chore: crlf --> lf

This commit is contained in:
surtur 2020-12-11 20:04:31 +01:00
parent 20a6b6cb0b
commit 1a1193a10d
Signed by: wanderer
GPG Key ID: 19CE1EC1D9E0486D
4 changed files with 1192 additions and 1194 deletions

960
main.cpp

@ -1,480 +1,480 @@
// Ukazka odezvy programu
//
// Ocekavane chovani:
// Pri stisku tlacitka se spusti efekt, kdy blikaji postupne LED,
// Po uvolneni tlacitka LED zhasnou. Tedy blikani trva po dobu stisku tlacitka.
//
// Ukazano je postupne vylepsovani odezvy programu - aby program rychleji reagoval na
// uvolneni tlacitka. Verzi programu zvolte nize v #define VERSION
//
// Posledni zmena: 30.10.2020
///////////////////////////////////////////////
#include <iostream>
#include "simul_kl25z.h"
using namespace std;
//#include "MKL25Z4.h"
//#include "drv_gpio.h"
//#include "drv_systick.h"
#include <stdbool.h> // kvuli typu bool
// Vyber verze kodu.
// 1. stav blikani a nesviti; kontrola tlacitka vzdy az po bliknuti vsech LED.
// 2. kontrola tlacitka po bliknuti kazde LED.
// 3. nepouziva se delay - polling casu.
// 4. rozdeleni kodu na ulohy - tasky.
#define VERSION 1
// Spolecne definice
#define SWITCH_PRESSED (1)
#define SWITCH_NOT_PRESSED (0)
#define KEY SW1
#define LED1 LD1
#define LED2 LD2
#define LED3 LD3
#define BLINK_DELAY 1000
// Prototypy funkci
void init(void);
int switch1_read(void);
void delay_debounce(void);
void LED_control(bool d1, bool d2, bool d3);
///////////////////////////////////////////////////////////////////////////////////////
// Kod programu v nekolika verzich.
// Aktivni verze se vybere pomoci #define VERSION nahore.
#if VERSION == 1
// Verze 1
// Odezva je spatna, protoze stav tlacitka se testuje az po bliknuti vsech LED.
// Pri uvolneni tlacitka program zareaguje az na konci celeho efektu, kdyz zhasne
// treti LED a prvni uz se nerozsviti.
// Stavy programu
#define ST_EFFECT 1
#define ST_OFF 2
int state = ST_OFF;
int main(void) {
// inicializace ovladace pinu a delay
init();
while (1) {
if (switch1_read() == SWITCH_PRESSED)
state = ST_EFFECT;
else
state = ST_OFF;
switch (state) {
case ST_OFF:
LED_control(false, false, false);
break;
case ST_EFFECT:
LED_control(true, false, false);
SYSTICK_delay_ms(BLINK_DELAY);
LED_control(false, true, false);
SYSTICK_delay_ms(BLINK_DELAY);
LED_control(false, false, true);
SYSTICK_delay_ms(BLINK_DELAY);
break;
} // switch
} // while
/* Never leave main */
return 0;
}
//////////////////////////////////////////////////////////////////////////////////
#elif VERSION == 2
// Verze 2
// Odezva je vylepsena tim, ze kontrola tlacitka probiha po bliknuti kazde LED.
// Po uvolneni tlacitka pak LED sice "dosviti" svou dobu svitu,
// ale dalsi LED uz se nerozsviti.
// Stavy programu
#define ST_LED1_ON 1
#define ST_LED2_ON 2
#define ST_LED3_ON 3
#define ST_OFF 4
int state = ST_OFF;
int main(void) {
// inicializace ovladace pinu a delay
init();
while (1) {
if (switch1_read() == SWITCH_PRESSED) {
// Jen pokud je stisknuto tlacitko a soucasny stav je vypnuto,
// prejdeme na stav rozsviceni prvni LED, jinak uz nektera LED
// sviti a stavy se meni ve switch.
if ( state == ST_OFF )
state = ST_LED1_ON;
}
else
state = ST_OFF;
switch (state) {
case ST_OFF:
LED_control(false, false, false);
break;
case ST_LED1_ON:
// Bliknout LED1 a prejit na stav dalsi LED2
LED_control(true, false, false);
SYSTICK_delay_ms(BLINK_DELAY);
state = ST_LED2_ON;
break;
case ST_LED2_ON:
LED_control(false, true, false);
SYSTICK_delay_ms(BLINK_DELAY);
state = ST_LED3_ON;
break;
case ST_LED3_ON:
LED_control(false, false, true);
SYSTICK_delay_ms(BLINK_DELAY);
state = ST_LED1_ON;
break;
} // switch
} // while
/* Never leave main */
return 0;
}
//////////////////////////////////////////////////////////////////////////////////
#elif VERSION == 3
// Verze 3
// Odezva je vylepsena tim, ze se nepouziva cekani (busy waiting) ale zjistuje se
// zda uz ubehl potrebny cas - jde o tzv. polling - dotazovani.
// Diky tomu LED zhasne okamzite po uvolneni tlacitka.
// Stavy programu
#define ST_LED1_ON 1
#define ST_LED2_ON 2
#define ST_LED3_ON 3
#define ST_OFF 4
#define ST_LED1_WAIT 5
#define ST_LED2_WAIT 6
#define ST_LED3_WAIT 7
int state = ST_OFF;
int main(void) {
// inicializace ovladace pinu a delay
init();
uint32_t waitStart; // cas, kdy se rozvitila LED
uint32_t currentTime; // aktualni cas, pomocna promenna
while (1) {
if (switch1_read() == SWITCH_PRESSED) {
// Jen pokud je stisknuto tlacitko a soucasny stav je vypnuto,
// prejdeme na stav rozsviceni prvni LED, jinak uz nektera LED
// sviti a stavy se meni ve switch.
if ( state == ST_OFF )
state = ST_LED1_ON;
}
else
state = ST_OFF;
switch (state) {
case ST_OFF:
LED_control(false, false, false);
break;
case ST_LED1_ON:
// Rozsvitit LED, ulozit aktualni cas a prejit do stavu cekani na
// uplynuti casu svitu teto LED.
LED_control(true, false, false);
waitStart = SYSTICK_millis();
state = ST_LED1_WAIT;
break;
case ST_LED1_WAIT:
// Kontrola jestli uz ubehlo dost casu abychom rozsvitili dalsi LED
// a pokud ano, prechod na dalsi stav
currentTime = SYSTICK_millis();
if ( currentTime - waitStart >= BLINK_DELAY )
state = ST_LED2_ON;
break;
case ST_LED2_ON:
LED_control(false, true, false);
waitStart = SYSTICK_millis();
state = ST_LED2_WAIT;
break;
case ST_LED2_WAIT:
currentTime = SYSTICK_millis();
if ( currentTime - waitStart >= BLINK_DELAY )
state = ST_LED3_ON;
break;
case ST_LED3_ON:
LED_control(false, false, true);
waitStart = SYSTICK_millis();
state = ST_LED3_WAIT;
break;
case ST_LED3_WAIT:
currentTime = SYSTICK_millis();
if ( currentTime - waitStart >= BLINK_DELAY )
state = ST_LED1_ON;
break;
} // switch
} // while
/* Never leave main */
return 0;
}
//////////////////////////////////////////////////////////////////////////////////
#elif VERSION == 4
// Verze 4
// Program je vylepsen rozdelenim na jednotlive ulohy - tasky.
// Z pohledu odezvy je chovani stejne jako u verze 3, ale struktura programu je
// prehlednejsi a snadneji by se rozsiroval o dalsi cinnosti.
// Stavy programu
#define ST_LED1_ON 1
#define ST_LED2_ON 2
#define ST_LED3_ON 3
#define ST_OFF 4
#define ST_LED1_WAIT 5
#define ST_LED2_WAIT 6
#define ST_LED3_WAIT 7
// globalni promenna pro stav tlacitka SW1
bool SW1_pressed;
// Promenna state je nove lokalni uvnitr tasku (funkce) pro blikani
// Prototypy funkci
void TaskSwitches(void);
void TaskEffect(void);
void TaskGreenLed(void);
int main(void) {
// inicializace ovladace pinu a delay
init();
while (1) {
TaskSwitches();
TaskEffect();
TaskGreenLed();
} // while
/* Never leave main */
return 0;
}
// Uloha, ktera se stara o obsluhu tlacitek
void TaskSwitches(void)
{
if (switch1_read() == SWITCH_PRESSED)
SW1_pressed = true;
else
SW1_pressed = false;
}
// Uloha, ktera se stara o blikani LED
void TaskEffect(void) {
// Stav totoho tasku.
// Promenna je static, aby si uchovala hodnotu mezi volanimi teto funkce,
// tj. aby nezanikla na konci funkce
static int state = ST_LED1_ON;
static uint32_t waitStart; // cas, kdy se rozvitila LED, musi byt static!
uint32_t currentTime; // aktualni cas, pomocna promenna
// Uloha efekt LED se provadi jen pri stisknutem tlacitku
if (SW1_pressed) {
switch (state) {
case ST_LED1_ON:
// Rozsvitit LED, ulozit aktualni cas a prejit do stavu cekani na
// uplynuti casu svitu teto LED.
LED_control(true, false, false);
waitStart = SYSTICK_millis();
state = ST_LED1_WAIT;
break;
case ST_LED1_WAIT:
// Kontrola jestli uz ubehlo dost casu abychom rozsvitili dalsi LED
// a pokud ano, prechod na dalsi stav
currentTime = SYSTICK_millis();
if (currentTime - waitStart >= BLINK_DELAY)
state = ST_LED2_ON;
break;
case ST_LED2_ON:
LED_control(false, true, false);
waitStart = SYSTICK_millis();
state = ST_LED2_WAIT;
break;
case ST_LED2_WAIT:
currentTime = SYSTICK_millis();
if (currentTime - waitStart >= BLINK_DELAY)
state = ST_LED3_ON;
break;
case ST_LED3_ON:
LED_control(false, false, true);
waitStart = SYSTICK_millis();
state = ST_LED3_WAIT;
break;
case ST_LED3_WAIT:
currentTime = SYSTICK_millis();
if (currentTime - waitStart >= BLINK_DELAY)
state = ST_LED1_ON;
break;
} // switch
} else {
// zhasnout LED pokud neni stisknuto tlacitko
LED_control(false, false, false);
state = ST_LED1_ON; // reset stavu tasku
}
} // TaskEffect
/////////////////////////////////
// Doba svitu/zhasnuti zelene LED
#define GREEN_ON_DELAY 200
#define GREEN_OFF_DELAY 700
// Ukazka dalsiho tasku - blika pri stisknutem tlacitku RGB LED
void TaskGreenLed() {
static enum {
ST_LED_ON,
ST_ON_WAIT,
ST_LED_OFF,
ST_OFF_WAIT
} stav = ST_LED_ON;
static uint32_t startTime;
// uloha se provadi jen pri stisknutem tlacitku
if (SW1_pressed) {
switch (stav) {
case ST_LED_ON:
pinWrite(LED_GREEN, LOW);
startTime = SYSTICK_millis();
stav = ST_ON_WAIT;
break;
case ST_ON_WAIT:
if (SYSTICK_millis() - startTime >= GREEN_ON_DELAY)
stav = ST_LED_OFF;
break;
case ST_LED_OFF:
pinWrite(LED_GREEN, HIGH);
startTime = SYSTICK_millis();
stav = ST_OFF_WAIT;
break;
case ST_OFF_WAIT:
if (SYSTICK_millis() - startTime >= GREEN_OFF_DELAY)
stav = ST_LED_ON;
break;
} // switch
} else {
pinWrite(LED_GREEN, HIGH); // zhasni LED
stav = ST_LED_ON; // resetuj stav LED
}
}
//////////////////////////////////////////////////////////////////////////////////
#endif /* VERSION == 4*/
/////////////////////////////////////////////////////////
// Pomocne funkce spolecne pro vsechny verze
// inicializace
void init()
{
SYSTICK_initialize();
GPIO_Initialize();
pinMode(SW1, INPUT_PULLUP);
pinMode(LED1, OUTPUT);
pinMode(LED2, OUTPUT);
pinMode(LED3, OUTPUT);
pinMode(LED_GREEN, OUTPUT);
pinWrite(LED1, HIGH);
pinWrite(LED2, HIGH);
pinWrite(LED3, HIGH);
pinWrite(LED_GREEN, HIGH);
}
// Ovladani LED - parametr true znamena rozsvitit prislusnou LED, false zhasnout.
void LED_control(bool d1, bool d2, bool d3)
{
pinWrite(LED1, !d1);
pinWrite(LED2, !d2);
pinWrite(LED3, !d3);
}
/*
switch1_read
Cte stav tlacitka SW1 s osetrenim zakmitu.
Vraci SWITCH_NOT_PRESSED pokud tlacitko neni stisknuto,
SWITCH_PRESSED pokud je stisknuto.
Reads and debounces switch SW1 as follows:
1. If switch is not pressed, return SWITCH_NOT_PRESSED.
2. If switch is pressed, wait for about 20 ms (debounce),
then:
if switch is no longer pressed, return SWITCH_NOT_PRESSED.
if switch is still pressed, return SWITCH_PRESSED.
*/
int switch1_read(void)
{
int switch_state = SWITCH_NOT_PRESSED;
if ( pinRead(SW1) == LOW )
{
// tlacitko je stisknuto
// debounce = wait
SYSTICK_delay_ms(50);
// znovu zkontrolovat stav tlacitka
if ( pinRead(SW1) == LOW )
{
switch_state = SWITCH_PRESSED;
}
}
// vratime stav tlacitka
return switch_state;
}
// Ukazka odezvy programu
//
// Ocekavane chovani:
// Pri stisku tlacitka se spusti efekt, kdy blikaji postupne LED,
// Po uvolneni tlacitka LED zhasnou. Tedy blikani trva po dobu stisku tlacitka.
//
// Ukazano je postupne vylepsovani odezvy programu - aby program rychleji reagoval na
// uvolneni tlacitka. Verzi programu zvolte nize v #define VERSION
//
// Posledni zmena: 30.10.2020
///////////////////////////////////////////////
#include <iostream>
#include "simul_kl25z.h"
using namespace std;
//#include "MKL25Z4.h"
//#include "drv_gpio.h"
//#include "drv_systick.h"
#include <stdbool.h> // kvuli typu bool
// Vyber verze kodu.
// 1. stav blikani a nesviti; kontrola tlacitka vzdy az po bliknuti vsech LED.
// 2. kontrola tlacitka po bliknuti kazde LED.
// 3. nepouziva se delay - polling casu.
// 4. rozdeleni kodu na ulohy - tasky.
#define VERSION 1
// Spolecne definice
#define SWITCH_PRESSED (1)
#define SWITCH_NOT_PRESSED (0)
#define KEY SW1
#define LED1 LD1
#define LED2 LD2
#define LED3 LD3
#define BLINK_DELAY 1000
// Prototypy funkci
void init(void);
int switch1_read(void);
void delay_debounce(void);
void LED_control(bool d1, bool d2, bool d3);
///////////////////////////////////////////////////////////////////////////////////////
// Kod programu v nekolika verzich.
// Aktivni verze se vybere pomoci #define VERSION nahore.
#if VERSION == 1
// Verze 1
// Odezva je spatna, protoze stav tlacitka se testuje az po bliknuti vsech LED.
// Pri uvolneni tlacitka program zareaguje az na konci celeho efektu, kdyz zhasne
// treti LED a prvni uz se nerozsviti.
// Stavy programu
#define ST_EFFECT 1
#define ST_OFF 2
int state = ST_OFF;
int main(void) {
// inicializace ovladace pinu a delay
init();
while (1) {
if (switch1_read() == SWITCH_PRESSED)
state = ST_EFFECT;
else
state = ST_OFF;
switch (state) {
case ST_OFF:
LED_control(false, false, false);
break;
case ST_EFFECT:
LED_control(true, false, false);
SYSTICK_delay_ms(BLINK_DELAY);
LED_control(false, true, false);
SYSTICK_delay_ms(BLINK_DELAY);
LED_control(false, false, true);
SYSTICK_delay_ms(BLINK_DELAY);
break;
} // switch
} // while
/* Never leave main */
return 0;
}
//////////////////////////////////////////////////////////////////////////////////
#elif VERSION == 2
// Verze 2
// Odezva je vylepsena tim, ze kontrola tlacitka probiha po bliknuti kazde LED.
// Po uvolneni tlacitka pak LED sice "dosviti" svou dobu svitu,
// ale dalsi LED uz se nerozsviti.
// Stavy programu
#define ST_LED1_ON 1
#define ST_LED2_ON 2
#define ST_LED3_ON 3
#define ST_OFF 4
int state = ST_OFF;
int main(void) {
// inicializace ovladace pinu a delay
init();
while (1) {
if (switch1_read() == SWITCH_PRESSED) {
// Jen pokud je stisknuto tlacitko a soucasny stav je vypnuto,
// prejdeme na stav rozsviceni prvni LED, jinak uz nektera LED
// sviti a stavy se meni ve switch.
if ( state == ST_OFF )
state = ST_LED1_ON;
}
else
state = ST_OFF;
switch (state) {
case ST_OFF:
LED_control(false, false, false);
break;
case ST_LED1_ON:
// Bliknout LED1 a prejit na stav dalsi LED2
LED_control(true, false, false);
SYSTICK_delay_ms(BLINK_DELAY);
state = ST_LED2_ON;
break;
case ST_LED2_ON:
LED_control(false, true, false);
SYSTICK_delay_ms(BLINK_DELAY);
state = ST_LED3_ON;
break;
case ST_LED3_ON:
LED_control(false, false, true);
SYSTICK_delay_ms(BLINK_DELAY);
state = ST_LED1_ON;
break;
} // switch
} // while
/* Never leave main */
return 0;
}
//////////////////////////////////////////////////////////////////////////////////
#elif VERSION == 3
// Verze 3
// Odezva je vylepsena tim, ze se nepouziva cekani (busy waiting) ale zjistuje se
// zda uz ubehl potrebny cas - jde o tzv. polling - dotazovani.
// Diky tomu LED zhasne okamzite po uvolneni tlacitka.
// Stavy programu
#define ST_LED1_ON 1
#define ST_LED2_ON 2
#define ST_LED3_ON 3
#define ST_OFF 4
#define ST_LED1_WAIT 5
#define ST_LED2_WAIT 6
#define ST_LED3_WAIT 7
int state = ST_OFF;
int main(void) {
// inicializace ovladace pinu a delay
init();
uint32_t waitStart; // cas, kdy se rozvitila LED
uint32_t currentTime; // aktualni cas, pomocna promenna
while (1) {
if (switch1_read() == SWITCH_PRESSED) {
// Jen pokud je stisknuto tlacitko a soucasny stav je vypnuto,
// prejdeme na stav rozsviceni prvni LED, jinak uz nektera LED
// sviti a stavy se meni ve switch.
if ( state == ST_OFF )
state = ST_LED1_ON;
}
else
state = ST_OFF;
switch (state) {
case ST_OFF:
LED_control(false, false, false);
break;
case ST_LED1_ON:
// Rozsvitit LED, ulozit aktualni cas a prejit do stavu cekani na
// uplynuti casu svitu teto LED.
LED_control(true, false, false);
waitStart = SYSTICK_millis();
state = ST_LED1_WAIT;
break;
case ST_LED1_WAIT:
// Kontrola jestli uz ubehlo dost casu abychom rozsvitili dalsi LED
// a pokud ano, prechod na dalsi stav
currentTime = SYSTICK_millis();
if ( currentTime - waitStart >= BLINK_DELAY )
state = ST_LED2_ON;
break;
case ST_LED2_ON:
LED_control(false, true, false);
waitStart = SYSTICK_millis();
state = ST_LED2_WAIT;
break;
case ST_LED2_WAIT:
currentTime = SYSTICK_millis();
if ( currentTime - waitStart >= BLINK_DELAY )
state = ST_LED3_ON;
break;
case ST_LED3_ON:
LED_control(false, false, true);
waitStart = SYSTICK_millis();
state = ST_LED3_WAIT;
break;
case ST_LED3_WAIT:
currentTime = SYSTICK_millis();
if ( currentTime - waitStart >= BLINK_DELAY )
state = ST_LED1_ON;
break;
} // switch
} // while
/* Never leave main */
return 0;
}
//////////////////////////////////////////////////////////////////////////////////
#elif VERSION == 4
// Verze 4
// Program je vylepsen rozdelenim na jednotlive ulohy - tasky.
// Z pohledu odezvy je chovani stejne jako u verze 3, ale struktura programu je
// prehlednejsi a snadneji by se rozsiroval o dalsi cinnosti.
// Stavy programu
#define ST_LED1_ON 1
#define ST_LED2_ON 2
#define ST_LED3_ON 3
#define ST_OFF 4
#define ST_LED1_WAIT 5
#define ST_LED2_WAIT 6
#define ST_LED3_WAIT 7
// globalni promenna pro stav tlacitka SW1
bool SW1_pressed;
// Promenna state je nove lokalni uvnitr tasku (funkce) pro blikani
// Prototypy funkci
void TaskSwitches(void);
void TaskEffect(void);
void TaskGreenLed(void);
int main(void) {
// inicializace ovladace pinu a delay
init();
while (1) {
TaskSwitches();
TaskEffect();
TaskGreenLed();
} // while
/* Never leave main */
return 0;
}
// Uloha, ktera se stara o obsluhu tlacitek
void TaskSwitches(void)
{
if (switch1_read() == SWITCH_PRESSED)
SW1_pressed = true;
else
SW1_pressed = false;
}
// Uloha, ktera se stara o blikani LED
void TaskEffect(void) {
// Stav totoho tasku.
// Promenna je static, aby si uchovala hodnotu mezi volanimi teto funkce,
// tj. aby nezanikla na konci funkce
static int state = ST_LED1_ON;
static uint32_t waitStart; // cas, kdy se rozvitila LED, musi byt static!
uint32_t currentTime; // aktualni cas, pomocna promenna
// Uloha efekt LED se provadi jen pri stisknutem tlacitku
if (SW1_pressed) {
switch (state) {
case ST_LED1_ON:
// Rozsvitit LED, ulozit aktualni cas a prejit do stavu cekani na
// uplynuti casu svitu teto LED.
LED_control(true, false, false);
waitStart = SYSTICK_millis();
state = ST_LED1_WAIT;
break;
case ST_LED1_WAIT:
// Kontrola jestli uz ubehlo dost casu abychom rozsvitili dalsi LED
// a pokud ano, prechod na dalsi stav
currentTime = SYSTICK_millis();
if (currentTime - waitStart >= BLINK_DELAY)
state = ST_LED2_ON;
break;
case ST_LED2_ON:
LED_control(false, true, false);
waitStart = SYSTICK_millis();
state = ST_LED2_WAIT;
break;
case ST_LED2_WAIT:
currentTime = SYSTICK_millis();
if (currentTime - waitStart >= BLINK_DELAY)
state = ST_LED3_ON;
break;
case ST_LED3_ON:
LED_control(false, false, true);
waitStart = SYSTICK_millis();
state = ST_LED3_WAIT;
break;
case ST_LED3_WAIT:
currentTime = SYSTICK_millis();
if (currentTime - waitStart >= BLINK_DELAY)
state = ST_LED1_ON;
break;
} // switch
} else {
// zhasnout LED pokud neni stisknuto tlacitko
LED_control(false, false, false);
state = ST_LED1_ON; // reset stavu tasku
}
} // TaskEffect
/////////////////////////////////
// Doba svitu/zhasnuti zelene LED
#define GREEN_ON_DELAY 200
#define GREEN_OFF_DELAY 700
// Ukazka dalsiho tasku - blika pri stisknutem tlacitku RGB LED
void TaskGreenLed() {
static enum {
ST_LED_ON,
ST_ON_WAIT,
ST_LED_OFF,
ST_OFF_WAIT
} stav = ST_LED_ON;
static uint32_t startTime;
// uloha se provadi jen pri stisknutem tlacitku
if (SW1_pressed) {
switch (stav) {
case ST_LED_ON:
pinWrite(LED_GREEN, LOW);
startTime = SYSTICK_millis();
stav = ST_ON_WAIT;
break;
case ST_ON_WAIT:
if (SYSTICK_millis() - startTime >= GREEN_ON_DELAY)
stav = ST_LED_OFF;
break;
case ST_LED_OFF:
pinWrite(LED_GREEN, HIGH);
startTime = SYSTICK_millis();
stav = ST_OFF_WAIT;
break;
case ST_OFF_WAIT:
if (SYSTICK_millis() - startTime >= GREEN_OFF_DELAY)
stav = ST_LED_ON;
break;
} // switch
} else {
pinWrite(LED_GREEN, HIGH); // zhasni LED
stav = ST_LED_ON; // resetuj stav LED
}
}
//////////////////////////////////////////////////////////////////////////////////
#endif /* VERSION == 4*/
/////////////////////////////////////////////////////////
// Pomocne funkce spolecne pro vsechny verze
// inicializace
void init()
{
SYSTICK_initialize();
GPIO_Initialize();
pinMode(SW1, INPUT_PULLUP);
pinMode(LED1, OUTPUT);
pinMode(LED2, OUTPUT);
pinMode(LED3, OUTPUT);
pinMode(LED_GREEN, OUTPUT);
pinWrite(LED1, HIGH);
pinWrite(LED2, HIGH);
pinWrite(LED3, HIGH);
pinWrite(LED_GREEN, HIGH);
}
// Ovladani LED - parametr true znamena rozsvitit prislusnou LED, false zhasnout.
void LED_control(bool d1, bool d2, bool d3)
{
pinWrite(LED1, !d1);
pinWrite(LED2, !d2);
pinWrite(LED3, !d3);
}
/*
switch1_read
Cte stav tlacitka SW1 s osetrenim zakmitu.
Vraci SWITCH_NOT_PRESSED pokud tlacitko neni stisknuto,
SWITCH_PRESSED pokud je stisknuto.
Reads and debounces switch SW1 as follows:
1. If switch is not pressed, return SWITCH_NOT_PRESSED.
2. If switch is pressed, wait for about 20 ms (debounce),
then:
if switch is no longer pressed, return SWITCH_NOT_PRESSED.
if switch is still pressed, return SWITCH_PRESSED.
*/
int switch1_read(void)
{
int switch_state = SWITCH_NOT_PRESSED;
if ( pinRead(SW1) == LOW )
{
// tlacitko je stisknuto
// debounce = wait
SYSTICK_delay_ms(50);
// znovu zkontrolovat stav tlacitka
if ( pinRead(SW1) == LOW )
{
switch_state = SWITCH_PRESSED;
}
}
// vratime stav tlacitka
return switch_state;
}

@ -1,72 +1,72 @@
/* Simulacni kod pro simulaci AD prevodniku */
#ifndef SIMUL_ADC_H
#define SIMUL_ADC_H
#include "simul_kl25z.h"
#include <stdint.h>
void AdcValueWrite(unsigned int data);
void AdcStartConversion(unsigned int data);
class ADC_Peripheral {
public:
ADC_Peripheral() : CFG1(&AdcValueWrite), CFG2(&AdcValueWrite), CFG3(&AdcValueWrite),
SC1{ Property<uint32_t>(&AdcStartConversion), Property<uint32_t>(&AdcValueWrite) },
R{ Property<uint32_t>(&AdcValueWrite), Property<uint32_t>(&AdcValueWrite) }
{
mConversionStarted = false;
mCurrentDataIndex = 0;
}
// monitored values
Property<uint32_t> CFG1, CFG2, CFG3;
Property<uint32_t> SC1[2];
Property<uint32_t> R[2];
// not monitored values
uint32_t SC2;
uint32_t SC3;
uint32_t CLP0;
uint32_t CLP1;
uint32_t CLP2;
uint32_t CLP3;
uint32_t CLP4;
uint32_t CLPS;
uint32_t CLM0;
uint32_t CLM1;
uint32_t CLM2;
uint32_t CLM3;
uint32_t CLM4;
uint32_t CLMS;
uint32_t PG;
uint32_t MG;
// helpers
bool mConversionStarted;
int mCurrentDataIndex;
// called when user writes to a register, to update internal state
void UpdateData();
// Test pin on port C is configured as input
bool IsPinConfigValid() {
// clock enabled for port C
if ( (SIM->SCGC5 & SIM_SCGC5_PORTC_MASK) == 0 ) {
printf("Error: Clock for the port of ADC input pin it not enabled.");
return false;
}
// pin function set to ADC
if ( (PORTC->PCR[2] & PORT_PCR_MUX_MASK) != 0 ) {
printf("Error: ADC input pin function not configured for ADC");
return false;
}
return true;
}
};
#endif // SIMUL_ADC_H
/* Simulacni kod pro simulaci AD prevodniku */
#ifndef SIMUL_ADC_H
#define SIMUL_ADC_H
#include "simul_kl25z.h"
#include <stdint.h>
void AdcValueWrite(unsigned int data);
void AdcStartConversion(unsigned int data);
class ADC_Peripheral {
public:
ADC_Peripheral() : CFG1(&AdcValueWrite), CFG2(&AdcValueWrite), CFG3(&AdcValueWrite),
SC1{ Property<uint32_t>(&AdcStartConversion), Property<uint32_t>(&AdcValueWrite) },
R{ Property<uint32_t>(&AdcValueWrite), Property<uint32_t>(&AdcValueWrite) }
{
mConversionStarted = false;
mCurrentDataIndex = 0;
}
// monitored values
Property<uint32_t> CFG1, CFG2, CFG3;
Property<uint32_t> SC1[2];
Property<uint32_t> R[2];
// not monitored values
uint32_t SC2;
uint32_t SC3;
uint32_t CLP0;
uint32_t CLP1;
uint32_t CLP2;
uint32_t CLP3;
uint32_t CLP4;
uint32_t CLPS;
uint32_t CLM0;
uint32_t CLM1;
uint32_t CLM2;
uint32_t CLM3;
uint32_t CLM4;
uint32_t CLMS;
uint32_t PG;
uint32_t MG;
// helpers
bool mConversionStarted;
int mCurrentDataIndex;
// called when user writes to a register, to update internal state
void UpdateData();
// Test pin on port C is configured as input
bool IsPinConfigValid() {
// clock enabled for port C
if ( (SIM->SCGC5 & SIM_SCGC5_PORTC_MASK) == 0 ) {
printf("Error: Clock for the port of ADC input pin it not enabled.");
return false;
}
// pin function set to ADC
if ( (PORTC->PCR[2] & PORT_PCR_MUX_MASK) != 0 ) {
printf("Error: ADC input pin function not configured for ADC");
return false;
}
return true;
}
};
#endif // SIMUL_ADC_H

@ -1,535 +1,535 @@
/* Simple simulator for Kinetis KL25Z MCU
* Main implementation file.
* Add this file to your project to be build with your sources.
* Requires C++11 support.
*/
#include "simul_kl25z.h"
#include <iostream>
#include <thread>
#include <mutex>
#include <time.h>
#include <stdint.h>
#include <stdbool.h>
#include <stdio.h>
#include <stdlib.h>
#include <conio.h>
////////////////////////////////////////////////////////////////
// Delay with time in milliseconds
void delay(unsigned int mseconds)
{
clock_t goal = mseconds + clock();
while (goal > clock() ) ;
}
// simple delay with some default value
void delay(void)
{
delay(500);
}
// clear screen
void clear(){
#if defined(__linux__) || defined(__unix__) || defined(__APPLE__)
system("clear");
#endif
#if defined(_WIN32) || defined(_WIN64)
system("cls");
#endif
}
// Buffers used by drivers to print to screen
char gLEDsBuffer[256];
char gLCDBuffer[256];
// mutex to protect access to screen
std::mutex gScreenMutex;
void WriteLEDsToScreen(); // in drv_gpio
void WriteLCDToScreen(); // in drv_lcd
void WriteLEDsToBuffer(char* buffer); // in drv_gpio
void WriteLCDToBuffer(char* buffer); // in drv_lcd
/////////////////////////////////////////////////////
static SIM_Peripheral sim_peripheral_object;
SIM_Peripheral* SIM = &sim_peripheral_object;
// Port C module (needed for ADC input on port C)
static PORT_Peripheral portc_peripheral_object;
PORT_Peripheral* PORTC = &portc_peripheral_object;
//////////////////////////////////////////////////
// GPIO driver code
static bool gInitialized;
static FRDM_kit_pinmode gPinModes[LAST_PIN];
static uint8_t gPinOutputValues[LAST_PIN];
static const char* gLedNames[] = {"LD1", "LD2", "LD3", "RED", "GREEN", "BLUE" };
// Status of input pins
constexpr int MAX_SWITCHES = 4;
static bool gSwitchInputs[MAX_SWITCHES];
// mutex to protect the switch input variable
std::mutex gMutexSwitches;
// Background thread to process key press
void task1(std::string msg)
{
(void)msg;
while(1) {
char c = getch();
gMutexSwitches.lock();
switch(c) {
case '1':
// toggle input state when key is pressed
gSwitchInputs[0] = !gSwitchInputs[0];
break;
case '2':
gSwitchInputs[1] = !gSwitchInputs[1];
break;
case '3':
gSwitchInputs[2] = !gSwitchInputs[2];
break;
case '4':
gSwitchInputs[3] = !gSwitchInputs[3];
break;
}
gMutexSwitches.unlock();
} // while 1
}
// Thread to process screen refresh....
void taskScreen() {
while(1) {
clear();
printf("KL25Z Simulation, version %d.%d\n\n", VERSION_MAJOR, VERSION_MINOR);
gScreenMutex.lock();
printf(gLEDsBuffer);
printf(gLCDBuffer);
gScreenMutex.unlock();
// print status of switches
printf("\n\n%5c%5c%5c%5c",
gSwitchInputs[0] ? 'X' : '-',
gSwitchInputs[1] ? 'X' : '-',
gSwitchInputs[2] ? 'X' : '-',
gSwitchInputs[3] ? 'X' : '-' );
printf("\n SW1 SW2 SW3 SW4\n");
delay(80);
}
}
// This will create thread when the program starts...
std::thread t1(task1, "Hello");
std::thread t2(taskScreen);
/* Initialize the gpio driver for LEDs and push buttons. */
void GPIO_Initialize(void)
{
gInitialized = true;
for ( int i=0; i<MAX_SWITCHES; i++ )
gSwitchInputs[i] = false;
}
/* Configure given pin to behave as input or output. */
void pinMode(FRDM_kit_pin pin, FRDM_kit_pinmode mode )
{
if ( !gInitialized ) {
printf("BSOD - Default ISR :) \nGPIO driver not initialized!\n");
while (1) ;
}
switch (pin)
{
/* All LEDs are on port B */
case LD1:
case LD2:
case LD3:
case LED_RED:
case LED_GREEN:
case LED_BLUE:
case SW1:
case SW2:
case SW3:
case SW4:
gPinModes[(int)pin] = mode;
break;
default:
printf("Warning: Invalid pin %d in pinMode.\n", pin);
//while (1) ; /* Error: invalid pin! */
}
}
/* Set value for given pin. The pin must be configured as output with pinMode first! */
void pinWrite(FRDM_kit_pin pin, uint8_t value )
{
if ( !gInitialized ) {
printf("BSOD - Default ISR :) \nGPIO driver not initialized!\n");
while (1) ;
}
switch(pin)
{
/* All LEDs are on port B */
case LD1:
case LD2:
case LD3:
case LED_RED:
case LED_GREEN:
case LED_BLUE:
case SW1:
case SW2:
case SW3:
case SW4:
if ( gPinModes[(int)pin] == OUTPUT ) {
// update screen
gPinOutputValues[(int)pin] = value;
WriteLEDsToBuffer(gLEDsBuffer);
//WriteLEDsToScreen();
} else {
// do nothing
printf("Warning: Pin %d is not an output.\n", pin);
}
break;
default:
printf("Warning: Invalid pin %d in pinWrite.\n", pin);
//while(1) ; /* Error: invalid pin! */
}
}
/* Read value on given pin. The pin must be configured as input with pinMode first! */
uint8_t pinRead(FRDM_kit_pin pin)
{
if ( !gInitialized ) {
printf("BSOD - Default ISR :) \nGPIO driver not initialized!\n");
while (1) ;
}
uint8_t result = LOW;
if ( gPinModes[(int)pin] == INPUT || gPinModes[(int)pin] == INPUT_PULLUP ) {
// Background thread reads the keyboard and sets gSwitchInputs
gMutexSwitches.lock();
switch(pin)
{
case SW1:
result = (gSwitchInputs[0]) ? LOW : HIGH;
break;
case SW2:
result = (gSwitchInputs[1]) ? LOW : HIGH;
break;
case SW3:
result = (gSwitchInputs[2]) ? LOW : HIGH;
break;
case SW4:
result = (gSwitchInputs[3]) ? LOW : HIGH;
break;
default:
printf("Warning: Pin %d not supported for input in simulator.\n", pin);
break;
}
gMutexSwitches.unlock();
} else {
printf("Warning: Pin %d is not an input.\n", pin);
}
return result;
}
// Helpers to print LED state to console
#define GET_LED_SYMBOL(a) ((a == 0) ? 'X' : '-')
#define PRINT_LED_FROM_MODE(mode, value) ((mode == OUTPUT) ? GET_LED_SYMBOL(value) : '-')
void WriteLEDsToBuffer(char* buffer) {
char buff[512];
gScreenMutex.lock();
buffer[0] = '\0';
sprintf(buff, "%5c%5c%5c\t\t%3c%3c%3c\n",
PRINT_LED_FROM_MODE(gPinModes[0], gPinOutputValues[0]),
PRINT_LED_FROM_MODE(gPinModes[1], gPinOutputValues[1]),
PRINT_LED_FROM_MODE(gPinModes[2], gPinOutputValues[2]),
PRINT_LED_FROM_MODE(gPinModes[3], gPinOutputValues[3]),
PRINT_LED_FROM_MODE(gPinModes[4], gPinOutputValues[4]),
PRINT_LED_FROM_MODE(gPinModes[5], gPinOutputValues[5])
);
strcat(buffer, buff);
sprintf(buff, "%5s%5s%5s\t\t%s/%s/%s\n", gLedNames[0], gLedNames[1], gLedNames[2],
gLedNames[3], gLedNames[4], gLedNames[5]);
strcat(buffer, buff);
gScreenMutex.unlock();
}
void WriteLEDsToScreen() {
printf("%5c%5c%5c\t\t%3c%3c%3c\n",
PRINT_LED_FROM_MODE(gPinModes[0], gPinOutputValues[0]),
PRINT_LED_FROM_MODE(gPinModes[1], gPinOutputValues[1]),
PRINT_LED_FROM_MODE(gPinModes[2], gPinOutputValues[2]),
PRINT_LED_FROM_MODE(gPinModes[3], gPinOutputValues[3]),
PRINT_LED_FROM_MODE(gPinModes[4], gPinOutputValues[4]),
PRINT_LED_FROM_MODE(gPinModes[5], gPinOutputValues[5])
);
printf("%5s%5s%5s\t\t%s/%s/%s\n", gLedNames[0], gLedNames[1], gLedNames[2],
gLedNames[3], gLedNames[4], gLedNames[5]);
}
// end GPIO driver code
//////////////////////////////////////////////////
//////////////////////////////////////////////////
// ADC code
// Simulated ADC values
static uint16_t adc_values[] = { 10, 30, 60, 100, 110, 120, 130, 140, 150, 170, 200, 230, 255,
230, 200, 170, 150, 130, 100, 60, 30, 0, 0 };
static int MAX_ADC_VALUES = sizeof(adc_values)/sizeof(uint16_t);
// Define the ADC0 module for use in user program
static ADC_Peripheral adc_module_object;
ADC_Peripheral* ADC0 = &adc_module_object;
void AdcValueWrite(unsigned int data) {
(void)data; // just to remove unused param warning
ADC0->UpdateData();
}
// handler for write to CFG1[0] only to indicate we have valid settings
void AdcStartConversion(unsigned int data) {
//std::cout << "Start conversion " << data << '\n';
// For our pin - channel 11 check the pin config, for other channels just
// skip test and simulated that conversion completed. This is needed for
// calibration etc.
int channel = (data & ADC_SC1_ADCH_MASK) >> ADC_SC1_ADCH_SHIFT;
if ( channel == 11 ) {
if ( ADC0->IsPinConfigValid() )
ADC0->mConversionStarted = true;
} else {
// conversion must be started for any other channel, also for calibration
ADC0->mConversionStarted = true;
}
ADC0->UpdateData();
}
void ADC_Peripheral::UpdateData()
{
// test if clock is enabled
if ( (SIM->SCGC6 & SIM_SCGC6_ADC0_MASK) == 0 ) {
printf("BSOD - Default ISR :) \nADC - clock not enabled!\n");
while (1) ;
}
if ( mConversionStarted ) {
// get next value for ADC if channel is 11
if ( (SC1[0] & 0x1F) == ADC_SC1_ADCH(11) ) {
// rozliseni
int mode = (CFG1 & ADC_CFG1_MODE_MASK) >> ADC_CFG1_MODE_SHIFT;
int shift = 0;
switch ( mode) {
case 0: // 8 bit
shift = 0;
PRINT_DGMSG("ADC resolution is 8 bit.");
break;
case 1: // 12 bit
shift = 4;
PRINT_DGMSG("ADC resolution is 12 bit.");
break;
case 2: // 10 bit
shift = 2;
PRINT_DGMSG("ADC resolution is 10 bit.");
break;
case 3: // 16 bit
shift = 8;
PRINT_DGMSG("ADC resolution is 16 bit.");
break;
}
R[0].data = adc_values[mCurrentDataIndex++] << shift;
if ( mCurrentDataIndex >= MAX_ADC_VALUES )
mCurrentDataIndex = 0;
}
SC1[0].data |= ADC_SC1_COCO_MASK; // set conversion complete flag
mConversionStarted = false;
}
}
// end ADC driver code
//////////////////////////////////////////////////
////////////////////////////////////////////////////////////
// LCD driver code
static bool gLcdInitialized;
static char gDispData[4][21];
static int gRow, gColumn;
void WriteLCDToScreen() {
//clear();
printf("\n\nLCD-----------------\n");
//printf("123456789ABCDEFGHIJK\n");
for ( int i=0; i<4; i++ )
printf("%s\n", gDispData[i]);
printf("---------------------\n");
}
void WriteLCDToBuffer(char* buffer) {
//clear();
char buff[512];
gScreenMutex.lock();
buffer[0] = '\0';
sprintf(buff, "\n\nLCD-----------------\n");
strcat(buffer, buff);
//printf("123456789ABCDEFGHIJK\n");
for ( int i=0; i<4; i++ ) {
sprintf(buff, "%s\n", gDispData[i]);
strcat(buffer, buff);
}
sprintf(buff, "---------------------\n");
strcat(buffer, buff);
gScreenMutex.unlock();
}
/* initialize display */
void LCD_initialize(void)
{
gLcdInitialized = true;
gRow = 0; // 1 - 4
gColumn = 0; // 1 - 20
}
void LCD_set_cursor(uint8_t line, uint8_t column) {
if ( line > 0 && line < 5)
gRow = line - 1;
if ( column > 0 && column < 21 )
gColumn = column - 1;
}
void LCD_putch(char c) {
if ( !gLcdInitialized ) {
printf("BSOD - Default ISR :) \nLCD driver not initialized!\n");
while (1) ;
}
if ( gColumn > 19 ) {
printf("Warning: LCD writing beyond last column!\n");
return;
}
if ( gRow > 3 ) {
printf("Warning: LCD writing below last line!\n");
return;
}
gDispData[gRow][gColumn] = c;
gColumn++;
if ( gColumn > 19 )
gColumn = 0;
// update screen
WriteLCDToBuffer(gLCDBuffer);
}
void LCD_puts(const char* str) {
if ( !gLcdInitialized ) {
printf("BSOD - Default ISR :) \nLCD driver not initialized!\n");
while (1) ;
}
char* p = gDispData[gRow];
int len = 20 - gColumn;
if ( len > 0) {
strncpy(p + gColumn, str, len);
gDispData[gRow][gColumn+len] = '\0';
gColumn += strlen(str);
} else {
printf("Warning: LCD writing beyond last column!\n");
return;
}
WriteLCDToBuffer(gLCDBuffer);
}
void LCD_clear(void) {
if ( !gLcdInitialized ) {
printf("BSOD - Default ISR :) \nLCD driver not initialized!\n");
while (1) ;
}
gRow = 0; // 1 - 4
gColumn = 0;
for ( int i = 0; i<4; i++ ) {
for ( int j = 0; j<20; j++) {
gDispData[i][j] = ' ';
}
}
WriteLCDToBuffer(gLCDBuffer);
}
void LCD_backlight_on(void) {
printf("Warning: LCD_backlight_on not implemented.\n");
}
void LCD_backlight_off(void) {
printf("Warning: LCD_backlight_off not implemented.\n");
}
// end LCD driver code
//////////////////////////////////////////////////////////////////
//////////////////////////////////////////////////////////////////
// SYSTICK driver code
// Simulate systick driver functions
// Functions implemented in simul_kl25z.cpp
void SYSTICK_initialize(void)
{
// do nothing
}
uint32_t SYSTICK_millis(void)
{
return (uint32_t)clock();
}
uint32_t SYSTICK_micros(void)
{
return SYSTICK_millis() * 1000;
}
void SYSTICK_delay_ms(uint32_t millis)
{
delay(millis);
}
// end SYSTICK driver code
//////////////////////////////////////////////////////////////////
/* Simple simulator for Kinetis KL25Z MCU
* Main implementation file.
* Add this file to your project to be build with your sources.
* Requires C++11 support.
*/
#include "simul_kl25z.h"
#include <iostream>
#include <thread>
#include <mutex>
#include <time.h>
#include <stdint.h>
#include <stdbool.h>
#include <stdio.h>
#include <stdlib.h>
#include <conio.h>
////////////////////////////////////////////////////////////////
// Delay with time in milliseconds
void delay(unsigned int mseconds)
{
clock_t goal = mseconds + clock();
while (goal > clock() ) ;
}
// simple delay with some default value
void delay(void)
{
delay(500);
}
// clear screen
void clear(){
#if defined(__linux__) || defined(__unix__) || defined(__APPLE__)
system("clear");
#endif
#if defined(_WIN32) || defined(_WIN64)
system("cls");
#endif
}
// Buffers used by drivers to print to screen
char gLEDsBuffer[256];
char gLCDBuffer[256];
// mutex to protect access to screen
std::mutex gScreenMutex;
void WriteLEDsToScreen(); // in drv_gpio
void WriteLCDToScreen(); // in drv_lcd
void WriteLEDsToBuffer(char* buffer); // in drv_gpio
void WriteLCDToBuffer(char* buffer); // in drv_lcd
/////////////////////////////////////////////////////
static SIM_Peripheral sim_peripheral_object;
SIM_Peripheral* SIM = &sim_peripheral_object;
// Port C module (needed for ADC input on port C)
static PORT_Peripheral portc_peripheral_object;
PORT_Peripheral* PORTC = &portc_peripheral_object;
//////////////////////////////////////////////////
// GPIO driver code
static bool gInitialized;
static FRDM_kit_pinmode gPinModes[LAST_PIN];
static uint8_t gPinOutputValues[LAST_PIN];
static const char* gLedNames[] = {"LD1", "LD2", "LD3", "RED", "GREEN", "BLUE" };
// Status of input pins
constexpr int MAX_SWITCHES = 4;
static bool gSwitchInputs[MAX_SWITCHES];
// mutex to protect the switch input variable
std::mutex gMutexSwitches;
// Background thread to process key press
void task1(std::string msg)
{
(void)msg;
while(1) {
char c = getch();
gMutexSwitches.lock();
switch(c) {
case '1':
// toggle input state when key is pressed
gSwitchInputs[0] = !gSwitchInputs[0];
break;
case '2':
gSwitchInputs[1] = !gSwitchInputs[1];
break;
case '3':
gSwitchInputs[2] = !gSwitchInputs[2];
break;
case '4':
gSwitchInputs[3] = !gSwitchInputs[3];
break;
}
gMutexSwitches.unlock();
} // while 1
}
// Thread to process screen refresh....
void taskScreen() {
while(1) {
clear();
printf("KL25Z Simulation, version %d.%d\n\n", VERSION_MAJOR, VERSION_MINOR);
gScreenMutex.lock();
printf(gLEDsBuffer);
printf(gLCDBuffer);
gScreenMutex.unlock();
// print status of switches
printf("\n\n%5c%5c%5c%5c",
gSwitchInputs[0] ? 'X' : '-',
gSwitchInputs[1] ? 'X' : '-',
gSwitchInputs[2] ? 'X' : '-',
gSwitchInputs[3] ? 'X' : '-' );
printf("\n SW1 SW2 SW3 SW4\n");
delay(80);
}
}
// This will create thread when the program starts...
std::thread t1(task1, "Hello");
std::thread t2(taskScreen);
/* Initialize the gpio driver for LEDs and push buttons. */
void GPIO_Initialize(void)
{
gInitialized = true;
for ( int i=0; i<MAX_SWITCHES; i++ )
gSwitchInputs[i] = false;
}
/* Configure given pin to behave as input or output. */
void pinMode(FRDM_kit_pin pin, FRDM_kit_pinmode mode )
{
if ( !gInitialized ) {
printf("BSOD - Default ISR :) \nGPIO driver not initialized!\n");
while (1) ;
}
switch (pin)
{
/* All LEDs are on port B */
case LD1:
case LD2:
case LD3:
case LED_RED:
case LED_GREEN:
case LED_BLUE:
case SW1:
case SW2:
case SW3:
case SW4:
gPinModes[(int)pin] = mode;
break;
default:
printf("Warning: Invalid pin %d in pinMode.\n", pin);
//while (1) ; /* Error: invalid pin! */
}
}
/* Set value for given pin. The pin must be configured as output with pinMode first! */
void pinWrite(FRDM_kit_pin pin, uint8_t value )
{
if ( !gInitialized ) {
printf("BSOD - Default ISR :) \nGPIO driver not initialized!\n");
while (1) ;
}
switch(pin)
{
/* All LEDs are on port B */
case LD1:
case LD2:
case LD3:
case LED_RED:
case LED_GREEN:
case LED_BLUE:
case SW1:
case SW2:
case SW3:
case SW4:
if ( gPinModes[(int)pin] == OUTPUT ) {
// update screen
gPinOutputValues[(int)pin] = value;
WriteLEDsToBuffer(gLEDsBuffer);
//WriteLEDsToScreen();
} else {
// do nothing
printf("Warning: Pin %d is not an output.\n", pin);
}
break;
default:
printf("Warning: Invalid pin %d in pinWrite.\n", pin);
//while(1) ; /* Error: invalid pin! */
}
}
/* Read value on given pin. The pin must be configured as input with pinMode first! */
uint8_t pinRead(FRDM_kit_pin pin)
{
if ( !gInitialized ) {
printf("BSOD - Default ISR :) \nGPIO driver not initialized!\n");
while (1) ;
}
uint8_t result = LOW;
if ( gPinModes[(int)pin] == INPUT || gPinModes[(int)pin] == INPUT_PULLUP ) {
// Background thread reads the keyboard and sets gSwitchInputs
gMutexSwitches.lock();
switch(pin)
{
case SW1:
result = (gSwitchInputs[0]) ? LOW : HIGH;
break;
case SW2:
result = (gSwitchInputs[1]) ? LOW : HIGH;
break;
case SW3:
result = (gSwitchInputs[2]) ? LOW : HIGH;
break;
case SW4:
result = (gSwitchInputs[3]) ? LOW : HIGH;
break;
default:
printf("Warning: Pin %d not supported for input in simulator.\n", pin);
break;
}
gMutexSwitches.unlock();
} else {
printf("Warning: Pin %d is not an input.\n", pin);
}
return result;
}
// Helpers to print LED state to console
#define GET_LED_SYMBOL(a) ((a == 0) ? 'X' : '-')
#define PRINT_LED_FROM_MODE(mode, value) ((mode == OUTPUT) ? GET_LED_SYMBOL(value) : '-')
void WriteLEDsToBuffer(char* buffer) {
char buff[512];
gScreenMutex.lock();
buffer[0] = '\0';
sprintf(buff, "%5c%5c%5c\t\t%3c%3c%3c\n",
PRINT_LED_FROM_MODE(gPinModes[0], gPinOutputValues[0]),
PRINT_LED_FROM_MODE(gPinModes[1], gPinOutputValues[1]),
PRINT_LED_FROM_MODE(gPinModes[2], gPinOutputValues[2]),
PRINT_LED_FROM_MODE(gPinModes[3], gPinOutputValues[3]),
PRINT_LED_FROM_MODE(gPinModes[4], gPinOutputValues[4]),
PRINT_LED_FROM_MODE(gPinModes[5], gPinOutputValues[5])
);
strcat(buffer, buff);
sprintf(buff, "%5s%5s%5s\t\t%s/%s/%s\n", gLedNames[0], gLedNames[1], gLedNames[2],
gLedNames[3], gLedNames[4], gLedNames[5]);
strcat(buffer, buff);
gScreenMutex.unlock();
}
void WriteLEDsToScreen() {
printf("%5c%5c%5c\t\t%3c%3c%3c\n",
PRINT_LED_FROM_MODE(gPinModes[0], gPinOutputValues[0]),
PRINT_LED_FROM_MODE(gPinModes[1], gPinOutputValues[1]),
PRINT_LED_FROM_MODE(gPinModes[2], gPinOutputValues[2]),
PRINT_LED_FROM_MODE(gPinModes[3], gPinOutputValues[3]),
PRINT_LED_FROM_MODE(gPinModes[4], gPinOutputValues[4]),
PRINT_LED_FROM_MODE(gPinModes[5], gPinOutputValues[5])
);
printf("%5s%5s%5s\t\t%s/%s/%s\n", gLedNames[0], gLedNames[1], gLedNames[2],
gLedNames[3], gLedNames[4], gLedNames[5]);
}
// end GPIO driver code
//////////////////////////////////////////////////
//////////////////////////////////////////////////
// ADC code
// Simulated ADC values
static uint16_t adc_values[] = { 10, 30, 60, 100, 110, 120, 130, 140, 150, 170, 200, 230, 255,
230, 200, 170, 150, 130, 100, 60, 30, 0, 0 };
static int MAX_ADC_VALUES = sizeof(adc_values)/sizeof(uint16_t);
// Define the ADC0 module for use in user program
static ADC_Peripheral adc_module_object;
ADC_Peripheral* ADC0 = &adc_module_object;
void AdcValueWrite(unsigned int data) {
(void)data; // just to remove unused param warning
ADC0->UpdateData();
}
// handler for write to CFG1[0] only to indicate we have valid settings
void AdcStartConversion(unsigned int data) {
//std::cout << "Start conversion " << data << '\n';
// For our pin - channel 11 check the pin config, for other channels just
// skip test and simulated that conversion completed. This is needed for
// calibration etc.
int channel = (data & ADC_SC1_ADCH_MASK) >> ADC_SC1_ADCH_SHIFT;
if ( channel == 11 ) {
if ( ADC0->IsPinConfigValid() )
ADC0->mConversionStarted = true;
} else {
// conversion must be started for any other channel, also for calibration
ADC0->mConversionStarted = true;
}
ADC0->UpdateData();
}
void ADC_Peripheral::UpdateData()
{
// test if clock is enabled
if ( (SIM->SCGC6 & SIM_SCGC6_ADC0_MASK) == 0 ) {
printf("BSOD - Default ISR :) \nADC - clock not enabled!\n");
while (1) ;
}
if ( mConversionStarted ) {
// get next value for ADC if channel is 11
if ( (SC1[0] & 0x1F) == ADC_SC1_ADCH(11) ) {
// rozliseni
int mode = (CFG1 & ADC_CFG1_MODE_MASK) >> ADC_CFG1_MODE_SHIFT;
int shift = 0;
switch ( mode) {
case 0: // 8 bit
shift = 0;
PRINT_DGMSG("ADC resolution is 8 bit.");
break;
case 1: // 12 bit
shift = 4;
PRINT_DGMSG("ADC resolution is 12 bit.");
break;
case 2: // 10 bit
shift = 2;
PRINT_DGMSG("ADC resolution is 10 bit.");
break;
case 3: // 16 bit
shift = 8;
PRINT_DGMSG("ADC resolution is 16 bit.");
break;
}
R[0].data = adc_values[mCurrentDataIndex++] << shift;
if ( mCurrentDataIndex >= MAX_ADC_VALUES )
mCurrentDataIndex = 0;
}
SC1[0].data |= ADC_SC1_COCO_MASK; // set conversion complete flag
mConversionStarted = false;
}
}
// end ADC driver code
//////////////////////////////////////////////////
////////////////////////////////////////////////////////////
// LCD driver code
static bool gLcdInitialized;
static char gDispData[4][21];
static int gRow, gColumn;
void WriteLCDToScreen() {
//clear();
printf("\n\nLCD-----------------\n");
//printf("123456789ABCDEFGHIJK\n");
for ( int i=0; i<4; i++ )
printf("%s\n", gDispData[i]);
printf("---------------------\n");
}
void WriteLCDToBuffer(char* buffer) {
//clear();
char buff[512];
gScreenMutex.lock();
buffer[0] = '\0';
sprintf(buff, "\n\nLCD-----------------\n");
strcat(buffer, buff);
//printf("123456789ABCDEFGHIJK\n");
for ( int i=0; i<4; i++ ) {
sprintf(buff, "%s\n", gDispData[i]);
strcat(buffer, buff);
}
sprintf(buff, "---------------------\n");
strcat(buffer, buff);
gScreenMutex.unlock();
}
/* initialize display */
void LCD_initialize(void)
{
gLcdInitialized = true;
gRow = 0; // 1 - 4
gColumn = 0; // 1 - 20
}
void LCD_set_cursor(uint8_t line, uint8_t column) {
if ( line > 0 && line < 5)
gRow = line - 1;
if ( column > 0 && column < 21 )
gColumn = column - 1;
}
void LCD_putch(char c) {
if ( !gLcdInitialized ) {
printf("BSOD - Default ISR :) \nLCD driver not initialized!\n");
while (1) ;
}
if ( gColumn > 19 ) {
printf("Warning: LCD writing beyond last column!\n");
return;
}
if ( gRow > 3 ) {
printf("Warning: LCD writing below last line!\n");
return;
}
gDispData[gRow][gColumn] = c;
gColumn++;
if ( gColumn > 19 )
gColumn = 0;
// update screen
WriteLCDToBuffer(gLCDBuffer);
}
void LCD_puts(const char* str) {
if ( !gLcdInitialized ) {
printf("BSOD - Default ISR :) \nLCD driver not initialized!\n");
while (1) ;
}
char* p = gDispData[gRow];
int len = 20 - gColumn;
if ( len > 0) {
strncpy(p + gColumn, str, len);
gDispData[gRow][gColumn+len] = '\0';
gColumn += strlen(str);
} else {
printf("Warning: LCD writing beyond last column!\n");
return;
}
WriteLCDToBuffer(gLCDBuffer);
}
void LCD_clear(void) {
if ( !gLcdInitialized ) {
printf("BSOD - Default ISR :) \nLCD driver not initialized!\n");
while (1) ;
}
gRow = 0; // 1 - 4
gColumn = 0;
for ( int i = 0; i<4; i++ ) {
for ( int j = 0; j<20; j++) {
gDispData[i][j] = ' ';
}
}
WriteLCDToBuffer(gLCDBuffer);
}
void LCD_backlight_on(void) {
printf("Warning: LCD_backlight_on not implemented.\n");
}
void LCD_backlight_off(void) {
printf("Warning: LCD_backlight_off not implemented.\n");
}
// end LCD driver code
//////////////////////////////////////////////////////////////////
//////////////////////////////////////////////////////////////////
// SYSTICK driver code
// Simulate systick driver functions
// Functions implemented in simul_kl25z.cpp
void SYSTICK_initialize(void)
{
// do nothing
}
uint32_t SYSTICK_millis(void)
{
return (uint32_t)clock();
}
uint32_t SYSTICK_micros(void)
{
return SYSTICK_millis() * 1000;
}
void SYSTICK_delay_ms(uint32_t millis)
{
delay(millis);
}
// end SYSTICK driver code
//////////////////////////////////////////////////////////////////

@ -1,107 +1,105 @@
/* Simple simulator for Kinetis KL25Z MCU
* Main include file.
* Include just this file in your source.
* Requires C++11 support.
*
* Note: to simulate switch input use pinRead() with SW1 - SW4;
* Keyboard key '1' is SW1, SW2 is key '2' etc.
* Pressing a key toggles the switch On/Off.
* So use '1' and '1' to simulate switch SW1 press and release.
* This is because holding the key down results in the char being sent
* repeatedly to the program - keyboard has autorepeat feature.
*/
#ifndef SIMUL_KL25Z_H
#define SIMUL_KL25Z_H
// Note: Include simulator headers at the end of this file
// because they need definitions provided here...
#include "simul_regs.h"
// Version of the simulator
#define VERSION_MAJOR 0
#define VERSION_MINOR 2
// Enable diagnostic messages
#define VERBOSE_INFO 0
#if VERBOSE_INFO == 1
#define PRINT_DGMSG(a) std::cout << a << std::endl
#else
#define PRINT_DGMSG(a)
#endif
// Global functions
void delay(unsigned int mseconds);
void delay(void);
class SIM_Peripheral;
class PORT_Peripheral;
class ADC_Peripheral;
extern SIM_Peripheral* SIM;
extern PORT_Peripheral* PORTC;
extern ADC_Peripheral* ADC0;
// Universal property with value change handler
// from https://stackoverflow.com/questions/9144819/c-function-calling-when-changing-member-value
#include <functional>
template<typename T>
class Property {
friend class ADC_Peripheral;
public:
Property(std::function<void(T)> callback) : data(), callback(callback) { }
Property& operator=(const T& newvalue) {
data = newvalue;
callback(data);
return *this;
}
Property& operator|=(const T& newvalue) {
data |= newvalue;
callback(data);
return *this;
}
operator T() const {
return data;
}
private:
T data;
std::function<void(T)> callback;
};
// SIM module
class SIM_Peripheral {
public:
uint32_t SCGC5;
uint32_t SCGC6;
};
// Port module
class PORT_Peripheral {
public:
uint32_t PCR[32]; // pin control register
};
// simulate systick driver functions
// Functions implemented in simul_kl25z.cpp
void SYSTICK_initialize(void);
uint32_t SYSTICK_millis(void);
uint32_t SYSTICK_micros(void);
void SYSTICK_delay_ms(uint32_t millis);
// include header for simulated ADC
#include "simul_adc.h"
#include "simul_drv_gpio.h"
#include "simul_drv_lcd.h"
#endif // SIMUL_KL25Z_H
/* Simple simulator for Kinetis KL25Z MCU
* Main include file.
* Include just this file in your source.
* Requires C++11 support.
*
* Note: to simulate switch input use pinRead() with SW1 - SW4;
* Keyboard key '1' is SW1, SW2 is key '2' etc.
* Pressing a key toggles the switch On/Off.
* So use '1' and '1' to simulate switch SW1 press and release.
* This is because holding the key down results in the char being sent
* repeatedly to the program - keyboard has autorepeat feature.
*/
#ifndef SIMUL_KL25Z_H
#define SIMUL_KL25Z_H
// Note: Include simulator headers at the end of this file
// because they need definitions provided here...
#include "simul_regs.h"
// Version of the simulator
#define VERSION_MAJOR 0
#define VERSION_MINOR 2
// Enable diagnostic messages
#define VERBOSE_INFO 0
#if VERBOSE_INFO == 1
#define PRINT_DGMSG(a) std::cout << a << std::endl
#else
#define PRINT_DGMSG(a)
#endif
// Global functions
void delay(unsigned int mseconds);
void delay(void);
class SIM_Peripheral;
class PORT_Peripheral;
class ADC_Peripheral;
extern SIM_Peripheral* SIM;
extern PORT_Peripheral* PORTC;
extern ADC_Peripheral* ADC0;
// Universal property with value change handler
// from https://stackoverflow.com/questions/9144819/c-function-calling-when-changing-member-value
#include <functional>
template<typename T>
class Property {
friend class ADC_Peripheral;
public:
Property(std::function<void(T)> callback) : data(), callback(callback) { }
Property& operator=(const T& newvalue) {
data = newvalue;
callback(data);
return *this;
}
Property& operator|=(const T& newvalue) {
data |= newvalue;
callback(data);
return *this;
}
operator T() const {
return data;
}
private:
T data;
std::function<void(T)> callback;
};
// SIM module
class SIM_Peripheral {
public:
uint32_t SCGC5;
uint32_t SCGC6;
};
// Port module
class PORT_Peripheral {
public:
uint32_t PCR[32]; // pin control register
};
// simulate systick driver functions
// Functions implemented in simul_kl25z.cpp
void SYSTICK_initialize(void);
uint32_t SYSTICK_millis(void);
uint32_t SYSTICK_micros(void);
void SYSTICK_delay_ms(uint32_t millis);
// include header for simulated ADC
#include "simul_adc.h"
#include "simul_drv_gpio.h"
#include "simul_drv_lcd.h"
#endif // SIMUL_KL25Z_H