115521168
227 -0.074173207421 -2.52670612285393
228 -0.097838690014 -0.312981492764229
229 -0.125555473247 -0.593617618531314
230 -0.153070087993 0.332322161717666
231 -0.178994433943 0.558850703293451
232 -0.201036462964 0.899883573546132
233 -0.218256962314 -0.200898855586523
234 -0.232571131239 -0.233734974678244
235 -0.246477477930 1.44990660185245
236 -0.256529039872 1.83613202602166
237 -0.258729419507 -0.382918259160919
238 -0.257470999475 0.155082744517634
239 -0.256402277551 -0.964648249056896
240 -0.256755399754 0.0387564312898232
241 -0.258620144675 0.765458387074111
242 -0.258318909656 -0.594524007839467
243 -0.257362335567 0.130245975190898
244 -0.257059135844 0.0350135051326026
245 -0.256083070313 -0.624674138678894
246 -0.256056842007 -0.539775240747624
247 -0.258085267418 1.87995711256767
248 -0.256787179519 -1.00384945408178
249 -0.253483888809 -0.497445877674741
250 -0.253150888189 -1.50439715265069
251 -0.256656194612 -0.095449298936398
252 -0.262839625469 0.396727053727293
253 -0.267599323196 -0.527114907886174
254 -0.271954360470 0.344571055586828
255 -0.275990281756 -0.723290526415817
256 -0.280176932994 1.26819336319293
257 -0.282512909723 -0.0312426582958191
258 -0.281772517871 0.778211737167248
259 -0.279130159251 2.18048355295766
260 -0.270132436477 0.437813681537626
261 -0.256011191594 1.33332898358725
262 -0.238825956004 0.25107813911086
263 -0.219246474708 -0.31047090817812
264 -0.200851139533 -0.923003723808715
265 -0.186012782406 -0.384775736018753
266 -0.174631975962 1.15818057089116
267 -0.162157703160 0.862500188414089
268 -0.146148597273 -1.0347056249275
269 -0.131444438343 -0.192672883298642
270 -0.120090068300 -1.29972277987507
271 -0.112466215832 0.306595916028864
272 -0.107227002444 0.968992176157493
273 -0.099547087986 -0.747317126758189
274 -0.091843226234 -2.79602442297918
275 -0.091921437466 0.696731553587482
276 -0.096122621866 3.20690754366444
277 -0.091767663676 0.536007044749823
278 -0.079912301146 0.298450535720106
279 -0.067044346501 0.284043160995206
280 -0.053766880031 0.959664371348602
281 -0.038742145700 2.08759311209632
282 -0.018370666205 1.52468053170777
283 0.008077642447 -0.19526079003233
284 0.035398271230 0.017260315800898
285 0.060423842076 0.246340438601764
286 0.084191651893 -0.85448472108985
287 0.104920247870 1.15778270176474
288 0.124751947167 0.161907723250136
289 0.145748957434 1.55706375548542
290 0.168686519827 -0.193543855158581
291 0.192586771017 1.65130117445043
292 0.217633776060 9877818089585
293 0.240054943325 1.82252476317015
294 0.260533446237 -1.51841513419531
295 0.279787668565 -1.05107060879933
296 0.292026989384 0.0499305134332341
297 0.300976857684 -1.45474886952808
298 0.305952803751 0.466545849753956
299 0.308167761339 0.545436841452861
300 0.311899783023 1.32031907308504
301 0.318821767071 -0.404494327876404
302 0.326678395264 0.418468509073849
303 0.333592212287 0.247348749631458
304 0.340942137775 0.704110315408186
305 0.349294101704 0.631938853341633
306 0.359349774455 -0.992362112719315
307 0.367431551204 1.76670836879512
308 0.376118825477 -0.382103635072939
309 0.386498999978 -0.911425420031351
310 0.392942893608 -0.99608998411821
311 0.394454280928 1.19514263014412
312 0.395783246271 -0.159447782443431
313 0.398583314813 2.70402604824876
314 0.405973222447 -0.198499915965497
315 0.417403676830 -0.141404614026417
316 0.426769249941 0.411267926557381
317 0.435472498079 -1.17905965667049
318 0.441348592413 -0.277775505971886
319 0.443220810847 -1.58105341380234
320 0.440477048640 1.04902234978446
321 0.436279772986 0.302689036171394
322 0.434547190985 -1.2265023410583
323 0.430387020475 0.0696000950977379
324 0.423559899164 -0.396516210293235
325 0.415932014924 1.38880676152053
326 0.410352457004 1.36442229049003
327 0.410284555190 0.658152637292666
328 0.413820761084 0.491313668926088
329 0.418915546015 0.800733701087079
330 0.425761005345 -0.767268996676585
331 0.431578213797 0.364419504046213
332 0.435594252607 -0.397913854767017
333 0.438644907186 0.864279576409738
334 0.441876005683 -0.177618078276664
335 0.445669478722 1.87438052046941
336 0.452146247219 0.172400234691113
337 0.461743785855 1.27174349438397
338 0.473056510182 -0.0353443679957601
339 0.485461757512 -1.50132883642184
340 0.493128844930 0.365373411191592
341 0.497284510153 -0.19865985600102
342 0.500799006197 -1.38972170325751
343 0.500066943861 0.229327812227314
344 0.496336276692 0.27119023696723
345 0.493214588926 -0.366360220282281
346 0.489415672212 1.37696039157049
347 0.487336648285 -0.797532756562798
348 0.485873766457 -0.936740611780525
349 0.480252236186 -0.00243346548885311
350 0.472437081466 0.396086165525258
351 0.465333222315 -0.508693172275514
352 0.457822454974 -0.268285778746198
353 0.448597540250 -1.08214045362097
354 0.436577596965 2.0141337202912
355 0.426787878929 1.94403112557594
356 0.425267921866 -1.52152941634798
357 0.424054848947 1.93931842629592
358 0.423289936067 -0.895840360657292
359 0.424082200489 -0.304157582743064
360 0.421768341982 0.555253123177884
361 0.419572941733 -0.324246850701504
362 0.417406512035 1.3388143671464
363 0.416952934661 1.22229851347237
364 0.421249003940 -1.59597816278256
365 0.423826091105 -1.06773032044443
366 0.420146042384 -0.759919212299574
367 0.412368715760 0.420988804468649
368 0.403887258791 -0.433373058325242
369 0.395387058365 0.706251990240337
370 0.387520097282 0.227856907314769
371 0.381581074778 -1.01699185125668
372 0.373862959073 0.139860372563678
373 0.364376192207 -0.748088838235889
374 0.353761498896 -0.628974933137322
375 0.340546207120 1.39483065417115
376 0.329405980136 -1.64769114004944
377 0.317981837602 -2.0149858438662
378 0.299323897204 0.491716880786256
379 0.278451324949 -1.55497527509082
380 0.256384719111 -0.140609080683032
381 0.232014444932 0.244943668795265
382 0.209229580576 -0.267458499968963
383 0.187667830310 -0.570245479900343
384 0.165594055120 -0.187266786888368
385 0.143256690341 1.20855664796684
386 0.124407966076 -0.638854660397775
387 0.107819707025 0.605540298516075
388 0.092188101299 -0.624480544088508
389 0.077437561426 0.572228121730057
390 0.063518536522 -0.724410495952223
391 0.050124872846 1.19219550553089
392 0.038599929052 0.186746737068576
393 0.030642992921 1.59493888226368
394 0.026911301935 0.321307055691725
395 0.027330959813 0.866840733181726
396 0.030154374588 1.29184357610292
397 0.037215922358 0.434312653452443
398 0.047287719465 -0.386206929335472
399 0.056679282967 -0.112563759811723
400 0.064320624244 -0.964333079249251
401 0.069098670754 -2.05725119297094
402 0.067176925245 0.149996068326108
403 0.061405429160 0.542037570810974
404 0.057387838287 0.254408816480612
405 0.055207962718 -0.307240693819985
406 0.052979177728 -0.417111829581745
407 0.049330431108 1.1368048328939
408 0.047391696994 0.391313809093235
409 0.048662880478 1.6051478186749
410 0.053937650853 0.825892307356857
411 0.063782329232 1.47039035572011
412 0.077624694166 -1.3789068923399
413 0.090524829029 -0.260172069009687
414 0.099049005217 0.994768172763982
415 0.108398943305 1.83403368186403
416 0.122825141588 -1.71591031873495
417 0.136244389832 0.0869317058746623
418 0.145226591682 1.95567435281059
419 0.157659225746 0.161453769615341
420 0.173351221735 -0.628688359125364
421 0.186736845361 -1.43882446533843
422 0.194646978130 -0.0665959685875582
423 0.198664237024 0.373380862806066
424 0.202775904797 0.217314078186247
425 0.207542221532 -0.179456822070788
426 0.211762364776 0.025672907009552
427 0.215086696037 0.642066361973082
428 0.219281314662 0.923086649379001
429 0.226127922443 -1.55510777372328
430 0.230822866118 0.663594032788892
431 0.233087027541 -0.609499611051491
432 0.234954295816 0.565239403309624
433 0.236306330140 -0.610781446255285
434 0.237116267057 1.23111146649211
435 0.238871588598 0.994299745127407
436 0.244772632045 -0.803474713644619
437 0.250279781594 -0.591204478397533
438 0.252183462287 1.69154640779536
439 0.255939811467 0.953355517329614
440 0.264535517552 -1.93005493739851
441 0.270083308508 0.512844987283966
442 0.272005847961 0.393682448572881
443 0.275292518897 -0.905426500446262
444 0.276882903002 -1.27447327679615
445 0.273465110156 0.346546103379725
446 0.268027007640 -1.19523544023497
447 0.260801363047 0.6672014423187
448 0.252668239643 -0.0677937745985269
449 0.245968872022 -1.73566010510706
450 0.235621886196 0.806348573332824
451 0.223804248868 -0.914800737775521
452 0.212226120628 -0.514012560294795
453 0.198208850877 1.89626061482575
454 0.187802288523 -0.253229992452281
455 0.181198886435 -0.174530598889962
456 0.173918291148 0.978788421188577
457 0.168591331292 1.28955367629478
458 0.168097468101 -0.530575044642476
459 0.168930578718 -0.692971494442308
460 0.166939239274 -0.859806234581962
461 0.161639988027 0.529038063144839
462 0.155833421619 -0.227851983329631
463 0.150816496612 0.376770329260843
464 0.146260339405 1.22155618170185
465 0.145142567279 1.09828777438716
466 0.148695862862 -0.853014335153324
467 0.152258374225 -0.904204301130295
468 0.151730434971 0.698670395828124
469 0.150644157620 0.482597708373328
470 0.151862480561 0.811695978956173
471 0.155471994013 0.32788264791102
472 0.160962938133 -1.58691667313653
473 0.163202796421 -0.920783046820398
474 0.159894056769 -0.614273757141473
475 0.153426232265 -0.334671554333678
476 0.145237358122 0.0803446246354682
477 0.136897081984 -0.0475550782944156
478 0.129007693760 -0.614735621954271
479 0.120100837153 0.240361970143272
480 0.110889319217 0.125016815934406
481 0.102912664478 -0.223604591765641
482 0.095131576155 -0.391039478921063
483 0.086480621936 -1.38204535952843
484 0.074615915065 1.07629163893956
485 0.062894520875 1.26946565999934
486 0.056749939328 0.487268352635843
487 0.054564157104 -0.956373570476764
488 0.051448249204 0.45180747328207
489 0.047467505092 -1.25377763146753
490 0.041995388573 0.256434631609721
491 0.034817410715 0.421228929285213
492 0.029491641219 1.04235979065273
493 0.027534160844 1.20912040659216
494 0.030333540091 0.780954540014887
495 0.037002797859 -1.17989975493881
496 0.042288047642 1.00145005880789
497 0.046835336073 -1.02490474147858
498 0.050906197616 -1.05684555786868
499 0.050320670823 2.88772349284138
500 0.053589257736 -0.267744313845742
501 0.061898740886 -0.488540043601896
502 0.067980725678 0.419420246666344

252
p1/data/m.csv Normal file

@ -0,0 +1,252 @@
u,y
-0.562081627343819,0
-0.165028051084386,-0.0848846176713865
0.402381188889212,-0.00855074782595819
0.982074771068094,0.0465851901457117
0.263269436202603,0.169762201014319
-0.666985599169035,0.054323197496775
0.973284224035816,0.051746560207838
0.827634883964264,-0.0173133818174058
-0.9682645974533,0.0719123061293299
-0.38735633780591,0.20323870152281
0.0746079511356577,0.169900711685989
0.0688996822894083,-0.00746558140650048
-0.574496970313833,0.138126734045196
0.875794598774889,-0.141852647292507
-0.000517935026678185,-0.0988200155700192
-0.182466612748088,0.00240103076106294
-0.361500652209623,-0.0595347187662052
-0.59349933061446,-0.0519022350351849
-0.8156527401021,-0.106703366966349
-0.0953996614997273,-0.246702573251392
-0.0574753429076985,-0.0275445682385667
-0.121339358911542,0.129163048642404
0.0748514826758073,0.318297851793095
0.431284669521863,0.223248747689702
-0.869612254141649,0.251157772434315
0.0878966139107462,0.212505320828667
-0.120548874661582,0.107255808344614
-0.998809915035409,0.0807653257237951
0.672839759696666,0.0145081167947413
-0.837878405041005,0.0253975644329584
0.56773040516662,-2.39532856761661e-05
-0.727090123913758,-0.10795814297631
-0.796725244166667,-0.0909358736412822
0.266859813251933,0.00995070727841241
0.107822691606275,-0.0372011713223269
0.626531425689595,-0.0651091197686131
0.0361671741288934,-0.0487676892938064
-0.224337562557467,-0.109582017325756
0.457216727294594,-0.178916504141863
0.322710993384342,0.0309704863456593
0.658477414240352,0.0506431803910415
0.388047331659145,0.0623101077769065
0.503420185997812,0.0359911107419933
-0.673837888833991,0.0193161516424325
0.0880454252884004,-0.0383760770110465
-0.439422153606742,-0.0359387768251584
-0.558629704433787,-0.112251115812661
0.03997697263955,-0.284971509798976
-0.337650089216256,-0.148524557670779
0.152345922380847,-0.140875672976474
0.228251039622468,-0.0889231511951012
-0.496944804441624,0.0465610558784346
0.331006910340398,0.082068516189644
-0.834986920391669,-0.151454048215957
0.868060945471777,-0.160252554385469
0.51354035433081,0.00985996775878407
-0.532617003439282,-0.0174954084308043
-0.0316390735244561,-0.128508236942345
0.038349728583521,-0.0465041726496238
-0.589317382122072,-0.037358615065556
-0.67983367558561,-0.104981843201757
0.153551720619924,-0.142242202275461
0.0790093499603726,0.114229214547889
-0.7900617140299,-0.0504704387615806
-0.234356993452812,-0.0328588411720029
-0.149617799161755,-0.137465346004397
-0.305016663533178,-0.0635402938976893
-0.909318567211422,0.0122852168966604
0.399381979088943,-0.0946668447025222
-0.127807520855129,-0.106796103666498
0.18317640162221,-0.0990174921556541
0.933819305120883,-0.0797645616353446
0.381545237908859,0.135080185084484
-0.31277324692941,0.173661209205918
0.47434979000797,-0.0215205041095453
-0.556687081026233,-0.0835518038778322
0.179618671154426,-0.118914977199466
0.0386732691147706,0.125386697025116
-0.805134915656007,0.11315801596806
-0.697566219464674,0.101667350424666
-0.785638963703829,-0.106680765663954
-0.0266376952764754,-0.0479903373971647
-0.44670607030704,0.0353016950643207
0.566004670954312,0.0364743295471811
0.303029073077733,0.116905291426555
0.404942760898239,0.0893797830464027
-0.32298081057285,-0.0612423559178996
0.72921899693516,-0.190651431253798
-0.238783399219989,-0.201157561505088
0.838983901701394,-0.153230865999878
-0.445603677744793,0.0208606856497355
0.498290091519379,0.131139698572563
0.75811975717457,0.169855697665016
0.75638357352297,-0.0257884500341728
0.375155796937251,0.131076064227461
0.257533313360779,-0.0528647895038988
-0.032254330363243,0.0931748927364773
-0.839355925954578,0.0348971935198497
-0.321761685107724,-0.0442452312895603
-0.141054466898113,-0.0925317420305877
-0.251501206891379,0.0607248465670675
-0.220999071011785,0.0882657343519309
0.204498790765413,0.00799784484065389
-0.751218585181617,-0.0836631271887629
0.58976151775092,-0.150354940379272
-0.0699859154736557,-0.0668967855012146
-0.413913108135533,-0.135652120956737
-0.18842738363353,-0.0721416993785926
0.666755671457739,-0.0501845048503642
-0.442408544683088,0.06883040791009
-0.300941884192145,0.193375560177824
-0.765524363967369,0.180540303154666
0.859780197897824,0.153550465624583
-0.6740838939669,0.139042359806811
0.334695734705169,0.168269259962125
0.710164911910037,0.0473114765318522
-0.816398257304168,-0.0132560118645178
-0.13099439587956,0.00642581834123225
-0.745824782990769,0.0280274330024728
0.146800391910039,0.0114525145825461
-0.763205443398657,0.0268220879521105
0.456613086842286,-0.0141582162933872
0.438408563583348,-0.127737166963499
0.342703012443475,-0.147812633292664
0.698135564894478,-0.0137274640231074
-0.670800844054111,0.000513004189454612
0.585560483665001,-0.0957600030634544
0.151705400623244,-0.126140672877399
0.495937946017803,-0.0587775919654244
0.828736296775162,-0.113602753385482
-0.275617057120249,0.0404169153674105
-0.129249441963271,0.0637441027533635
-0.496089479651344,0.0520406223713919
-0.747938023762749,-0.0434250282438795
-0.837347029632585,-0.148086186883691
-0.717641319948082,-0.139919043048457
-0.936323192872258,-0.0605219822362255
-0.554920240098108,0.0474048568421955
0.719021106939307,-0.0947218176526316
-0.947999400062486,0.0261778777337991
0.171600238034316,-0.0677998584179937
0.826004394249061,-0.123032216818122
0.387852175807512,0.194905723500561
0.0351910223416942,0.166027166275701
0.479863301608648,0.101954502130607
0.444585834371199,-0.00212100636994374
-0.0155852180978214,0.0424901518175131
0.692872747635875,-0.020136542529367
-0.300434749247709,0.14017545466314
0.495401680234541,0.0467252671274352
0.1432539257888,0.0518152607705747
0.323782088851455,0.00891091382416525
-0.48723274072969,0.0656228532554857
0.460745400498037,-0.0912258739936947
-0.349475199053751,-0.137388220950933
0.984357650384474,-0.0464662361149723
0.717022333162382,-0.0290631543902982
-0.0847671390905823,0.0842585339781461
0.89878820343818,0.0387303686119073
0.628449186509684,0.0326745671195254
-0.6684710158354,0.100022791409108
-0.353190103244591,-0.120791479513615
0.883962914293615,-0.148576945580147
-0.277615144512437,-0.184046870106486
0.0948024723188963,-0.136855716266544
-0.335375443722762,0.0311153392168198
0.780905995415946,-0.0224553304744231
0.0511205489985276,0.0788479869635113
0.241345313955725,-0.0500833323004902
0.851539127459535,-0.112609714052497
-0.291347311479667,-0.132830197510762
-0.843571841643924,-0.194825060471202
-0.996671304105162,-0.218432230330827
0.921911736913916,-0.159673404773765
0.764604230301736,-0.199288865578464
-0.532099923832389,0.116195428966659
0.283330017367066,0.157707373781633
0.258282310915311,0.140041359684938
-0.935322373144013,0.196915951661411
-0.830454336400355,0.120386701590254
0.374635382264217,0.101826502163638
0.821705620652859,0.209094203434554
0.613403443067057,0.10826422633432
-0.956468232887084,0.0569546117630172
-0.186500359879108,0.172972783266203
0.376801843464748,0.0341815581906813
0.59207610860098,0.0638312199981932
-0.037140366172949,-0.0440596218668656
-0.434475232583692,0.0249241103881933
-0.291389503186284,-0.037444191519866
-0.0601084125508128,-0.10827784318051
0.784298201922466,-0.233941733889692
0.0130897644036867,-0.0292668767208536
-0.471272126525302,-0.132352153493435
-0.43183794684328,-0.0285887256597882
-0.959193706493449,0.0195679991308332
-0.913185525645123,0.145244999346624
-0.414255243453316,0.0752718384166183
0.363312282303028,0.076558551495326
0.743653144568043,-0.0967207911101528
-0.334610971312323,-0.057695839272927
0.683896947504905,0.220457065560355
0.381545025567312,0.249105557222865
-0.480161357428954,0.218030510334781
0.304930325273858,0.0644631852618431
0.562712400948029,-0.0138504593059087
-0.498690735315294,0.0493680673636072
0.917412161788629,0.0829444150386858
-0.0910431757061944,0.212697184586624
-0.639183673839636,0.230104278405291
-0.139293632069274,0.159652227148624
0.722858748269667,0.0954345880223326
-0.576794941712541,0.207757724506451
0.931673358162713,-0.0422537892114052
0.335037476073502,0.121191599709049
-0.526334091800421,0.135758709437636
-0.852575754678145,0.0466947927713023
-0.609541804347905,0.125927079414675
0.671690425682669,-0.0078502938544791
0.0763494088670003,-0.0585132867888244
0.0892805201417211,-0.175864475624874
-0.323095335309904,-0.154157927887642
-0.174369967158125,0.0522737524138117
-0.524507459962977,0.0783792135121095
0.957202981206217,0.0897387931304263
0.813413716765779,0.0596736907760852
0.283293277622803,0.0372312933723317
0.513900782686612,-0.150468366623803
0.395650216096849,-0.147955284625277
-0.0823185420978435,-0.0223826480219779
0.1341197896442,-0.0280534253211324
0.0899726520711428,0.0513034519514842
0.817904155616604,8.59935647047512e-05
-0.656541830700143,-0.0351927114589313
-0.151372477017051,-0.0139098899105425
0.475657624879692,-0.0687908511025121
-0.941745635094934,-0.0620316597861909
0.0241828938127415,-0.0424930929299225
-0.0225139358185762,0.151388215635737
-0.100346996961323,0.154763082869366
0.193473809954465,0.0271937744025612
0.640271583404519,0.0105602365003001
0.59476472232247,0.0572940959449519
0.30324439671973,-0.0612133530446115
-0.993561718609911,0.0921513064661191
-0.246076793058811,-0.000518372223260732
0.923166690358504,0.0650959749032007
-0.856037346579152,0.0681306364260466
-0.453166298313609,-0.103159953315381
0.572474384481308,-0.116014111229541
-0.435653748659256,-0.0938795633662015
1 u y
2 -0.562081627343819 0
3 -0.165028051084386 -0.0848846176713865
4 0.402381188889212 -0.00855074782595819
5 0.982074771068094 0.0465851901457117
6 0.263269436202603 0.169762201014319
7 -0.666985599169035 0.054323197496775
8 0.973284224035816 0.051746560207838
9 0.827634883964264 -0.0173133818174058
10 -0.9682645974533 0.0719123061293299
11 -0.38735633780591 0.20323870152281
12 0.0746079511356577 0.169900711685989
13 0.0688996822894083 -0.00746558140650048
14 -0.574496970313833 0.138126734045196
15 0.875794598774889 -0.141852647292507
16 -0.000517935026678185 -0.0988200155700192
17 -0.182466612748088 0.00240103076106294
18 -0.361500652209623 -0.0595347187662052
19 -0.59349933061446 -0.0519022350351849
20 -0.8156527401021 -0.106703366966349
21 -0.0953996614997273 -0.246702573251392
22 -0.0574753429076985 -0.0275445682385667
23 -0.121339358911542 0.129163048642404
24 0.0748514826758073 0.318297851793095
25 0.431284669521863 0.223248747689702
26 -0.869612254141649 0.251157772434315
27 0.0878966139107462 0.212505320828667
28 -0.120548874661582 0.107255808344614
29 -0.998809915035409 0.0807653257237951
30 0.672839759696666 0.0145081167947413
31 -0.837878405041005 0.0253975644329584
32 0.56773040516662 -2.39532856761661e-05
33 -0.727090123913758 -0.10795814297631
34 -0.796725244166667 -0.0909358736412822
35 0.266859813251933 0.00995070727841241
36 0.107822691606275 -0.0372011713223269
37 0.626531425689595 -0.0651091197686131
38 0.0361671741288934 -0.0487676892938064
39 -0.224337562557467 -0.109582017325756
40 0.457216727294594 -0.178916504141863
41 0.322710993384342 0.0309704863456593
42 0.658477414240352 0.0506431803910415
43 0.388047331659145 0.0623101077769065
44 0.503420185997812 0.0359911107419933
45 -0.673837888833991 0.0193161516424325
46 0.0880454252884004 -0.0383760770110465
47 -0.439422153606742 -0.0359387768251584
48 -0.558629704433787 -0.112251115812661
49 0.03997697263955 -0.284971509798976
50 -0.337650089216256 -0.148524557670779
51 0.152345922380847 -0.140875672976474
52 0.228251039622468 -0.0889231511951012
53 -0.496944804441624 0.0465610558784346
54 0.331006910340398 0.082068516189644
55 -0.834986920391669 -0.151454048215957
56 0.868060945471777 -0.160252554385469
57 0.51354035433081 0.00985996775878407
58 -0.532617003439282 -0.0174954084308043
59 -0.0316390735244561 -0.128508236942345
60 0.038349728583521 -0.0465041726496238
61 -0.589317382122072 -0.037358615065556
62 -0.67983367558561 -0.104981843201757
63 0.153551720619924 -0.142242202275461
64 0.0790093499603726 0.114229214547889
65 -0.7900617140299 -0.0504704387615806
66 -0.234356993452812 -0.0328588411720029
67 -0.149617799161755 -0.137465346004397
68 -0.305016663533178 -0.0635402938976893
69 -0.909318567211422 0.0122852168966604
70 0.399381979088943 -0.0946668447025222
71 -0.127807520855129 -0.106796103666498
72 0.18317640162221 -0.0990174921556541
73 0.933819305120883 -0.0797645616353446
74 0.381545237908859 0.135080185084484
75 -0.31277324692941 0.173661209205918
76 0.47434979000797 -0.0215205041095453
77 -0.556687081026233 -0.0835518038778322
78 0.179618671154426 -0.118914977199466
79 0.0386732691147706 0.125386697025116
80 -0.805134915656007 0.11315801596806
81 -0.697566219464674 0.101667350424666
82 -0.785638963703829 -0.106680765663954
83 -0.0266376952764754 -0.0479903373971647
84 -0.44670607030704 0.0353016950643207
85 0.566004670954312 0.0364743295471811
86 0.303029073077733 0.116905291426555
87 0.404942760898239 0.0893797830464027
88 -0.32298081057285 -0.0612423559178996
89 0.72921899693516 -0.190651431253798
90 -0.238783399219989 -0.201157561505088
91 0.838983901701394 -0.153230865999878
92 -0.445603677744793 0.0208606856497355
93 0.498290091519379 0.131139698572563
94 0.75811975717457 0.169855697665016
95 0.75638357352297 -0.0257884500341728
96 0.375155796937251 0.131076064227461
97 0.257533313360779 -0.0528647895038988
98 -0.032254330363243 0.0931748927364773
99 -0.839355925954578 0.0348971935198497
100 -0.321761685107724 -0.0442452312895603
101 -0.141054466898113 -0.0925317420305877
102 -0.251501206891379 0.0607248465670675
103 -0.220999071011785 0.0882657343519309
104 0.204498790765413 0.00799784484065389
105 -0.751218585181617 -0.0836631271887629
106 0.58976151775092 -0.150354940379272
107 -0.0699859154736557 -0.0668967855012146
108 -0.413913108135533 -0.135652120956737
109 -0.18842738363353 -0.0721416993785926
110 0.666755671457739 -0.0501845048503642
111 -0.442408544683088 0.06883040791009
112 -0.300941884192145 0.193375560177824
113 -0.765524363967369 0.180540303154666
114 0.859780197897824 0.153550465624583
115 -0.6740838939669 0.139042359806811
116 0.334695734705169 0.168269259962125
117 0.710164911910037 0.0473114765318522
118 -0.816398257304168 -0.0132560118645178
119 -0.13099439587956 0.00642581834123225
120 -0.745824782990769 0.0280274330024728
121 0.146800391910039 0.0114525145825461
122 -0.763205443398657 0.0268220879521105
123 0.456613086842286 -0.0141582162933872
124 0.438408563583348 -0.127737166963499
125 0.342703012443475 -0.147812633292664
126 0.698135564894478 -0.0137274640231074
127 -0.670800844054111 0.000513004189454612
128 0.585560483665001 -0.0957600030634544
129 0.151705400623244 -0.126140672877399
130 0.495937946017803 -0.0587775919654244
131 0.828736296775162 -0.113602753385482
132 -0.275617057120249 0.0404169153674105
133 -0.129249441963271 0.0637441027533635
134 -0.496089479651344 0.0520406223713919
135 -0.747938023762749 -0.0434250282438795
136 -0.837347029632585 -0.148086186883691
137 -0.717641319948082 -0.139919043048457
138 -0.936323192872258 -0.0605219822362255
139 -0.554920240098108 0.0474048568421955
140 0.719021106939307 -0.0947218176526316
141 -0.947999400062486 0.0261778777337991
142 0.171600238034316 -0.0677998584179937
143 0.826004394249061 -0.123032216818122
144 0.387852175807512 0.194905723500561
145 0.0351910223416942 0.166027166275701
146 0.479863301608648 0.101954502130607
147 0.444585834371199 -0.00212100636994374
148 -0.0155852180978214 0.0424901518175131
149 0.692872747635875 -0.020136542529367
150 -0.300434749247709 0.14017545466314
151 0.495401680234541 0.0467252671274352
152 0.1432539257888 0.0518152607705747
153 0.323782088851455 0.00891091382416525
154 -0.48723274072969 0.0656228532554857
155 0.460745400498037 -0.0912258739936947
156 -0.349475199053751 -0.137388220950933
157 0.984357650384474 -0.0464662361149723
158 0.717022333162382 -0.0290631543902982
159 -0.0847671390905823 0.0842585339781461
160 0.89878820343818 0.0387303686119073
161 0.628449186509684 0.0326745671195254
162 -0.6684710158354 0.100022791409108
163 -0.353190103244591 -0.120791479513615
164 0.883962914293615 -0.148576945580147
165 -0.277615144512437 -0.184046870106486
166 0.0948024723188963 -0.136855716266544
167 -0.335375443722762 0.0311153392168198
168 0.780905995415946 -0.0224553304744231
169 0.0511205489985276 0.0788479869635113
170 0.241345313955725 -0.0500833323004902
171 0.851539127459535 -0.112609714052497
172 -0.291347311479667 -0.132830197510762
173 -0.843571841643924 -0.194825060471202
174 -0.996671304105162 -0.218432230330827
175 0.921911736913916 -0.159673404773765
176 0.764604230301736 -0.199288865578464
177 -0.532099923832389 0.116195428966659
178 0.283330017367066 0.157707373781633
179 0.258282310915311 0.140041359684938
180 -0.935322373144013 0.196915951661411
181 -0.830454336400355 0.120386701590254
182 0.374635382264217 0.101826502163638
183 0.821705620652859 0.209094203434554
184 0.613403443067057 0.10826422633432
185 -0.956468232887084 0.0569546117630172
186 -0.186500359879108 0.172972783266203
187 0.376801843464748 0.0341815581906813
188 0.59207610860098 0.0638312199981932
189 -0.037140366172949 -0.0440596218668656
190 -0.434475232583692 0.0249241103881933
191 -0.291389503186284 -0.037444191519866
192 -0.0601084125508128 -0.10827784318051
193 0.784298201922466 -0.233941733889692
194 0.0130897644036867 -0.0292668767208536
195 -0.471272126525302 -0.132352153493435
196 -0.43183794684328 -0.0285887256597882
197 -0.959193706493449 0.0195679991308332
198 -0.913185525645123 0.145244999346624
199 -0.414255243453316 0.0752718384166183
200 0.363312282303028 0.076558551495326
201 0.743653144568043 -0.0967207911101528
202 -0.334610971312323 -0.057695839272927
203 0.683896947504905 0.220457065560355
204 0.381545025567312 0.249105557222865
205 -0.480161357428954 0.218030510334781
206 0.304930325273858 0.0644631852618431
207 0.562712400948029 -0.0138504593059087
208 -0.498690735315294 0.0493680673636072
209 0.917412161788629 0.0829444150386858
210 -0.0910431757061944 0.212697184586624
211 -0.639183673839636 0.230104278405291
212 -0.139293632069274 0.159652227148624
213 0.722858748269667 0.0954345880223326
214 -0.576794941712541 0.207757724506451
215 0.931673358162713 -0.0422537892114052
216 0.335037476073502 0.121191599709049
217 -0.526334091800421 0.135758709437636
218 -0.852575754678145 0.0466947927713023
219 -0.609541804347905 0.125927079414675
220 0.671690425682669 -0.0078502938544791
221 0.0763494088670003 -0.0585132867888244
222 0.0892805201417211 -0.175864475624874
223 -0.323095335309904 -0.154157927887642
224 -0.174369967158125 0.0522737524138117
225 -0.524507459962977 0.0783792135121095
226 0.957202981206217 0.0897387931304263
227 0.813413716765779 0.0596736907760852
228 0.283293277622803 0.0372312933723317
229 0.513900782686612 -0.150468366623803
230 0.395650216096849 -0.147955284625277
231 -0.0823185420978435 -0.0223826480219779
232 0.1341197896442 -0.0280534253211324
233 0.0899726520711428 0.0513034519514842
234 0.817904155616604 8.59935647047512e-05
235 -0.656541830700143 -0.0351927114589313
236 -0.151372477017051 -0.0139098899105425
237 0.475657624879692 -0.0687908511025121
238 -0.941745635094934 -0.0620316597861909
239 0.0241828938127415 -0.0424930929299225
240 -0.0225139358185762 0.151388215635737
241 -0.100346996961323 0.154763082869366
242 0.193473809954465 0.0271937744025612
243 0.640271583404519 0.0105602365003001
244 0.59476472232247 0.0572940959449519
245 0.30324439671973 -0.0612133530446115
246 -0.993561718609911 0.0921513064661191
247 -0.246076793058811 -0.000518372223260732
248 0.923166690358504 0.0650959749032007
249 -0.856037346579152 0.0681306364260466
250 -0.453166298313609 -0.103159953315381
251 0.572474384481308 -0.116014111229541
252 -0.435653748659256 -0.0938795633662015

Binary file not shown.

After

Width:  |  Height:  |  Size: 19 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 19 KiB

BIN
p1/img/autocovariance_u.jpg Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 22 KiB

BIN
p1/img/autocovariance_y.jpg Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 19 KiB

BIN
p1/img/cdf_u.jpg Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 20 KiB

BIN
p1/img/cdf_y.jpg Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 19 KiB

BIN
p1/img/hist_u.jpg Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 26 KiB

BIN
p1/img/hist_y.jpg Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 22 KiB

154
p1/img/matOutU.svg Normal file

File diff suppressed because one or more lines are too long

After

Width:  |  Height:  |  Size: 23 KiB

118
p1/img/matOutY.svg Normal file

File diff suppressed because one or more lines are too long

After

Width:  |  Height:  |  Size: 38 KiB

BIN
p1/img/model.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 66 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 17 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 23 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 23 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 17 KiB

BIN
p1/img/samplecount.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 22 KiB

BIN
p1/img/signal_u.jpg Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 38 KiB

BIN
p1/img/signal_y.jpg Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 24 KiB

BIN
p1/img/step_response.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 18 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 17 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 18 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 18 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 17 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 18 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 16 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 16 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 17 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 14 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 13 KiB

Binary file not shown.

Binary file not shown.

10
p1/matlab/p1.m Normal file

@ -0,0 +1,10 @@
step(1, [2 5 1])
length(out.u);
length(out.y);
cd ~/src/utb/ak9im/ak9im/p1/data/;
m = [out.u,out.y];
m;
% writematrix(m, 'm.csv');

BIN
p1/matlab/p1.mat Normal file

Binary file not shown.

BIN
p1/matlab/p1.slx Normal file

Binary file not shown.

@ -11,16 +11,14 @@ def load_d(path: str) -> pd.DataFrame():
return pd.read_csv(path, float_precision='round_trip', dtype='float64') return pd.read_csv(path, float_precision='round_trip', dtype='float64')
def plot_d(dat: pd.Series, fname: str = 'plot_input_data', colour: str = ''): def plot_d(dat: pd.Series, fname: str = 'x', colour: str = '#1f77b4'):
if colour == '':
colour = 'blue'
pyplt.plot(dat, color=colour)
pyplt.xlim(0, len(dat)) pyplt.xlim(0, len(dat))
pyplt.ylim(min(dat) - 0.3, max(dat) + 0.3) pyplt.ylim(min(dat) - 0.3, max(dat) + 0.3)
pyplt.xticks(size=plt_ticks_size()) pyplt.xticks(size=plt_ticks_size())
pyplt.yticks(size=plt_ticks_size()) pyplt.yticks(size=plt_ticks_size())
pyplt.savefig(fname + '.jpg') pyplt.title('Signal ' + fname)
pyplt.plot(dat, color=colour)
pyplt.savefig('signal_' + fname + '.jpg')
# pplt.show(block=0) # pplt.show(block=0)
# rework this # rework this
# ref: https://stackoverflow.com/a/46418284 # ref: https://stackoverflow.com/a/46418284
@ -35,17 +33,28 @@ def variance(dat: pd.Series) -> float:
return sum(pow(dat - mean(dat), 2)) / len(dat) return sum(pow(dat - mean(dat), 2)) / len(dat)
def histogram(dat: pd.Series, bins: int = 10, fname: str = 'hist', colour: str = 'blue'): def histogram(dat: pd.Series, bins: int = 10, fname: str = 'x', colour: str = '#1f77b4'):
pyplt.hist(dat, color=colour, bins=bins) pyplt.title('Histogram of ' + fname)
pyplt.xlabel(fname)
pyplt.ylabel('probability')
pyplt.hist(dat, color=colour, bins=bins, edgecolor='black')
pyplt.xticks(size=plt_ticks_size()) pyplt.xticks(size=plt_ticks_size())
pyplt.yticks(size=plt_ticks_size()) pyplt.yticks(size=plt_ticks_size())
pyplt.savefig(fname + '.jpg') pyplt.savefig('hist_' + fname + '.jpg')
pyplt.close() pyplt.close()
def distr_func(dat: pd.Series, fname: str = 'dist', colour: str = 'blue'): def distr_func(dat: pd.Series, bins: int = 20, fname: str = 'x', colour: str = '#1f77b4'):
dat.plot.density(color=colour) N = len(dat)/bins
pyplt.savefig(fname + '.jpg') x = np.sort(dat)[::bins]
y = np.arange(1, N+1) / float(N)
pyplt.xlabel(fname)
pyplt.ylabel('probability')
pyplt.title('Cumulative Distribution Function of ' + fname)
pyplt.hist(dat, bins=bins, cumulative=True, density=1, color=colour)
pyplt.savefig('cdf_' + fname + '.jpg')
pyplt.close() pyplt.close()
@ -62,30 +71,31 @@ def covar(dat: pd.DataFrame) -> float:
return dat['u'].dot(dat['y']) / len(dat) return dat['u'].dot(dat['y']) / len(dat)
def correl_coeff(cov: float, std_dev_u: float, std_dev_y: float) -> float: def correlation_coefficient(cov: float, std_dev_u: float, std_dev_y: float) -> float:
return cov / (std_dev_u * std_dev_y) return cov / (std_dev_u * std_dev_y)
# m is the max permissible shift value. def auto_covariance(dat: list, max_shift_n: int = .1) -> list:
def auto_corellation(dat: list, max_shift_n: int = .1) -> float:
v = [] v = []
# m is the max permissible shift value.
m = len(dat) * max_shift_n m = len(dat) * max_shift_n
mean = np.mean(dat)
cur_shift = 0 cur_shift = 0
while m >= cur_shift: while m >= cur_shift:
r = 0 r = 0
for i in range(len(dat) - cur_shift): for i in range(len(dat) - cur_shift):
r += dat[i] * dat[i + cur_shift] r += (dat[i] - mean) * (dat[i + cur_shift] - mean)
r = r / len(dat) - cur_shift r = r * (1 / len(dat) - cur_shift)
v.append(r) v.append(r)
cur_shift += 1 cur_shift += 1
return v return v
def mutual_corellation(dx: list, dy: list, max_shift_n: int = .1) -> float: def mutual_correlation(dx: list, dy: list, max_shift_n: int = .1) -> list:
v = [] v = []
m = len(dx) * max_shift_n m = len(dx) * max_shift_n
cur_shift = 0 cur_shift = 0
@ -96,16 +106,15 @@ def mutual_corellation(dx: list, dy: list, max_shift_n: int = .1) -> float:
for i in range(len(dx) - cur_shift): for i in range(len(dx) - cur_shift):
r += dx[i] * dy[i + cur_shift] r += dx[i] * dy[i + cur_shift]
r = r / (len(dx) - cur_shift) r = r * (1 / (len(dx) - cur_shift))
v.append(r) v.append(r)
cur_shift += 1 cur_shift += 1
return v return v
def auto_covar(dat: list, max_shift_n: int = .1) -> float: def auto_correlation(dat: list, max_shift_n: int = .1) -> list:
v = [] v = []
mean = np.mean(dat)
m = len(dat) * max_shift_n m = len(dat) * max_shift_n
cur_shift = 0 cur_shift = 0
@ -113,19 +122,19 @@ def auto_covar(dat: list, max_shift_n: int = .1) -> float:
r = 0 r = 0
for i in range(len(dat) - cur_shift): for i in range(len(dat) - cur_shift):
r += (dat[i] - mean) * (dat[i + cur_shift] - mean) r += dat[i] * dat[i + cur_shift]
r = r / (len(dat) - cur_shift) r = r * (1 / (len(dat) - cur_shift))
v.append(r) v.append(r)
cur_shift += 1 cur_shift += 1
return v return v
def mutual_covar(dx: list, dy: list, max_shift_n: int = .1) -> float: def mutual_covar(dx: list, dy: list, max_shift_n: int = .1) -> list:
v = [] v = []
mean_x, mean_y = np.mean(dx), np.mean(dy)
m = len(dx) * max_shift_n m = len(dx) * max_shift_n
mean_x, mean_y = np.mean(dx), np.mean(dy)
cur_shift = 0 cur_shift = 0
while m >= cur_shift: while m >= cur_shift:
@ -134,36 +143,49 @@ def mutual_covar(dx: list, dy: list, max_shift_n: int = .1) -> float:
for i in range(len(dx) - cur_shift): for i in range(len(dx) - cur_shift):
r += (dx[i] - mean_x) * (dy[i + cur_shift] - mean_y) r += (dx[i] - mean_x) * (dy[i + cur_shift] - mean_y)
r = r / (len(dx) - cur_shift) r = r / (len(dx) - 1 - cur_shift)
v.append(r) v.append(r)
cur_shift += 1 cur_shift += 1
return v return v
def plot_autocorellation(dat: pd.DataFrame, fname: str = 'autocorellation', colour: str = 'blue'): def plot_autocovariance(dat: pd.DataFrame, fname: str = 'x', colour: str = '#1f77b4'):
d = auto_corellation(dat.tolist()) d = auto_covariance(dat.tolist())
pyplt.scatter(range(0, len(d)), d, color=colour) pyplt.plot(range(0, len(d)), d, color=colour)
pyplt.savefig(fname + '.jpg') pyplt.title('Autocovariance of ' + fname + ' (C' + fname + fname + ')')
pyplt.xlabel('shift')
pyplt.ylabel('C' + fname + fname)
pyplt.savefig('autocovariance_' + fname + '.jpg')
pyplt.close() pyplt.close()
def plot_mutual_corellation(d1: pd.DataFrame, d2: pd.DataFrame, fname: str = 'mutcorellation', colour: str = 'blue'): def plot_mutual_correlation(d1: pd.DataFrame, d2: pd.DataFrame, fname: str = 'xy', colour: str = '#1f77b4'):
d = mutual_corellation(d1.tolist(), d2.tolist()) d = mutual_correlation(d1.tolist(), d2.tolist())
pyplt.scatter(range(0, len(d)), d, color=colour) pyplt.plot(range(0, len(d)), d, color=colour)
pyplt.savefig(fname + '.jpg') pyplt.title('Mutual correlation of ' + fname + ' (R' + fname + ')')
pyplt.xlabel('shift')
pyplt.ylabel('R' + fname)
pyplt.savefig('mutual_correlation_' + fname + '.jpg')
pyplt.close() pyplt.close()
def plot_autocovariance(dat: pd.DataFrame, fname: str = 'autocovariance', colour: str = 'blue'): def plot_autocorrelation(dat: pd.DataFrame, fname: str = 'x', colour: str = '#1f77b4'):
d = auto_covar(dat.tolist()) d = auto_correlation(dat.tolist())
pyplt.scatter(range(0, len(d)), d, color=colour) pyplt.plot(range(0, len(d)), d, color=colour)
pyplt.savefig(fname + '.jpg') pyplt.title('Autocorrelation of ' + fname + ' (R' + fname + fname + ')')
pyplt.xlabel('shift')
pyplt.ylabel('R' + fname + fname)
pyplt.savefig('autocorrelation_' + fname + '.jpg')
pyplt.close() pyplt.close()
def plot_mutual_covariance(d1: pd.DataFrame, d2: pd.DataFrame, fname: str = 'mutcovariance', colour: str = 'blue'): def plot_mutual_covariance(d1: pd.DataFrame, d2: pd.DataFrame, fname: str = 'xy', colour: str = '#1f77b4'):
d = mutual_covar(d1.tolist(), d2.tolist()) d = mutual_covar(d1.tolist(), d2.tolist())
pyplt.scatter(range(0, len(d)), d, color=colour) # pyplt.scatter(range(0, len(d)), d, color=colour)
pyplt.savefig(fname + '.jpg') pyplt.plot(range(0, len(d)), d, color=colour)
pyplt.title('Mutual covariance of ' + fname + '(C' + fname + fname + ')')
pyplt.xlabel('shift')
pyplt.ylabel('C' + fname)
pyplt.savefig('mutual_covariance_' + fname + '.jpg')
pyplt.close() pyplt.close()

@ -28,11 +28,14 @@ def main(argv):
# d = d.astype('float64') # d = d.astype('float64')
print(d.head(), '\n') print(d.head(), '\n')
# alternative colour used to differentiate from the default.
altcol = '#ff7f0e'
# data plots # data plots
du = d['u'] du = d['u']
dy = d['y'] dy = d['y']
f.plot_d(du, fname='u_input_plot') f.plot_d(du, fname='u')
f.plot_d(dy, fname='y_input_plot', colour='green') f.plot_d(dy, fname='y', colour=altcol)
# mean and variance # mean and variance
mean_u = f.mean(d['u']) mean_u = f.mean(d['u'])
@ -45,33 +48,36 @@ def main(argv):
print('variance u:', variance_u) print('variance u:', variance_u)
print('variance y:', variance_y) print('variance y:', variance_y)
hist_u = f.histogram(d['u'], fname='u_hist') f.histogram(d['u'], fname='u')
hist_y = f.histogram(d['y'], fname='y_hist', colour='green') f.histogram(d['y'], fname='y', colour=altcol)
dist_u = f.distr_func(d['u'], fname='u_dist') f.distr_func(d['u'], fname='u')
dist_y = f.distr_func(d['y'], fname='y_dist', colour='green') f.distr_func(d['y'], fname='y', colour=altcol)
cov = f.covar(d) cov = f.covar(d)
std_dev_u = f.std_dev(d['u']) std_dev_u = f.std_dev(d['u'])
std_dev_y = f.std_dev(d['y']) std_dev_y = f.std_dev(d['y'])
# correlation coefficient # correlation coefficient
correl_c = f.correl_coeff(cov, std_dev_u, std_dev_y) rUY = f.correlation_coefficient(cov, std_dev_u, std_dev_y)
print("correlation coefficient:", correl_c) print("correlation coefficient rUY:", rUY)
print("covariance matrix (built-in):\n", d.cov()) print("covariance matrix (built-in):\n", d.cov(), '\n')
# print the covariance matrix. # print the covariance matrix.
print("covariance matrix (own):\n") print("covariance matrix (own):")
print(np.array([[variance_u, cov], [cov, variance_y]])) print(np.array([[variance_u, cov], [cov, variance_y]]))
f.plot_autocorellation(dat=d['u'], fname='u_autocorellation') f.plot_autocorrelation(dat=d['u'], fname='u')
f.plot_autocorellation(dat=d['y'], fname='y_autocorellation', colour='green') f.plot_autocorrelation(dat=d['y'], fname='y', colour=altcol)
f.plot_mutual_corellation(d1=d['u'], d2=d['y'], fname='mutual_corellation_uy') f.plot_mutual_correlation(d1=d['u'], d2=d['y'], fname='uy')
f.plot_mutual_correlation(d1=d['y'], d2=d['u'], fname='yu')
f.plot_autocovariance(dat=d['u'], fname='u_autocovariance') f.plot_autocovariance(dat=d['u'], fname='u')
f.plot_autocovariance(dat=d['y'], fname='y_autocovariance', colour='green') f.plot_autocovariance(dat=d['y'], fname='y', colour=altcol)
f.plot_mutual_covariance(d1=d['u'], d2=d['y'], fname='mutual_covariance_uy') # we don't need this atm.
# f.plot_mutual_covariance(d1=d['u'], d2=d['y'], fname='uy')
# f.plot_mutual_covariance(d1=d['y'], d2=d['u'], fname='yu')
if __name__ == "__main__": if __name__ == "__main__":