diff --git a/p1/data/dat-simulink.csv b/p1/data/dat-simulink.csv deleted file mode 100644 index 6d9f234..0000000 --- a/p1/data/dat-simulink.csv +++ /dev/null @@ -1,502 +0,0 @@ -u,y - 0, 1.16495351050 - 0.002437650102, 0.626839082632431 - 0.008395843283, 0.0750801546776829 - 0.015369616460, 0.351606902768522 - 0.022730589547, -0.696512535163682 - 0.028813760378, 1.69614248074708 - 0.036563856464, 0.0590597779813507 - 0.047318507723, 1.79707178369482 - 0.061147554372, 0.264068528817227 - 0.078163401976, 0.871673288690637 - 0.096261993907, -1.44617153933933 - 0.111735168943, -0.701165345682908 - 0.121565555451, 1.24598212043782 - 0.131725217197, -0.638976995013557 - 0.142211712999, 0.577350218771609 - 0.151681754307, -0.360029625711573 - 0.160716167547, -0.135576294466487 - 0.167886889755, -1.34933848038518 - 0.171231346696, -1.2704498962834 - 0.168693748945, 0.984570272925253 - 0.165562877141, -0.0448806138288563 - 0.164337412110, -0.798944516671106 - 0.161206391390, -0.765172428787515 - 0.154835418743, 0.861734897324192 - 0.148929917772, -0.056225124358975 - 0.144869306572, 0.513478173674302 - 0.141848472866, 0.396680865935824 - 0.140719553349, 0.756218970285488 - 0.141867363294, 0.400486023191097 - 0.145123629989, -1.34138072237857 - 0.145966826978, 0.375041023696104 - 0.144594656477, 1.12516181787503 - 0.146238434776, 0.728641591773905 - 0.151390958435, -2.37745429376543 - 0.152493584307, -0.2737824157439 - 0.147879344784, -0.322939921204497 - 0.142144179988, 0.317987915650739 - 0.136613961698, -0.511172207780701 - 0.130856756787, -0.00204134534943296 - 0.124267314965, 1.60651096111924 - 0.121318250836, 0.847648634500925 - 0.123461443513, 0.268100811901575 - 0.127579647734, -0.923489085784077 - 0.129853484698, -0.0704993877786937 - 0.129757114526, 0.147891351014747 - 0.129653919835, -0.557093642241282 - 0.128515569111, -0.336705699002853 - 0.125435688056, 0.415227462723156 - 0.122576085139, 1.55781353712321 - 0.123852754052, -2.44429889786556 - 0.122939016755, -1.09819538779932 - 0.114626505936, 1.12264785794487 - 0.106834248795, 0.581667258045274 - 0.102942874357, -0.271354295524753 - 0.099798533957, 0.414191307229504 - 0.097045619581, -0.9778142274614 - 0.093148932685, -1.02146617386615 - 0.085257131870, 0.317687979852042 - 0.076369479354, 1.51610779815003 - 0.071810788526, 0.749432452588256 - 0.072133335010, -0.507700386669636 - 0.072803128708, 0.885299448191509 - 0.074141500577, -0.248093553237236 - 0.076575157758, -0.726248999742084 - 0.076708895656, -0.445040300996161 - 0.074312512545, -0.612911120338436 - 0.069787044783, -0.209144084593638 - 0.063787378857, 0.562147834450359 - 0.058862329796, -1.06392288788104 - 0.053118019361, 0.351588948379816 - 0.046258309048, 1.13299992600868 - 0.042896890422, 0.149994248007729 - 0.042336929319, 0.703144053247466 - 0.043535001657, -0.0524115849986887 - 0.045917496951, 2.01849612400777 - 0.052189035471, 0.924159404893175 - 0.064014376318, -1.81411470285124 - 0.073028542853, 0.0349733202851668 - 0.077687106470, -1.80786206032125 - 0.078205955207, 1.02819254604578 - 0.077038781225, 0.394600308811932 - 0.078772419228, 0.639405642088516 - 0.082422167553, 0.874212894863609 - 0.088842433978, 1.75240173032956 - 0.100150745402, -0.320050826432137 - 0.113452326798, -0.137413808144866 - 0.124739049313, 0.615769628086716 - 0.136083452424, 0.977894069845197 - 0.149762606270, -1.11534771220514 - 0.161956532695, -0.550021448804486 - 0.169656722394, 0.0398848528457967 - 0.175551822103, -2.48284251425654 - 0.175684696865, 1.1586547052479 - 0.172917608577, -1.02627946669326 - 0.170322844067, 1.15348698823792 - 0.167988858787, -0.786456613020222 - 0.166295402297, 0.634808587961935 - 0.164210834664, 0.820409761532064 - 0.165057365382, -0.1760265104556 - 0.166925966004, 0.562473874646301 - 0.169252932089, -0.127442875395491 - 0.172068759188, 0.554171560978313 - 0.175352459051, -1.09734431922164 - 0.177004186748, -0.731301400074801 - 0.174525642752, 1.40473191961681 - 0.173422514001, -0.620214209475792 - 0.173728788728, 0.237148765008739 - 0.173003426288, -1.58684699003103 - 0.169253667587, -0.401484809800359 - 0.161446644087, -0.770692268923938 - 0.151522248966, -0.262680506066512 - 0.139948752978, 0.97648954365997 - 0.130486739789, 0.97781504112928 - 0.125538406346, 1.17002111026506 - 0.125204310822, 0.159310862415417 - 0.127444648766, 0.499520851464531 - 0.130725604793, -1.05537507065933 - 0.132412454344, -0.450743202815186 - 0.130700902499, 1.27037824216999 - 0.130664425803, 0.898693600923036 - 0.134926542239, 0.438705097860831 - 0.141463077026, -1.247344316402 - 0.145640317139, 0.324666916936102 - 0.147459533302, 0.390070410090458 - 0.150429647152, -0.405138316773605 - 0.152936896456, 0.29231487728345 - 0.154844331836, 2.56591024212381 - 0.162373215975, -0.457815643580367 - 0.173444067928, -1.61082701428916 - 0.179206551340, -2.6695237824109 - 0.175447462164, -0.759696648513815 - 0.164661475616, -0.674720856431937 - 0.151427948195, -1.17168719453355 - 0.135067581543, 2.0329300161552 - 0.121508676910, 0.968481047964462 - 0.114897302108, 0.67029199696923 - 0.111964731886, 0.420146041651794 - 0.111328699373, -2.87275126966852 - 0.105430307869, 1.68587408040699 - 0.097451100502, 0.0279245535239945 - 0.093390713809, -0.902030581228208 - 0.087651061950, -2.0532574915262 - 0.076046759587, 0.0890862976754639 - 0.061128674666, 2.08709913164975 - 0.051703984047, 0.365118460310679 - 0.047886206277, 0.846105526166482 - 0.046782095050, -0.184537657075523 - 0.047032271024, 1.03071442386955 - 0.048980062085, -1.52762265242938 - 0.049635535521, 0.964938959209115 - 0.049075197267, 0.526162503357523 - 0.051558436526, -0.184454117395808 - 0.054488526440, 0.198782828309268 - 0.057180571196, 1.59042683994639 - 0.063342317173, 0.0321916398987534 - 0.072308973385, 0.889163671412164 - 0.082484148658, -1.29915248991681 - 0.090942491967, 1.1825731043571 - 0.098512389634, 1.81747170621213 - 0.111643965373, -0.584302129859883 - 0.126207288037, -1.01067381655234 - 0.136283969412, -0.96049831249978 - 0.141403220568, 0.691159584398091 - 0.145458329680, -0.758618207013852 - 0.148858180576, -0.0969717327553058 - 0.150065480586, -1.40694904501744 - 0.147840514883, 1.03081245622456 - 0.144847329758, -0.759874404010818 - 0.142376987002, 0.874127225087956 - 0.140157148282, 0.761126995060121 - 0.141275833370, -0.165923454845674 - 0.143330622321, 0.300907437364548 - 0.145336788234, -0.322467327359368 - 0.146944367792, -0.368411284834508 - 0.146808772234, 1.14789527732987 - 0.148129334780, 0.0414302603415892 - 0.151586786956, -1.0980496536524 - 0.152383915314, 1.5667237455951 - 0.153950773334, -1.04842344829233 - 0.156204784867, 0.422723684679005 - 0.156830418858, -0.844414378203565 - 0.156293525717, -0.311629756199873 - 0.153200747174, 0.397810483954791 - 0.150305651236, 1.04978596179258 - 0.150412418065, -0.340795562628553 - 0.151736338000, 0.336296999435117 - 0.152767175115, -0.22136078228451 - 0.153740292939, 0.0166494938853639 - 0.154016925969, -1.19236123978469 - 0.151601182701, -0.131646296653231 - 0.146431214801, 1.48752430265133 - 0.144259421436, -0.836821230675096 - 0.143326824455, -1.30098190278336 - 0.137828804627, 1.57413185505183 - 0.133155409143, 1.16603996393892 - 0.134276893596, 0.786429694906372 - 0.139164064125, -1.4616387546644 - 0.142070893230, 1.5544659179464 - 0.144847678247, -0.597535383863608 - 0.149159188694, -1.21056787319236 - 0.149213833634, -0.702668798421263 - 0.145115185445, 0.356429388492137 - 0.140409126883, 0.652635669110502 - 0.137927833052, 0.215671160597416 - 0.137212237575, -0.263896185758453 - 0.136245286757, 1.80244023504604 - 0.138389545689, -0.642984171828691 - 0.142532611173, 0.109555050008099 - 0.145109035229, -0.719037696468626 - 0.146027075041, 0.42062757324897 - 0.146091498895, -1.93113368611571 - 0.142768659404, 0.660299784504416 - 0.136913941575, 0250959707945 - 0.130316257900, -0.102970644581647 - 0.121525577060, -1.05980153695263 - 0.110745352423, -1.23856593640737 - 0.095798488423, -1.88923605714065 - 0.075266047215, -0.973584554332184 - 0.050147893251, 0.212115838661386 - 0.025146751358, 0.493441990887632 - 0.003300379345, 1.54717659047233 --0.012798840152, 0.64493274830479 --0.023259792052, -2.14835899491811 --0.036145181528, -1.02884452543621 --0.054634945638, -0.141582115521168 --0.074173207421, -2.52670612285393 --0.097838690014, -0.312981492764229 --0.125555473247, -0.593617618531314 --0.153070087993, 0.332322161717666 --0.178994433943, 0.558850703293451 --0.201036462964, 0.899883573546132 --0.218256962314, -0.200898855586523 --0.232571131239, -0.233734974678244 --0.246477477930, 1.44990660185245 --0.256529039872, 1.83613202602166 --0.258729419507, -0.382918259160919 --0.257470999475, 0.155082744517634 --0.256402277551, -0.964648249056896 --0.256755399754, 0.0387564312898232 --0.258620144675, 0.765458387074111 --0.258318909656, -0.594524007839467 --0.257362335567, 0.130245975190898 --0.257059135844, 0.0350135051326026 --0.256083070313, -0.624674138678894 --0.256056842007, -0.539775240747624 --0.258085267418, 1.87995711256767 --0.256787179519, -1.00384945408178 --0.253483888809, -0.497445877674741 --0.253150888189, -1.50439715265069 --0.256656194612, -0.095449298936398 --0.262839625469, 0.396727053727293 --0.267599323196, -0.527114907886174 --0.271954360470, 0.344571055586828 --0.275990281756, -0.723290526415817 --0.280176932994, 1.26819336319293 --0.282512909723, -0.0312426582958191 --0.281772517871, 0.778211737167248 --0.279130159251, 2.18048355295766 --0.270132436477, 0.437813681537626 --0.256011191594, 1.33332898358725 --0.238825956004, 0.25107813911086 --0.219246474708, -0.31047090817812 --0.200851139533, -0.923003723808715 --0.186012782406, -0.384775736018753 --0.174631975962, 1.15818057089116 --0.162157703160, 0.862500188414089 --0.146148597273, -1.0347056249275 --0.131444438343, -0.192672883298642 --0.120090068300, -1.29972277987507 --0.112466215832, 0.306595916028864 --0.107227002444, 0.968992176157493 --0.099547087986, -0.747317126758189 --0.091843226234, -2.79602442297918 --0.091921437466, 0.696731553587482 --0.096122621866, 3.20690754366444 --0.091767663676, 0.536007044749823 --0.079912301146, 0.298450535720106 --0.067044346501, 0.284043160995206 --0.053766880031, 0.959664371348602 --0.038742145700, 2.08759311209632 --0.018370666205, 1.52468053170777 - 0.008077642447, -0.19526079003233 - 0.035398271230, 0.017260315800898 - 0.060423842076, 0.246340438601764 - 0.084191651893, -0.85448472108985 - 0.104920247870, 1.15778270176474 - 0.124751947167, 0.161907723250136 - 0.145748957434, 1.55706375548542 - 0.168686519827, -0.193543855158581 - 0.192586771017, 1.65130117445043 - 0.217633776060, 9877818089585 - 0.240054943325, 1.82252476317015 - 0.260533446237, -1.51841513419531 - 0.279787668565, -1.05107060879933 - 0.292026989384, 0.0499305134332341 - 0.300976857684, -1.45474886952808 - 0.305952803751, 0.466545849753956 - 0.308167761339, 0.545436841452861 - 0.311899783023, 1.32031907308504 - 0.318821767071, -0.404494327876404 - 0.326678395264, 0.418468509073849 - 0.333592212287, 0.247348749631458 - 0.340942137775, 0.704110315408186 - 0.349294101704, 0.631938853341633 - 0.359349774455, -0.992362112719315 - 0.367431551204, 1.76670836879512 - 0.376118825477, -0.382103635072939 - 0.386498999978, -0.911425420031351 - 0.392942893608, -0.99608998411821 - 0.394454280928, 1.19514263014412 - 0.395783246271, -0.159447782443431 - 0.398583314813, 2.70402604824876 - 0.405973222447, -0.198499915965497 - 0.417403676830, -0.141404614026417 - 0.426769249941, 0.411267926557381 - 0.435472498079, -1.17905965667049 - 0.441348592413, -0.277775505971886 - 0.443220810847, -1.58105341380234 - 0.440477048640, 1.04902234978446 - 0.436279772986, 0.302689036171394 - 0.434547190985, -1.2265023410583 - 0.430387020475, 0.0696000950977379 - 0.423559899164, -0.396516210293235 - 0.415932014924, 1.38880676152053 - 0.410352457004, 1.36442229049003 - 0.410284555190, 0.658152637292666 - 0.413820761084, 0.491313668926088 - 0.418915546015, 0.800733701087079 - 0.425761005345, -0.767268996676585 - 0.431578213797, 0.364419504046213 - 0.435594252607, -0.397913854767017 - 0.438644907186, 0.864279576409738 - 0.441876005683, -0.177618078276664 - 0.445669478722, 1.87438052046941 - 0.452146247219, 0.172400234691113 - 0.461743785855, 1.27174349438397 - 0.473056510182, -0.0353443679957601 - 0.485461757512, -1.50132883642184 - 0.493128844930, 0.365373411191592 - 0.497284510153, -0.19865985600102 - 0.500799006197, -1.38972170325751 - 0.500066943861, 0.229327812227314 - 0.496336276692, 0.27119023696723 - 0.493214588926, -0.366360220282281 - 0.489415672212, 1.37696039157049 - 0.487336648285, -0.797532756562798 - 0.485873766457, -0.936740611780525 - 0.480252236186, -0.00243346548885311 - 0.472437081466, 0.396086165525258 - 0.465333222315, -0.508693172275514 - 0.457822454974, -0.268285778746198 - 0.448597540250, -1.08214045362097 - 0.436577596965, 2.0141337202912 - 0.426787878929, 1.94403112557594 - 0.425267921866, -1.52152941634798 - 0.424054848947, 1.93931842629592 - 0.423289936067, -0.895840360657292 - 0.424082200489, -0.304157582743064 - 0.421768341982, 0.555253123177884 - 0.419572941733, -0.324246850701504 - 0.417406512035, 1.3388143671464 - 0.416952934661, 1.22229851347237 - 0.421249003940, -1.59597816278256 - 0.423826091105, -1.06773032044443 - 0.420146042384, -0.759919212299574 - 0.412368715760, 0.420988804468649 - 0.403887258791, -0.433373058325242 - 0.395387058365, 0.706251990240337 - 0.387520097282, 0.227856907314769 - 0.381581074778, -1.01699185125668 - 0.373862959073, 0.139860372563678 - 0.364376192207, -0.748088838235889 - 0.353761498896, -0.628974933137322 - 0.340546207120, 1.39483065417115 - 0.329405980136, -1.64769114004944 - 0.317981837602, -2.0149858438662 - 0.299323897204, 0.491716880786256 - 0.278451324949, -1.55497527509082 - 0.256384719111, -0.140609080683032 - 0.232014444932, 0.244943668795265 - 0.209229580576, -0.267458499968963 - 0.187667830310, -0.570245479900343 - 0.165594055120, -0.187266786888368 - 0.143256690341, 1.20855664796684 - 0.124407966076, -0.638854660397775 - 0.107819707025, 0.605540298516075 - 0.092188101299, -0.624480544088508 - 0.077437561426, 0.572228121730057 - 0.063518536522, -0.724410495952223 - 0.050124872846, 1.19219550553089 - 0.038599929052, 0.186746737068576 - 0.030642992921, 1.59493888226368 - 0.026911301935, 0.321307055691725 - 0.027330959813, 0.866840733181726 - 0.030154374588, 1.29184357610292 - 0.037215922358, 0.434312653452443 - 0.047287719465, -0.386206929335472 - 0.056679282967, -0.112563759811723 - 0.064320624244, -0.964333079249251 - 0.069098670754, -2.05725119297094 - 0.067176925245, 0.149996068326108 - 0.061405429160, 0.542037570810974 - 0.057387838287, 0.254408816480612 - 0.055207962718, -0.307240693819985 - 0.052979177728, -0.417111829581745 - 0.049330431108, 1.1368048328939 - 0.047391696994, 0.391313809093235 - 0.048662880478, 1.6051478186749 - 0.053937650853, 0.825892307356857 - 0.063782329232, 1.47039035572011 - 0.077624694166, -1.3789068923399 - 0.090524829029, -0.260172069009687 - 0.099049005217, 0.994768172763982 - 0.108398943305, 1.83403368186403 - 0.122825141588, -1.71591031873495 - 0.136244389832, 0.0869317058746623 - 0.145226591682, 1.95567435281059 - 0.157659225746, 0.161453769615341 - 0.173351221735, -0.628688359125364 - 0.186736845361, -1.43882446533843 - 0.194646978130, -0.0665959685875582 - 0.198664237024, 0.373380862806066 - 0.202775904797, 0.217314078186247 - 0.207542221532, -0.179456822070788 - 0.211762364776, 0.025672907009552 - 0.215086696037, 0.642066361973082 - 0.219281314662, 0.923086649379001 - 0.226127922443, -1.55510777372328 - 0.230822866118, 0.663594032788892 - 0.233087027541, -0.609499611051491 - 0.234954295816, 0.565239403309624 - 0.236306330140, -0.610781446255285 - 0.237116267057, 1.23111146649211 - 0.238871588598, 0.994299745127407 - 0.244772632045, -0.803474713644619 - 0.250279781594, -0.591204478397533 - 0.252183462287, 1.69154640779536 - 0.255939811467, 0.953355517329614 - 0.264535517552, -1.93005493739851 - 0.270083308508, 0.512844987283966 - 0.272005847961, 0.393682448572881 - 0.275292518897, -0.905426500446262 - 0.276882903002, -1.27447327679615 - 0.273465110156, 0.346546103379725 - 0.268027007640, -1.19523544023497 - 0.260801363047, 0.6672014423187 - 0.252668239643, -0.0677937745985269 - 0.245968872022, -1.73566010510706 - 0.235621886196, 0.806348573332824 - 0.223804248868, -0.914800737775521 - 0.212226120628, -0.514012560294795 - 0.198208850877, 1.89626061482575 - 0.187802288523, -0.253229992452281 - 0.181198886435, -0.174530598889962 - 0.173918291148, 0.978788421188577 - 0.168591331292, 1.28955367629478 - 0.168097468101, -0.530575044642476 - 0.168930578718, -0.692971494442308 - 0.166939239274, -0.859806234581962 - 0.161639988027, 0.529038063144839 - 0.155833421619, -0.227851983329631 - 0.150816496612, 0.376770329260843 - 0.146260339405, 1.22155618170185 - 0.145142567279, 1.09828777438716 - 0.148695862862, -0.853014335153324 - 0.152258374225, -0.904204301130295 - 0.151730434971, 0.698670395828124 - 0.150644157620, 0.482597708373328 - 0.151862480561, 0.811695978956173 - 0.155471994013, 0.32788264791102 - 0.160962938133, -1.58691667313653 - 0.163202796421, -0.920783046820398 - 0.159894056769, -0.614273757141473 - 0.153426232265, -0.334671554333678 - 0.145237358122, 0.0803446246354682 - 0.136897081984, -0.0475550782944156 - 0.129007693760, -0.614735621954271 - 0.120100837153, 0.240361970143272 - 0.110889319217, 0.125016815934406 - 0.102912664478, -0.223604591765641 - 0.095131576155, -0.391039478921063 - 0.086480621936, -1.38204535952843 - 0.074615915065, 1.07629163893956 - 0.062894520875, 1.26946565999934 - 0.056749939328, 0.487268352635843 - 0.054564157104, -0.956373570476764 - 0.051448249204, 0.45180747328207 - 0.047467505092, -1.25377763146753 - 0.041995388573, 0.256434631609721 - 0.034817410715, 0.421228929285213 - 0.029491641219, 1.04235979065273 - 0.027534160844, 1.20912040659216 - 0.030333540091, 0.780954540014887 - 0.037002797859, -1.17989975493881 - 0.042288047642, 1.00145005880789 - 0.046835336073, -1.02490474147858 - 0.050906197616, -1.05684555786868 - 0.050320670823, 2.88772349284138 - 0.053589257736, -0.267744313845742 - 0.061898740886, -0.488540043601896 - 0.067980725678, 0.419420246666344 diff --git a/p1/data/m.csv b/p1/data/m.csv new file mode 100644 index 0000000..2d5421b --- /dev/null +++ b/p1/data/m.csv @@ -0,0 +1,252 @@ +u,y +-0.562081627343819,0 +-0.165028051084386,-0.0848846176713865 +0.402381188889212,-0.00855074782595819 +0.982074771068094,0.0465851901457117 +0.263269436202603,0.169762201014319 +-0.666985599169035,0.054323197496775 +0.973284224035816,0.051746560207838 +0.827634883964264,-0.0173133818174058 +-0.9682645974533,0.0719123061293299 +-0.38735633780591,0.20323870152281 +0.0746079511356577,0.169900711685989 +0.0688996822894083,-0.00746558140650048 +-0.574496970313833,0.138126734045196 +0.875794598774889,-0.141852647292507 +-0.000517935026678185,-0.0988200155700192 +-0.182466612748088,0.00240103076106294 +-0.361500652209623,-0.0595347187662052 +-0.59349933061446,-0.0519022350351849 +-0.8156527401021,-0.106703366966349 +-0.0953996614997273,-0.246702573251392 +-0.0574753429076985,-0.0275445682385667 +-0.121339358911542,0.129163048642404 +0.0748514826758073,0.318297851793095 +0.431284669521863,0.223248747689702 +-0.869612254141649,0.251157772434315 +0.0878966139107462,0.212505320828667 +-0.120548874661582,0.107255808344614 +-0.998809915035409,0.0807653257237951 +0.672839759696666,0.0145081167947413 +-0.837878405041005,0.0253975644329584 +0.56773040516662,-2.39532856761661e-05 +-0.727090123913758,-0.10795814297631 +-0.796725244166667,-0.0909358736412822 +0.266859813251933,0.00995070727841241 +0.107822691606275,-0.0372011713223269 +0.626531425689595,-0.0651091197686131 +0.0361671741288934,-0.0487676892938064 +-0.224337562557467,-0.109582017325756 +0.457216727294594,-0.178916504141863 +0.322710993384342,0.0309704863456593 +0.658477414240352,0.0506431803910415 +0.388047331659145,0.0623101077769065 +0.503420185997812,0.0359911107419933 +-0.673837888833991,0.0193161516424325 +0.0880454252884004,-0.0383760770110465 +-0.439422153606742,-0.0359387768251584 +-0.558629704433787,-0.112251115812661 +0.03997697263955,-0.284971509798976 +-0.337650089216256,-0.148524557670779 +0.152345922380847,-0.140875672976474 +0.228251039622468,-0.0889231511951012 +-0.496944804441624,0.0465610558784346 +0.331006910340398,0.082068516189644 +-0.834986920391669,-0.151454048215957 +0.868060945471777,-0.160252554385469 +0.51354035433081,0.00985996775878407 +-0.532617003439282,-0.0174954084308043 +-0.0316390735244561,-0.128508236942345 +0.038349728583521,-0.0465041726496238 +-0.589317382122072,-0.037358615065556 +-0.67983367558561,-0.104981843201757 +0.153551720619924,-0.142242202275461 +0.0790093499603726,0.114229214547889 +-0.7900617140299,-0.0504704387615806 +-0.234356993452812,-0.0328588411720029 +-0.149617799161755,-0.137465346004397 +-0.305016663533178,-0.0635402938976893 +-0.909318567211422,0.0122852168966604 +0.399381979088943,-0.0946668447025222 +-0.127807520855129,-0.106796103666498 +0.18317640162221,-0.0990174921556541 +0.933819305120883,-0.0797645616353446 +0.381545237908859,0.135080185084484 +-0.31277324692941,0.173661209205918 +0.47434979000797,-0.0215205041095453 +-0.556687081026233,-0.0835518038778322 +0.179618671154426,-0.118914977199466 +0.0386732691147706,0.125386697025116 +-0.805134915656007,0.11315801596806 +-0.697566219464674,0.101667350424666 +-0.785638963703829,-0.106680765663954 +-0.0266376952764754,-0.0479903373971647 +-0.44670607030704,0.0353016950643207 +0.566004670954312,0.0364743295471811 +0.303029073077733,0.116905291426555 +0.404942760898239,0.0893797830464027 +-0.32298081057285,-0.0612423559178996 +0.72921899693516,-0.190651431253798 +-0.238783399219989,-0.201157561505088 +0.838983901701394,-0.153230865999878 +-0.445603677744793,0.0208606856497355 +0.498290091519379,0.131139698572563 +0.75811975717457,0.169855697665016 +0.75638357352297,-0.0257884500341728 +0.375155796937251,0.131076064227461 +0.257533313360779,-0.0528647895038988 +-0.032254330363243,0.0931748927364773 +-0.839355925954578,0.0348971935198497 +-0.321761685107724,-0.0442452312895603 +-0.141054466898113,-0.0925317420305877 +-0.251501206891379,0.0607248465670675 +-0.220999071011785,0.0882657343519309 +0.204498790765413,0.00799784484065389 +-0.751218585181617,-0.0836631271887629 +0.58976151775092,-0.150354940379272 +-0.0699859154736557,-0.0668967855012146 +-0.413913108135533,-0.135652120956737 +-0.18842738363353,-0.0721416993785926 +0.666755671457739,-0.0501845048503642 +-0.442408544683088,0.06883040791009 +-0.300941884192145,0.193375560177824 +-0.765524363967369,0.180540303154666 +0.859780197897824,0.153550465624583 +-0.6740838939669,0.139042359806811 +0.334695734705169,0.168269259962125 +0.710164911910037,0.0473114765318522 +-0.816398257304168,-0.0132560118645178 +-0.13099439587956,0.00642581834123225 +-0.745824782990769,0.0280274330024728 +0.146800391910039,0.0114525145825461 +-0.763205443398657,0.0268220879521105 +0.456613086842286,-0.0141582162933872 +0.438408563583348,-0.127737166963499 +0.342703012443475,-0.147812633292664 +0.698135564894478,-0.0137274640231074 +-0.670800844054111,0.000513004189454612 +0.585560483665001,-0.0957600030634544 +0.151705400623244,-0.126140672877399 +0.495937946017803,-0.0587775919654244 +0.828736296775162,-0.113602753385482 +-0.275617057120249,0.0404169153674105 +-0.129249441963271,0.0637441027533635 +-0.496089479651344,0.0520406223713919 +-0.747938023762749,-0.0434250282438795 +-0.837347029632585,-0.148086186883691 +-0.717641319948082,-0.139919043048457 +-0.936323192872258,-0.0605219822362255 +-0.554920240098108,0.0474048568421955 +0.719021106939307,-0.0947218176526316 +-0.947999400062486,0.0261778777337991 +0.171600238034316,-0.0677998584179937 +0.826004394249061,-0.123032216818122 +0.387852175807512,0.194905723500561 +0.0351910223416942,0.166027166275701 +0.479863301608648,0.101954502130607 +0.444585834371199,-0.00212100636994374 +-0.0155852180978214,0.0424901518175131 +0.692872747635875,-0.020136542529367 +-0.300434749247709,0.14017545466314 +0.495401680234541,0.0467252671274352 +0.1432539257888,0.0518152607705747 +0.323782088851455,0.00891091382416525 +-0.48723274072969,0.0656228532554857 +0.460745400498037,-0.0912258739936947 +-0.349475199053751,-0.137388220950933 +0.984357650384474,-0.0464662361149723 +0.717022333162382,-0.0290631543902982 +-0.0847671390905823,0.0842585339781461 +0.89878820343818,0.0387303686119073 +0.628449186509684,0.0326745671195254 +-0.6684710158354,0.100022791409108 +-0.353190103244591,-0.120791479513615 +0.883962914293615,-0.148576945580147 +-0.277615144512437,-0.184046870106486 +0.0948024723188963,-0.136855716266544 +-0.335375443722762,0.0311153392168198 +0.780905995415946,-0.0224553304744231 +0.0511205489985276,0.0788479869635113 +0.241345313955725,-0.0500833323004902 +0.851539127459535,-0.112609714052497 +-0.291347311479667,-0.132830197510762 +-0.843571841643924,-0.194825060471202 +-0.996671304105162,-0.218432230330827 +0.921911736913916,-0.159673404773765 +0.764604230301736,-0.199288865578464 +-0.532099923832389,0.116195428966659 +0.283330017367066,0.157707373781633 +0.258282310915311,0.140041359684938 +-0.935322373144013,0.196915951661411 +-0.830454336400355,0.120386701590254 +0.374635382264217,0.101826502163638 +0.821705620652859,0.209094203434554 +0.613403443067057,0.10826422633432 +-0.956468232887084,0.0569546117630172 +-0.186500359879108,0.172972783266203 +0.376801843464748,0.0341815581906813 +0.59207610860098,0.0638312199981932 +-0.037140366172949,-0.0440596218668656 +-0.434475232583692,0.0249241103881933 +-0.291389503186284,-0.037444191519866 +-0.0601084125508128,-0.10827784318051 +0.784298201922466,-0.233941733889692 +0.0130897644036867,-0.0292668767208536 +-0.471272126525302,-0.132352153493435 +-0.43183794684328,-0.0285887256597882 +-0.959193706493449,0.0195679991308332 +-0.913185525645123,0.145244999346624 +-0.414255243453316,0.0752718384166183 +0.363312282303028,0.076558551495326 +0.743653144568043,-0.0967207911101528 +-0.334610971312323,-0.057695839272927 +0.683896947504905,0.220457065560355 +0.381545025567312,0.249105557222865 +-0.480161357428954,0.218030510334781 +0.304930325273858,0.0644631852618431 +0.562712400948029,-0.0138504593059087 +-0.498690735315294,0.0493680673636072 +0.917412161788629,0.0829444150386858 +-0.0910431757061944,0.212697184586624 +-0.639183673839636,0.230104278405291 +-0.139293632069274,0.159652227148624 +0.722858748269667,0.0954345880223326 +-0.576794941712541,0.207757724506451 +0.931673358162713,-0.0422537892114052 +0.335037476073502,0.121191599709049 +-0.526334091800421,0.135758709437636 +-0.852575754678145,0.0466947927713023 +-0.609541804347905,0.125927079414675 +0.671690425682669,-0.0078502938544791 +0.0763494088670003,-0.0585132867888244 +0.0892805201417211,-0.175864475624874 +-0.323095335309904,-0.154157927887642 +-0.174369967158125,0.0522737524138117 +-0.524507459962977,0.0783792135121095 +0.957202981206217,0.0897387931304263 +0.813413716765779,0.0596736907760852 +0.283293277622803,0.0372312933723317 +0.513900782686612,-0.150468366623803 +0.395650216096849,-0.147955284625277 +-0.0823185420978435,-0.0223826480219779 +0.1341197896442,-0.0280534253211324 +0.0899726520711428,0.0513034519514842 +0.817904155616604,8.59935647047512e-05 +-0.656541830700143,-0.0351927114589313 +-0.151372477017051,-0.0139098899105425 +0.475657624879692,-0.0687908511025121 +-0.941745635094934,-0.0620316597861909 +0.0241828938127415,-0.0424930929299225 +-0.0225139358185762,0.151388215635737 +-0.100346996961323,0.154763082869366 +0.193473809954465,0.0271937744025612 +0.640271583404519,0.0105602365003001 +0.59476472232247,0.0572940959449519 +0.30324439671973,-0.0612133530446115 +-0.993561718609911,0.0921513064661191 +-0.246076793058811,-0.000518372223260732 +0.923166690358504,0.0650959749032007 +-0.856037346579152,0.0681306364260466 +-0.453166298313609,-0.103159953315381 +0.572474384481308,-0.116014111229541 +-0.435653748659256,-0.0938795633662015 diff --git a/p1/img/autocorrelation_u.jpg b/p1/img/autocorrelation_u.jpg new file mode 100644 index 0000000..6b376b1 Binary files /dev/null and b/p1/img/autocorrelation_u.jpg differ diff --git a/p1/img/autocorrelation_y.jpg b/p1/img/autocorrelation_y.jpg new file mode 100644 index 0000000..ded9fba Binary files /dev/null and b/p1/img/autocorrelation_y.jpg differ diff --git a/p1/img/autocovariance_u.jpg b/p1/img/autocovariance_u.jpg new file mode 100644 index 0000000..37ac525 Binary files /dev/null and b/p1/img/autocovariance_u.jpg differ diff --git a/p1/img/autocovariance_y.jpg b/p1/img/autocovariance_y.jpg new file mode 100644 index 0000000..2287411 Binary files /dev/null and b/p1/img/autocovariance_y.jpg differ diff --git a/p1/img/cdf_u.jpg b/p1/img/cdf_u.jpg new file mode 100644 index 0000000..1d4cdce Binary files /dev/null and b/p1/img/cdf_u.jpg differ diff --git a/p1/img/cdf_y.jpg b/p1/img/cdf_y.jpg new file mode 100644 index 0000000..e60d0f0 Binary files /dev/null and b/p1/img/cdf_y.jpg differ diff --git a/p1/img/hist_u.jpg b/p1/img/hist_u.jpg new file mode 100644 index 0000000..d4e759e Binary files /dev/null and b/p1/img/hist_u.jpg differ diff --git a/p1/img/hist_y.jpg b/p1/img/hist_y.jpg new file mode 100644 index 0000000..36a5c29 Binary files /dev/null and b/p1/img/hist_y.jpg differ diff --git a/p1/img/matOutU.svg b/p1/img/matOutU.svg new file mode 100644 index 0000000..99ef47b --- /dev/null +++ b/p1/img/matOutU.svg @@ -0,0 +1,154 @@ + + +050100150200250300-1-0.8-0.6-0.4-0.200.20.40.60.81 diff --git a/p1/img/matOutY.svg b/p1/img/matOutY.svg new file mode 100644 index 0000000..b9f7d39 --- /dev/null +++ b/p1/img/matOutY.svg @@ -0,0 +1,118 @@ + + + diff --git a/p1/img/model.png b/p1/img/model.png new file mode 100644 index 0000000..bda179a Binary files /dev/null and b/p1/img/model.png differ diff --git a/p1/img/mutual_corellation_uy.jpg b/p1/img/mutual_corellation_uy.jpg deleted file mode 100644 index 0a61141..0000000 Binary files a/p1/img/mutual_corellation_uy.jpg and /dev/null differ diff --git a/p1/img/mutual_correlation_uy.jpg b/p1/img/mutual_correlation_uy.jpg new file mode 100644 index 0000000..8993112 Binary files /dev/null and b/p1/img/mutual_correlation_uy.jpg differ diff --git a/p1/img/mutual_correlation_yu.jpg b/p1/img/mutual_correlation_yu.jpg new file mode 100644 index 0000000..3559ffe Binary files /dev/null and b/p1/img/mutual_correlation_yu.jpg differ diff --git a/p1/img/mutual_covariance_uy.jpg b/p1/img/mutual_covariance_uy.jpg deleted file mode 100644 index 81be012..0000000 Binary files a/p1/img/mutual_covariance_uy.jpg and /dev/null differ diff --git a/p1/img/samplecount.png b/p1/img/samplecount.png new file mode 100644 index 0000000..e844874 Binary files /dev/null and b/p1/img/samplecount.png differ diff --git a/p1/img/signal_u.jpg b/p1/img/signal_u.jpg new file mode 100644 index 0000000..645fd28 Binary files /dev/null and b/p1/img/signal_u.jpg differ diff --git a/p1/img/signal_y.jpg b/p1/img/signal_y.jpg new file mode 100644 index 0000000..6977021 Binary files /dev/null and b/p1/img/signal_y.jpg differ diff --git a/p1/img/step_response.png b/p1/img/step_response.png new file mode 100644 index 0000000..dfd02e4 Binary files /dev/null and b/p1/img/step_response.png differ diff --git a/p1/img/u_autocorellation.jpg b/p1/img/u_autocorellation.jpg deleted file mode 100644 index 55580a2..0000000 Binary files a/p1/img/u_autocorellation.jpg and /dev/null differ diff --git a/p1/img/u_autocovariance.jpg b/p1/img/u_autocovariance.jpg deleted file mode 100644 index 50c97ec..0000000 Binary files a/p1/img/u_autocovariance.jpg and /dev/null differ diff --git a/p1/img/u_dist.jpg b/p1/img/u_dist.jpg deleted file mode 100644 index 3eac794..0000000 Binary files a/p1/img/u_dist.jpg and /dev/null differ diff --git a/p1/img/u_hist.jpg b/p1/img/u_hist.jpg deleted file mode 100644 index e4b876b..0000000 Binary files a/p1/img/u_hist.jpg and /dev/null differ diff --git a/p1/img/u_input_plot.jpg b/p1/img/u_input_plot.jpg deleted file mode 100644 index 721fe17..0000000 Binary files a/p1/img/u_input_plot.jpg and /dev/null differ diff --git a/p1/img/y_autocorellation.jpg b/p1/img/y_autocorellation.jpg deleted file mode 100644 index 2d664df..0000000 Binary files a/p1/img/y_autocorellation.jpg and /dev/null differ diff --git a/p1/img/y_autocovariance.jpg b/p1/img/y_autocovariance.jpg deleted file mode 100644 index 00292cd..0000000 Binary files a/p1/img/y_autocovariance.jpg and /dev/null differ diff --git a/p1/img/y_dist.jpg b/p1/img/y_dist.jpg deleted file mode 100644 index 8ce34e8..0000000 Binary files a/p1/img/y_dist.jpg and /dev/null differ diff --git a/p1/img/y_hist.jpg b/p1/img/y_hist.jpg deleted file mode 100644 index 41c5d10..0000000 Binary files a/p1/img/y_hist.jpg and /dev/null differ diff --git a/p1/img/y_input_plot.jpg b/p1/img/y_input_plot.jpg deleted file mode 100644 index b269d65..0000000 Binary files a/p1/img/y_input_plot.jpg and /dev/null differ diff --git a/p1/matlab/p1-randn_transferfunc.mat b/p1/matlab/p1-randn_transferfunc.mat deleted file mode 100644 index 6f832c9..0000000 Binary files a/p1/matlab/p1-randn_transferfunc.mat and /dev/null differ diff --git a/p1/matlab/p1-randn_transferfunc.mldatx b/p1/matlab/p1-randn_transferfunc.mldatx deleted file mode 100644 index babf393..0000000 Binary files a/p1/matlab/p1-randn_transferfunc.mldatx and /dev/null differ diff --git a/p1/matlab/p1-simout.xlsx b/p1/matlab/p1-simout.xlsx deleted file mode 100644 index afd7681..0000000 Binary files a/p1/matlab/p1-simout.xlsx and /dev/null differ diff --git a/p1/matlab/p1.m b/p1/matlab/p1.m new file mode 100644 index 0000000..b1bc42f --- /dev/null +++ b/p1/matlab/p1.m @@ -0,0 +1,10 @@ +step(1, [2 5 1]) +length(out.u); +length(out.y); + +cd ~/src/utb/ak9im/ak9im/p1/data/; + +m = [out.u,out.y]; +m; + +% writematrix(m, 'm.csv'); diff --git a/p1/matlab/p1.mat b/p1/matlab/p1.mat new file mode 100644 index 0000000..72e7def Binary files /dev/null and b/p1/matlab/p1.mat differ diff --git a/p1/matlab/p1.slx b/p1/matlab/p1.slx new file mode 100644 index 0000000..edfcf48 Binary files /dev/null and b/p1/matlab/p1.slx differ diff --git a/p1/p1/funcs.py b/p1/p1/funcs.py index 6f53954..fb0222a 100644 --- a/p1/p1/funcs.py +++ b/p1/p1/funcs.py @@ -11,16 +11,14 @@ def load_d(path: str) -> pd.DataFrame(): return pd.read_csv(path, float_precision='round_trip', dtype='float64') -def plot_d(dat: pd.Series, fname: str = 'plot_input_data', colour: str = ''): - if colour == '': - colour = 'blue' - - pyplt.plot(dat, color=colour) +def plot_d(dat: pd.Series, fname: str = 'x', colour: str = '#1f77b4'): pyplt.xlim(0, len(dat)) pyplt.ylim(min(dat) - 0.3, max(dat) + 0.3) pyplt.xticks(size=plt_ticks_size()) pyplt.yticks(size=plt_ticks_size()) - pyplt.savefig(fname + '.jpg') + pyplt.title('Signal ' + fname) + pyplt.plot(dat, color=colour) + pyplt.savefig('signal_' + fname + '.jpg') # pplt.show(block=0) # rework this # ref: https://stackoverflow.com/a/46418284 @@ -35,17 +33,28 @@ def variance(dat: pd.Series) -> float: return sum(pow(dat - mean(dat), 2)) / len(dat) -def histogram(dat: pd.Series, bins: int = 10, fname: str = 'hist', colour: str = 'blue'): - pyplt.hist(dat, color=colour, bins=bins) +def histogram(dat: pd.Series, bins: int = 10, fname: str = 'x', colour: str = '#1f77b4'): + pyplt.title('Histogram of ' + fname) + pyplt.xlabel(fname) + pyplt.ylabel('probability') + + pyplt.hist(dat, color=colour, bins=bins, edgecolor='black') pyplt.xticks(size=plt_ticks_size()) pyplt.yticks(size=plt_ticks_size()) - pyplt.savefig(fname + '.jpg') + pyplt.savefig('hist_' + fname + '.jpg') pyplt.close() -def distr_func(dat: pd.Series, fname: str = 'dist', colour: str = 'blue'): - dat.plot.density(color=colour) - pyplt.savefig(fname + '.jpg') +def distr_func(dat: pd.Series, bins: int = 20, fname: str = 'x', colour: str = '#1f77b4'): + N = len(dat)/bins + x = np.sort(dat)[::bins] + y = np.arange(1, N+1) / float(N) + + pyplt.xlabel(fname) + pyplt.ylabel('probability') + pyplt.title('Cumulative Distribution Function of ' + fname) + pyplt.hist(dat, bins=bins, cumulative=True, density=1, color=colour) + pyplt.savefig('cdf_' + fname + '.jpg') pyplt.close() @@ -62,30 +71,31 @@ def covar(dat: pd.DataFrame) -> float: return dat['u'].dot(dat['y']) / len(dat) -def correl_coeff(cov: float, std_dev_u: float, std_dev_y: float) -> float: +def correlation_coefficient(cov: float, std_dev_u: float, std_dev_y: float) -> float: return cov / (std_dev_u * std_dev_y) -# m is the max permissible shift value. -def auto_corellation(dat: list, max_shift_n: int = .1) -> float: +def auto_covariance(dat: list, max_shift_n: int = .1) -> list: v = [] + # m is the max permissible shift value. m = len(dat) * max_shift_n + mean = np.mean(dat) cur_shift = 0 while m >= cur_shift: r = 0 for i in range(len(dat) - cur_shift): - r += dat[i] * dat[i + cur_shift] + r += (dat[i] - mean) * (dat[i + cur_shift] - mean) - r = r / len(dat) - cur_shift + r = r * (1 / len(dat) - cur_shift) v.append(r) cur_shift += 1 return v -def mutual_corellation(dx: list, dy: list, max_shift_n: int = .1) -> float: +def mutual_correlation(dx: list, dy: list, max_shift_n: int = .1) -> list: v = [] m = len(dx) * max_shift_n cur_shift = 0 @@ -96,16 +106,15 @@ def mutual_corellation(dx: list, dy: list, max_shift_n: int = .1) -> float: for i in range(len(dx) - cur_shift): r += dx[i] * dy[i + cur_shift] - r = r / (len(dx) - cur_shift) + r = r * (1 / (len(dx) - cur_shift)) v.append(r) cur_shift += 1 return v -def auto_covar(dat: list, max_shift_n: int = .1) -> float: +def auto_correlation(dat: list, max_shift_n: int = .1) -> list: v = [] - mean = np.mean(dat) m = len(dat) * max_shift_n cur_shift = 0 @@ -113,19 +122,19 @@ def auto_covar(dat: list, max_shift_n: int = .1) -> float: r = 0 for i in range(len(dat) - cur_shift): - r += (dat[i] - mean) * (dat[i + cur_shift] - mean) + r += dat[i] * dat[i + cur_shift] - r = r / (len(dat) - cur_shift) + r = r * (1 / (len(dat) - cur_shift)) v.append(r) cur_shift += 1 return v -def mutual_covar(dx: list, dy: list, max_shift_n: int = .1) -> float: +def mutual_covar(dx: list, dy: list, max_shift_n: int = .1) -> list: v = [] - mean_x, mean_y = np.mean(dx), np.mean(dy) m = len(dx) * max_shift_n + mean_x, mean_y = np.mean(dx), np.mean(dy) cur_shift = 0 while m >= cur_shift: @@ -134,36 +143,49 @@ def mutual_covar(dx: list, dy: list, max_shift_n: int = .1) -> float: for i in range(len(dx) - cur_shift): r += (dx[i] - mean_x) * (dy[i + cur_shift] - mean_y) - r = r / (len(dx) - cur_shift) + r = r / (len(dx) - 1 - cur_shift) v.append(r) cur_shift += 1 return v -def plot_autocorellation(dat: pd.DataFrame, fname: str = 'autocorellation', colour: str = 'blue'): - d = auto_corellation(dat.tolist()) - pyplt.scatter(range(0, len(d)), d, color=colour) - pyplt.savefig(fname + '.jpg') +def plot_autocovariance(dat: pd.DataFrame, fname: str = 'x', colour: str = '#1f77b4'): + d = auto_covariance(dat.tolist()) + pyplt.plot(range(0, len(d)), d, color=colour) + pyplt.title('Autocovariance of ' + fname + ' (C' + fname + fname + ')') + pyplt.xlabel('shift') + pyplt.ylabel('C' + fname + fname) + pyplt.savefig('autocovariance_' + fname + '.jpg') pyplt.close() -def plot_mutual_corellation(d1: pd.DataFrame, d2: pd.DataFrame, fname: str = 'mutcorellation', colour: str = 'blue'): - d = mutual_corellation(d1.tolist(), d2.tolist()) - pyplt.scatter(range(0, len(d)), d, color=colour) - pyplt.savefig(fname + '.jpg') +def plot_mutual_correlation(d1: pd.DataFrame, d2: pd.DataFrame, fname: str = 'xy', colour: str = '#1f77b4'): + d = mutual_correlation(d1.tolist(), d2.tolist()) + pyplt.plot(range(0, len(d)), d, color=colour) + pyplt.title('Mutual correlation of ' + fname + ' (R' + fname + ')') + pyplt.xlabel('shift') + pyplt.ylabel('R' + fname) + pyplt.savefig('mutual_correlation_' + fname + '.jpg') pyplt.close() -def plot_autocovariance(dat: pd.DataFrame, fname: str = 'autocovariance', colour: str = 'blue'): - d = auto_covar(dat.tolist()) - pyplt.scatter(range(0, len(d)), d, color=colour) - pyplt.savefig(fname + '.jpg') +def plot_autocorrelation(dat: pd.DataFrame, fname: str = 'x', colour: str = '#1f77b4'): + d = auto_correlation(dat.tolist()) + pyplt.plot(range(0, len(d)), d, color=colour) + pyplt.title('Autocorrelation of ' + fname + ' (R' + fname + fname + ')') + pyplt.xlabel('shift') + pyplt.ylabel('R' + fname + fname) + pyplt.savefig('autocorrelation_' + fname + '.jpg') pyplt.close() -def plot_mutual_covariance(d1: pd.DataFrame, d2: pd.DataFrame, fname: str = 'mutcovariance', colour: str = 'blue'): +def plot_mutual_covariance(d1: pd.DataFrame, d2: pd.DataFrame, fname: str = 'xy', colour: str = '#1f77b4'): d = mutual_covar(d1.tolist(), d2.tolist()) - pyplt.scatter(range(0, len(d)), d, color=colour) - pyplt.savefig(fname + '.jpg') + # pyplt.scatter(range(0, len(d)), d, color=colour) + pyplt.plot(range(0, len(d)), d, color=colour) + pyplt.title('Mutual covariance of ' + fname + '(C' + fname + fname + ')') + pyplt.xlabel('shift') + pyplt.ylabel('C' + fname) + pyplt.savefig('mutual_covariance_' + fname + '.jpg') pyplt.close() diff --git a/p1/p1/main.py b/p1/p1/main.py index f774de9..c22803e 100644 --- a/p1/p1/main.py +++ b/p1/p1/main.py @@ -28,11 +28,14 @@ def main(argv): # d = d.astype('float64') print(d.head(), '\n') + # alternative colour used to differentiate from the default. + altcol = '#ff7f0e' + # data plots du = d['u'] dy = d['y'] - f.plot_d(du, fname='u_input_plot') - f.plot_d(dy, fname='y_input_plot', colour='green') + f.plot_d(du, fname='u') + f.plot_d(dy, fname='y', colour=altcol) # mean and variance mean_u = f.mean(d['u']) @@ -45,33 +48,36 @@ def main(argv): print('variance u:', variance_u) print('variance y:', variance_y) - hist_u = f.histogram(d['u'], fname='u_hist') - hist_y = f.histogram(d['y'], fname='y_hist', colour='green') + f.histogram(d['u'], fname='u') + f.histogram(d['y'], fname='y', colour=altcol) - dist_u = f.distr_func(d['u'], fname='u_dist') - dist_y = f.distr_func(d['y'], fname='y_dist', colour='green') + f.distr_func(d['u'], fname='u') + f.distr_func(d['y'], fname='y', colour=altcol) cov = f.covar(d) std_dev_u = f.std_dev(d['u']) std_dev_y = f.std_dev(d['y']) # correlation coefficient - correl_c = f.correl_coeff(cov, std_dev_u, std_dev_y) - print("correlation coefficient:", correl_c) + rUY = f.correlation_coefficient(cov, std_dev_u, std_dev_y) + print("correlation coefficient rUY:", rUY) - print("covariance matrix (built-in):\n", d.cov()) + print("covariance matrix (built-in):\n", d.cov(), '\n') # print the covariance matrix. - print("covariance matrix (own):\n") + print("covariance matrix (own):") print(np.array([[variance_u, cov], [cov, variance_y]])) - f.plot_autocorellation(dat=d['u'], fname='u_autocorellation') - f.plot_autocorellation(dat=d['y'], fname='y_autocorellation', colour='green') + f.plot_autocorrelation(dat=d['u'], fname='u') + f.plot_autocorrelation(dat=d['y'], fname='y', colour=altcol) - f.plot_mutual_corellation(d1=d['u'], d2=d['y'], fname='mutual_corellation_uy') + f.plot_mutual_correlation(d1=d['u'], d2=d['y'], fname='uy') + f.plot_mutual_correlation(d1=d['y'], d2=d['u'], fname='yu') - f.plot_autocovariance(dat=d['u'], fname='u_autocovariance') - f.plot_autocovariance(dat=d['y'], fname='y_autocovariance', colour='green') + f.plot_autocovariance(dat=d['u'], fname='u') + f.plot_autocovariance(dat=d['y'], fname='y', colour=altcol) - f.plot_mutual_covariance(d1=d['u'], d2=d['y'], fname='mutual_covariance_uy') + # we don't need this atm. + # f.plot_mutual_covariance(d1=d['u'], d2=d['y'], fname='uy') + # f.plot_mutual_covariance(d1=d['y'], d2=d['u'], fname='yu') if __name__ == "__main__":