math-optim/algo/ga/population.go
leo 5e4eee8853
All checks were successful
continuous-integration/drone/push Build is passing
ga/population: idiomaticise init
2023-02-21 22:03:10 +01:00

242 lines
5.9 KiB
Go

// Copyright 2023 wanderer <a_mirre at utb dot cz>
// SPDX-License-Identifier: GPL-3.0-or-later
package ga
import (
"git.dotya.ml/wanderer/math-optim/bench/cec2020"
"golang.org/x/exp/rand"
"gonum.org/v1/gonum/stat/distuv"
)
type (
// DecisionVector is a []float64 abstraction representing the decision vector.
DecisionVector []float64
// FitnessVector is a []float64 abstraction representing the fitness vector.
FitnessVector []float64
// ConstraintVector is a []float64 abstraction representing the constraint vector.
ConstraintVector []float64
)
// PopulationIndividual represents a single population individual.
type PopulationIndividual struct {
CurX DecisionVector
CurF FitnessVector
BestX DecisionVector
BestC ConstraintVector
BestF FitnessVector
}
// ChampionIndividual is a representation of the best individual currently
// available in the population.
type ChampionIndividual struct {
X DecisionVector
// CR float64
// F float64
}
// Population groups population individuals (agents) with metadata about the population.
type Population struct {
// Population is a slice of population individuals.
Population []PopulationIndividual
// Champion represents the best individual of the population.
Champion ChampionIndividual
// Problem is the current benchmarking function this population is attempting to optimise.
Problem string
// ProblemFunction is the actual function to optimise.
ProblemFunc func([]float64) float64
// Dimen is the dimensionality of the problem being optimised.
Dimen int
// Seed is the value used to (re)init population.
Seed uint64
// f is the differential weight (mutation/weighting factor) adapted over time.
f []float64
// cr is the crossover probability constant adapted over time.
cr []float64
// BestF is the best recorded value of the differential weight F.
BestF float64
// BestCR is the best recorded value of the differential weight CR.
BestCR float64
// CurF is the current value of F.
CurF float64
// CurCR is the current value of the differential weight CR.
CurCR float64
}
// GetIndividual returns a reference to individual at position n.
func (p *Population) GetIndividual(n uint) *PopulationIndividual { return &PopulationIndividual{} }
// GetBestIdx returns the index of the best population individual.
func (p *Population) GetBestIdx() int {
f := p.ProblemFunc
bestIndividual := 0
// the first one is the best one.
bestVal := f(p.Population[0].CurX)
for i, v := range p.Population {
current := f(v.CurX)
if current < bestVal {
bestIndividual = i
}
}
return bestIndividual
}
// GetWorstIdx returns the index of the worst population individual.
func (p *Population) GetWorstIdx() int {
f := p.ProblemFunc
worstIndividual := 0
// the first one is the worst one.
worstVal := f(p.Population[0].CurX)
for i, v := range p.Population {
current := f(v.CurX)
if current > worstVal {
worstIndividual = i
}
}
return worstIndividual
}
// Init initialises all individuals to random values.
func (p *Population) Init() {
uniform := distuv.Uniform{
Min: cec2020.SearchRange.Min(),
Max: cec2020.SearchRange.Max(),
}
uniform.Src = rand.NewSource(p.Seed)
// gaLogger.Printf("population initialisation - popCount: %d, seed: %d\n",
// len(p.Population), p.Seed,
// )
for i, v := range p.Population {
v.CurX = make([]float64, p.Dimen)
for j := 0; j < p.Dimen; j++ {
v.CurX[j] = uniform.Rand()
}
p.Population[i] = v
}
p.f = make([]float64, p.Size())
p.cr = make([]float64, p.Size())
p.Champion = ChampionIndividual{X: p.Population[p.GetBestIdx()].CurX}
}
// Reinit reinitialises all individuals.
func (p *Population) Reinit() {
p.Init()
}
// ReinitN reinitialises the individual at position n.
func (p *Population) ReinitN(n uint) {}
// Clear sets all vectors to 0.
func (p *Population) Clear() {
if p.Population != nil {
for _, v := range p.Population {
v.CurX = make([]float64, p.Dimen)
v.CurF = make([]float64, p.Dimen)
v.BestX = make([]float64, p.Dimen)
v.BestC = make([]float64, p.Dimen)
v.BestF = make([]float64, p.Dimen)
}
}
}
func (p *Population) SelectDonors(currentIdx int) []PopulationIndividual {
popCount := p.Size()
idcs := make([]int, 0, popCount-1)
// gather indices.
for k := 0; k < popCount; k++ {
if k != currentIdx {
idcs = append(idcs, k)
}
}
// randomly choose 3 of those idcs.
selectedIdcs := make([]int, 0)
selectedA := false
selectedB := false
selectedC := false
for !selectedA {
candidateA := rand.Intn(len(idcs)) % len(idcs)
if candidateA != currentIdx {
selectedIdcs = append(selectedIdcs, candidateA)
selectedA = true
}
}
for !selectedB {
a := selectedIdcs[0]
candidateB := rand.Intn(len(idcs)) % len(idcs)
if candidateB != currentIdx && candidateB != a {
selectedIdcs = append(selectedIdcs, candidateB)
selectedB = true
}
}
for !selectedC {
a := selectedIdcs[0]
b := selectedIdcs[1]
candidateC := rand.Intn(len(idcs)) % len(idcs)
if candidateC != currentIdx && candidateC != a && candidateC != b {
selectedIdcs = append(selectedIdcs, candidateC)
selectedC = true
}
}
// selected contains the selected population individuals.
selected := make([]PopulationIndividual, 0)
// select individuals for donation.
for _, idx := range selectedIdcs {
for k := 0; k < popCount; k++ {
if k == idx {
selected = append(selected, p.Population[idx])
}
}
}
return selected
}
// MeanVelocity computes the mean current velocity of all individuals in the population.
func (p *Population) MeanVelocity() float64 { return 0.0 }
// Size returns the number of population individuals.
func (p *Population) Size() int {
return len(p.Population)
}
// newPopulation returns a pointer to a new, uninitialised population.
func newPopulation(benchProblem string, np, dimen int) *Population {
p := &Population{
Problem: benchProblem,
ProblemFunc: cec2020.Functions[benchProblem],
Dimen: dimen,
Population: make([]PopulationIndividual, np),
}
return p
}