math-optim/algo/ga/somat3aPopulation.go
leo 74109521b0
All checks were successful
continuous-integration/drone/push Build is passing
ga: implement SOMA T3A algorithm
2023-02-21 23:51:52 +01:00

175 lines
4.4 KiB
Go

// Copyright 2023 wanderer <a_mirre at utb dot cz>
// SPDX-License-Identifier: GPL-3.0-or-later
package ga
import (
"git.dotya.ml/wanderer/math-optim/bench/cec2020"
"golang.org/x/exp/rand"
"gonum.org/v1/gonum/stat/distuv"
)
// PopulationIndividual represents a single population individual.
type SOMAT3APopulationIndividual struct {
CurX DecisionVector
PRTVector []float64
Jumps [][]float64
}
// ChampionIndividual is a representation of the best individual currently
// available in the population.
type SOMAT3AChampionIndividual struct {
X DecisionVector
}
// Population groups population individuals (agents) with metadata about the population.
type SOMAT3APopulation struct {
// Population is a slice of population individuals.
Population []SOMAT3APopulationIndividual
// Champion represents the best individual of the population.
Champion SOMAT3AChampionIndividual
// Problem is the current benchmarking function this population is attempting to optimise.
Problem string
// ProblemFunction is the actual function to optimise.
ProblemFunc func([]float64) float64
// Dimen is the dimensionality of the problem being optimised.
Dimen int
// fes is the current number of function evaluations.
fes int
// Seed is the value used to (re)init population.
Seed uint64
zeroToOneRNG distuv.Uniform
// PRT is the perturbation parameter.
PRT float64
// K is the number of individuals to choose the leader from.
K int
// M denotes how many individuals are picked from the population to form a
// `team` during the organisation phase, can be thought of as "team size".
M int
// N is the number of best individuals in each team selected for actual
// migration.
N int
// Njumps is the fixed number of jumps that each chosen migrating
// individual performs on their way to the leader.
Njumps int
}
// GetIndividual returns a reference to individual at position n.
func (p *SOMAT3APopulation) GetIndividual(n uint) *PopulationIndividual {
return &PopulationIndividual{}
}
// GetBestIdx returns the index of the best population individual.
func (p *SOMAT3APopulation) GetBestIdx() int {
f := p.ProblemFunc
bestIndividual := 0
// the first one is the best one.
bestVal := f(p.Population[0].CurX)
for i, v := range p.Population {
current := f(v.CurX)
if current < bestVal {
bestIndividual = i
}
}
return bestIndividual
}
// GetWorstIdx returns the index of the worst population individual.
func (p *SOMAT3APopulation) GetWorstIdx() int {
f := p.ProblemFunc
worstIndividual := 0
// the first one is the worst one.
worstVal := f(p.Population[0].CurX)
for i, v := range p.Population {
current := f(v.CurX)
if current > worstVal {
worstIndividual = i
}
}
return worstIndividual
}
// Init initialises all individuals to random values.
func (p *SOMAT3APopulation) Init() {
low := cec2020.SearchRange.Min()
high := cec2020.SearchRange.Max()
// zeroToOneRNG := distuv.Uniform{
p.zeroToOneRNG = distuv.Uniform{
Min: 0,
Max: 1,
Src: rand.NewSource(p.Seed),
}
// gaLogger.Printf("population initialisation - popCount: %d, seed: %d\n",
// len(p.Population), p.Seed,
// )
p.PRT = p.getPrt()
// for i,v := range p.Population {
for i := range p.Population {
v := SOMAT3APopulationIndividual{}
v.CurX = make([]float64, p.Dimen)
for j := 0; j < p.Dimen; j++ {
// with current settings, this will always be `low + 0` since
// `high - low = 0`.
v.CurX[j] = low + p.zeroToOneRNG.Rand()*(high-low)
}
v.PRTVector = p.getPrtVector()
v.Jumps = make([][]float64, p.Njumps)
p.Population[i] = v
}
p.Champion = SOMAT3AChampionIndividual{X: p.Population[p.GetBestIdx()].CurX}
}
// Reinit reinitialises all individuals.
func (p *SOMAT3APopulation) Reinit() {
p.Init()
}
// Clear sets all vectors to 0.
func (p *SOMAT3APopulation) Clear() {
if p.Population != nil {
for _, v := range p.Population {
v.CurX = make([]float64, p.Dimen)
}
}
}
// Size returns the number of population individuals.
func (p *SOMAT3APopulation) Size() int {
return len(p.Population)
}
// newPopulation returns a pointer to a new, uninitialised population.
func newSOMAT3APopulation(benchProblem string, np, k, m, n, nj, dimen int) *SOMAT3APopulation {
p := &SOMAT3APopulation{
Problem: benchProblem,
ProblemFunc: cec2020.Functions[benchProblem],
K: k,
M: m,
N: n,
Njumps: nj,
Dimen: dimen,
Population: make([]SOMAT3APopulationIndividual, np),
}
return p
}