math-optim/algo/plot.go
surtur 2bf3a4a767
All checks were successful
continuous-integration/drone/push Build is passing
go: collect and process mean vals
* compute and save mean values of x (e.g. 30) bench runs
* safely save mean vals for all bench-dimens combinations to AlgoMeans
  from goroutines (use mutex to protect shared access)
* rework algo/plot.go to use already computed mean values.

todo: plot mean vals of all algorithms (per benchmark) in a single pic.
2022-07-19 21:56:49 +02:00

234 lines
6.0 KiB
Go

// Copyright 2022 wanderer <a_mirre at utb dot cz>
// SPDX-License-Identifier: GPL-3.0-or-later
package algo
import (
"fmt"
"log"
"strings"
"time"
"git.dotya.ml/wanderer/math-optim/report"
"git.dotya.ml/wanderer/math-optim/stats"
"git.dotya.ml/wanderer/math-optim/util"
"gonum.org/v1/gonum/floats"
"gonum.org/v1/plot"
"gonum.org/v1/plot/plotter"
"gonum.org/v1/plot/plotutil"
"gonum.org/v1/plot/vg"
)
const preferredFontStyle = "Mono"
func plotMeanVals(meanVals []float64, title string, fes int) *plot.Plot {
plotter.DefaultFont.Typeface = preferredFontStyle
plotter.DefaultLineStyle.Width = vg.Points(2.0)
p := plot.New()
p.Title.Text = "Mean - " + title
p.X.Label.Text = "Generations"
p.X.Label.TextStyle.Font.Variant = preferredFontStyle
p.X.Label.TextStyle.Font.Weight = 1 // Medium
p.X.Tick.Label.Font.Variant = preferredFontStyle
p.Y.Label.Text = "CF value"
p.Y.Label.TextStyle.Font.Variant = preferredFontStyle
p.Y.Label.TextStyle.Font.Weight = 1 // Medium
p.Y.Tick.Label.Font.Variant = preferredFontStyle
p.Title.TextStyle.Font.Size = 14.5
p.Title.TextStyle.Font.Variant = "Sans"
p.Title.TextStyle.Font.Weight = 2 // SemiBold
p.Title.Padding = 3 * vg.Millimeter
// mark the end of the X axis with len(meanVals).
p.X.Max = float64(len(meanVals))
p.Y.Min = floats.Min(meanVals)
p.Y.Max = floats.Max(meanVals)
pts := make(plotter.XYs, len(meanVals))
// fill the plotter with datapoints.
for k, res := range meanVals {
pts[k].X = float64(k)
pts[k].Y = res
}
lines := make([]interface{}, 0)
lines = append(lines, pts)
err := plotutil.AddLines(
p,
lines...,
)
if err != nil {
log.Panic(err)
}
return p
}
// violating gocognit 30, TODO(me): still split this up.
// nolint: gocognit
func plotAllDims(algoStats []stats.Stats, fPrefix, fExt string, ch chan report.PicList, chMean chan report.PicList) {
start := time.Now()
picsDir := report.GetPicsDir()
// create picsDir (if not exists), fail on error, no point in going on
// parsing algoStats and computing images if we cannot save them.
if err := util.CreatePath(picsDir); err != nil {
log.Fatalln("went to create picsDir, there was an issue: ", err)
}
pL := report.NewPicList()
pics := make([]report.Pic, 0)
pLMean := report.NewPicList()
picsMean := make([]report.Pic, 0)
// since the algoStats only contains results of a single algo, it's safe to
// set the value like this.
pL.Algo = algoStats[0].Algo
pLMean.Algo = algoStats[0].Algo
pWidth := 13 * vg.Centimeter
pHeight := 13 * vg.Centimeter
plotter.DefaultFont.Typeface = preferredFontStyle
plotter.DefaultLineStyle.Width = vg.Points(1.5)
for _, s := range algoStats {
p := plot.New()
pic := report.NewPic()
p.Title.Text = "D: " + fmt.Sprint(s.Dimens) +
", G: " + fmt.Sprint(s.Generations) +
", I: " + fmt.Sprint(s.Iterations)
// this is latex-rendered.
pic.Caption = strings.ReplaceAll(p.Title.Text, " ", "~")
// since a single stat slice of algoStats only contains results of a
// single bench func, it's safe to set the value like this.
pL.Bench = s.BenchFuncStats[0].BenchName
pLMean.Bench = s.BenchFuncStats[0].BenchName
p.X.Label.Text = "Generations"
p.X.Label.TextStyle.Font.Variant = preferredFontStyle
p.X.Label.TextStyle.Font.Weight = 1 // Medium
p.X.Tick.Label.Font.Variant = preferredFontStyle
p.Y.Label.Text = "CF value"
p.Y.Label.TextStyle.Font.Variant = preferredFontStyle
p.Y.Label.TextStyle.Font.Weight = 1 // Medium
p.Y.Tick.Label.Font.Variant = preferredFontStyle
p.Title.TextStyle.Font.Size = 14.5
p.Title.TextStyle.Font.Variant = "Sans"
p.Title.TextStyle.Font.Weight = 2 // SemiBold
p.Title.Padding = 3 * vg.Millimeter
for _, dim := range s.BenchFuncStats {
// infinite thanks to this SO comment for the interface "hack":
// https://stackoverflow.com/a/44872993
lines := make([]interface{}, 0)
for _, iter := range dim.BenchResults {
// mark the end of the X axis with len(iter.Results).
p.X.Max = float64(len(iter.Results))
if floats.Min(iter.Results) < p.Y.Min {
p.Y.Min = floats.Min(iter.Results)
}
if floats.Max(iter.Results) > p.Y.Max {
p.Y.Max = floats.Max(iter.Results)
}
pts := make(plotter.XYs, len(iter.Results))
// fill the plotter with datapoints.
for k, res := range iter.Results {
pts[k].X = float64(k)
pts[k].Y = res
}
lines = append(lines, pts)
}
err := plotutil.AddLines(
p,
lines...,
)
if err != nil {
// panic (don't panic, I know) instead of a hard exit.
log.Panic(err)
}
filename := picsDir +
fPrefix + "-" +
util.SanitiseFName(s.Algo) + "-" +
util.SanitiseFName(dim.BenchName) + "-" +
fmt.Sprint(s.Dimens) + "D-" +
fmt.Sprint(s.Generations) + "G-" +
fmt.Sprint(len(dim.BenchResults)) + "I"
filenameMean := filename + util.SanitiseFName(" Mean")
// NEVER EVER ATTEMPT TO INITIALISE THIS WITH `pic`!
picMean := report.NewPic()
meanTitle := "D: " + fmt.Sprint(s.Dimens) + ", G: " +
fmt.Sprint(s.Generations) + ", I: " + fmt.Sprint(s.Iterations)
// this is latex-rendered.
picMean.Caption = "Mean - " + strings.ReplaceAll(meanTitle, " ", "~")
// set pic file path (later used in tmpl generation)
pic.FilePath = filename
picMean.FilePath = filenameMean
// get the *mean* plot.
pMean := plotMeanVals(dim.MeanVals, meanTitle, s.Generations)
elapsed := time.Since(start)
info := "saving img to file: " + filename + "(-Mean)" + fExt +
" [generated in " + fmt.Sprint(elapsed) + "]"
if s.Algo == "Random Search" {
printRandomSearch(info)
} else {
printSHC(info)
}
// Save the plot to a file using the above-constructed 'filename'.
if err := p.Save(
pWidth,
pHeight,
filename+fExt,
); err != nil {
panic(err)
}
// save pic.
pics = append(pics, *pic)
// save plot of pMean.
if err := pMean.Save(
pWidth,
pHeight,
filenameMean+fExt,
); err != nil {
panic(err)
}
// save mean pic.
picsMean = append(picsMean, *picMean)
}
}
pL.Pics = pics
pLMean.Pics = picsMean
ch <- *pL
chMean <- *pLMean
}