// Copyright 2023 wanderer // SPDX-License-Identifier: GPL-3.0-or-later package main import ( "flag" "log" "sync" "git.dotya.ml/wanderer/math-optim/algo" "git.dotya.ml/wanderer/math-optim/report" ) var version = "development" var ( doPrint = flag.Bool("printreport", true, "print report.tex to console") generate = flag.Bool("generate", true, "run algos and generate plot pics/statistical tables (anew)") rS = flag.Bool("randomsearch", false, "run Random Search algorithm") sHC = flag.Bool("shc", false, "run Stochastic Hill Climbing algorithm") n100 = flag.Bool("N100", false, "run the \"100 Neighbours\" variant of SHC") // TODO(me): add flag for plot output format: -plotout=(svg,eps,pdf). // run jDE by default. jDE = flag.Bool("jde", true, "run Differential Evolution algorithm with parameter self adaptation") ) func run() { log.Println("starting math-optim version", "'"+version+"'") flag.Parse() if *generate { if !*jDE && !*sHC && !*rS { log.Println("at least one algo needs to be specified, exiting...") return } var wg sync.WaitGroup var m sync.Mutex switch { case *jDE: wg.Add(1) go algo.DojDE(&wg, &m) case *rS: wg.Add(1) go algo.DoRandomSearch(&wg, &m) case *sHC: wg.Add(1) if *n100 { go algo.DoStochasticHillClimbing100Neigh(&wg, &m) } else { go algo.DoStochasticHillClimbing(&wg, &m) } } wg.Wait() // pL, benchCount := algo.PrepComparisonOfMeans(&wg) // report.SaveComparisonOfMeans(*pL, benchCount) report.SaveTexAllPics() report.SaveTexAllTables() } report.SaveAndPrint(*doPrint) log.Println("looks like we're done") log.Println("run an equivalent of `pdflatex -clean -shell-escape -interaction=nonstopmode ./report.tex` to get a pdf") }