Merge branch 'feature-ev' into development
* feature-ev: report/comparisonOfMeans.go: obj init readability algo: rm cec2020 package report/pics.tmpl: increase pic width ga: add pure Differential Evolution algo: rm comment [skip ci] algo: stop printing pic list when comparing means run: handle comparing means for all algos run: plug in SOMA T3A algo: add DoCEC2020SOMAT3A func algo: add PrepCEC2020ComparisonOfMeans+helper func algo: use jDE from the GA package algo: correct a typo [skip ci] ga: improve object/func init readability fix(cec2020): add Schwefel Modified's missing case
This commit is contained in:
commit
d70b01eee6
193
algo/algo.go
193
algo/algo.go
@ -9,20 +9,18 @@ import (
|
||||
"sort"
|
||||
"sync"
|
||||
|
||||
"git.dotya.ml/wanderer/math-optim/algo/cec2020"
|
||||
"git.dotya.ml/wanderer/math-optim/algo/de"
|
||||
"git.dotya.ml/wanderer/math-optim/algo/ga"
|
||||
"git.dotya.ml/wanderer/math-optim/bench"
|
||||
c20 "git.dotya.ml/wanderer/math-optim/bench/cec2020"
|
||||
"git.dotya.ml/wanderer/math-optim/bench/cec2020"
|
||||
"git.dotya.ml/wanderer/math-optim/report"
|
||||
"git.dotya.ml/wanderer/math-optim/stats"
|
||||
)
|
||||
|
||||
// var Algos = []string{"Random Search", "Stochastic Hill Climbing"}
|
||||
|
||||
// mu protects access to meanStats.
|
||||
var mu sync.Mutex
|
||||
|
||||
// mCoMPL protexts access to comparisonOfMeansPicList.
|
||||
// mCoMPL protects access to comparisonOfMeansPicList.
|
||||
var mCoMPL sync.Mutex
|
||||
|
||||
var meanStats = &stats.MeanStats{}
|
||||
@ -146,6 +144,95 @@ func PrepComparisonOfMeans(wg *sync.WaitGroup) (*report.PicList, int) {
|
||||
return pL, benchCount
|
||||
}
|
||||
|
||||
// PrepCEC2020ComparisonOfMeans prepares for comparison means of CEC2020 algos.
|
||||
func PrepCEC2020ComparisonOfMeans(wg *sync.WaitGroup) (*report.PicList, int) {
|
||||
pL := report.NewPicList()
|
||||
meanStats := GetMeanStats()
|
||||
algos := getAlgosFromAlgoMeans(meanStats.AlgoMeans)
|
||||
|
||||
// construct title consisting of names of all involved algorithms.
|
||||
for _, v := range algos {
|
||||
switch pL.Algo {
|
||||
case "":
|
||||
pL.Algo = v
|
||||
default:
|
||||
pL.Algo += " vs " + v
|
||||
}
|
||||
}
|
||||
|
||||
log.Println(`generating "Comparison of Means" plots`)
|
||||
|
||||
algoCount := len(algos)
|
||||
dimLen := len(cec2020.Dimensions)
|
||||
benchCount := len(cec2020.Functions)
|
||||
|
||||
for d := 0; d < dimLen; d++ {
|
||||
// construct comparison for all benchmarking functions.
|
||||
for i := 0; i < benchCount; i++ {
|
||||
dimXAlgoMeanVals := make([]stats.AlgoMeanVals, 0, algoCount)
|
||||
|
||||
for j := 0; j < algoCount; j++ {
|
||||
ms := &stats.AlgoMeanVals{
|
||||
Title: meanStats.AlgoMeans[i+(j*benchCount)].Algo,
|
||||
MeanVals: meanStats.AlgoMeans[i+(j*benchCount)].BenchMeans[d].MeanVals,
|
||||
}
|
||||
|
||||
dimXAlgoMeanVals = append(dimXAlgoMeanVals, *ms)
|
||||
}
|
||||
|
||||
dimens := meanStats.AlgoMeans[i].BenchMeans[d].Dimens
|
||||
iterations := meanStats.AlgoMeans[i].BenchMeans[d].Iterations
|
||||
bench := meanStats.AlgoMeans[i].BenchMeans[d].Bench
|
||||
|
||||
wg.Add(1)
|
||||
|
||||
// construct plots concurrently.
|
||||
go PlotMeanValsMulti(
|
||||
wg, dimens, iterations, bench, "plot-", ".pdf",
|
||||
dimXAlgoMeanVals...,
|
||||
)
|
||||
}
|
||||
}
|
||||
|
||||
// wait for all plotting goroutines.
|
||||
wg.Wait()
|
||||
|
||||
pL.Pics = getComparisonOfMeansPics()
|
||||
|
||||
return pL, dimLen
|
||||
}
|
||||
|
||||
// getAlgosFromAlgoMeans extracts algorithms used from the means list and
|
||||
// returns it as a []string.
|
||||
func getAlgosFromAlgoMeans(s []stats.AlgoBenchMean) []string {
|
||||
algos := make([]string, 0)
|
||||
|
||||
// learn how many algos were processed based on the data.
|
||||
for _, v := range s {
|
||||
// if algos is empty just add the value directly, else determine if
|
||||
// it's already been added or not.
|
||||
if len(algos) > 0 {
|
||||
alreadyadded := false
|
||||
|
||||
for _, algoName := range algos {
|
||||
if algoName == v.Algo {
|
||||
// early bail if already added.
|
||||
alreadyadded = true
|
||||
break
|
||||
}
|
||||
}
|
||||
|
||||
if !alreadyadded {
|
||||
algos = append(algos, v.Algo)
|
||||
}
|
||||
} else {
|
||||
algos = append(algos, v.Algo)
|
||||
}
|
||||
}
|
||||
|
||||
return algos
|
||||
}
|
||||
|
||||
// DoRandomSearch executes a search using the 'Random search' method.
|
||||
func DoRandomSearch(wg *sync.WaitGroup, m *sync.Mutex) {
|
||||
defer wg.Done()
|
||||
@ -418,10 +505,8 @@ func DojDE(wg *sync.WaitGroup, m *sync.Mutex) {
|
||||
func DoCEC2020jDE(wg *sync.WaitGroup, m *sync.Mutex) {
|
||||
defer wg.Done()
|
||||
|
||||
cec2020.LogPrintln("starting")
|
||||
|
||||
// funcCount is the number of bench functions available and tested.
|
||||
funcCount := len(c20.Functions)
|
||||
funcCount := len(cec2020.Functions)
|
||||
// stats for the current algo.
|
||||
algoStats := make([][]stats.Stats, funcCount)
|
||||
// ch serves as a way to get the actual computed output.
|
||||
@ -438,7 +523,7 @@ func DoCEC2020jDE(wg *sync.WaitGroup, m *sync.Mutex) {
|
||||
cr := 0.9
|
||||
|
||||
for i := range algoStats {
|
||||
jDE := cec2020.NewjDE()
|
||||
jDE := ga.NewjDE()
|
||||
|
||||
// params:
|
||||
// Generations, minimum bench iterations, mutation strategy, parameter
|
||||
@ -451,7 +536,7 @@ func DoCEC2020jDE(wg *sync.WaitGroup, m *sync.Mutex) {
|
||||
// 0..17 to choose a mutation strategy,
|
||||
// 0..1 to select a parameter self-adaptation scheme,
|
||||
// np >= 4 as initial population size.
|
||||
jDE.Init(-1, 30, 0, 0, np, f, cr, c20.Dimensions, c20.FuncNames[i], ch, chAlgoMeans)
|
||||
jDE.Init(-1, 30, 0, 0, np, f, cr, cec2020.Dimensions, cec2020.FuncNames[i], ch, chAlgoMeans)
|
||||
|
||||
go jDE.Run()
|
||||
}
|
||||
@ -466,8 +551,8 @@ func DoCEC2020jDE(wg *sync.WaitGroup, m *sync.Mutex) {
|
||||
saveAlgoMeans(*aM)
|
||||
}
|
||||
|
||||
pCh := make(chan report.PicList, funcCount*len(c20.Dimensions))
|
||||
pMeanCh := make(chan report.PicList, funcCount*len(c20.Dimensions))
|
||||
pCh := make(chan report.PicList, funcCount*len(cec2020.Dimensions))
|
||||
pMeanCh := make(chan report.PicList, funcCount*len(cec2020.Dimensions))
|
||||
|
||||
for _, algoStat := range algoStats {
|
||||
go plotAllDims(algoStat, "plot", ".pdf", pCh, pMeanCh)
|
||||
@ -493,3 +578,87 @@ func DoCEC2020jDE(wg *sync.WaitGroup, m *sync.Mutex) {
|
||||
stats.SaveTable(algoName, algoStats)
|
||||
m.Unlock()
|
||||
}
|
||||
|
||||
// DoCEC2020SOMAT3A performs a search using the SOMA T3A method.
|
||||
func DoCEC2020SOMAT3A(wg *sync.WaitGroup, m *sync.Mutex) {
|
||||
defer wg.Done()
|
||||
|
||||
// funcCount is the number of bench functions available and tested.
|
||||
funcCount := len(cec2020.Functions)
|
||||
// stats for the current algo.
|
||||
algoStats := make([][]stats.Stats, funcCount)
|
||||
// ch serves as a way to get the actual computed output.
|
||||
ch := make(chan []stats.Stats, funcCount)
|
||||
chAlgoMeans := make(chan *stats.AlgoBenchMean, funcCount)
|
||||
|
||||
defer close(ch)
|
||||
defer close(chAlgoMeans)
|
||||
|
||||
// somat3a params.
|
||||
np := 50
|
||||
k := 10
|
||||
mSize := 10
|
||||
n := 5
|
||||
njumps := 7
|
||||
|
||||
for i := range algoStats {
|
||||
somat3a := ga.NewSOMAT3A()
|
||||
|
||||
// params:
|
||||
// Generations, minimum bench iterations, initial population size,
|
||||
// leader candidates, migration candidates group size, number of
|
||||
// migrants, number of jumps each migrant performs, dimensions, bench
|
||||
// name and synchronisation channels.
|
||||
//
|
||||
// -1 to disable generation limits,
|
||||
// n > 0 for minimum bench iterations,
|
||||
// np >= k+mSize as initial population size,
|
||||
// k, mSize, n and njumps >= 0.
|
||||
err := somat3a.Init(-1, 30, np, k, mSize, n, njumps,
|
||||
cec2020.Dimensions, cec2020.FuncNames[i],
|
||||
ch, chAlgoMeans,
|
||||
)
|
||||
if err != nil {
|
||||
log.Panicf("Failed to initialise SOMA T3A, error: %q", err)
|
||||
}
|
||||
|
||||
go somat3a.Run()
|
||||
}
|
||||
|
||||
// get results.
|
||||
for i := range algoStats {
|
||||
s := <-ch
|
||||
aM := <-chAlgoMeans
|
||||
|
||||
algoStats[i] = s
|
||||
|
||||
saveAlgoMeans(*aM)
|
||||
}
|
||||
|
||||
pCh := make(chan report.PicList, funcCount*len(cec2020.Dimensions))
|
||||
pMeanCh := make(chan report.PicList, funcCount*len(cec2020.Dimensions))
|
||||
|
||||
for _, algoStat := range algoStats {
|
||||
go plotAllDims(algoStat, "plot", ".pdf", pCh, pMeanCh)
|
||||
}
|
||||
|
||||
pLs := []report.PicList{}
|
||||
pLsMean := []report.PicList{}
|
||||
|
||||
for range algoStats {
|
||||
pL := <-pCh
|
||||
pLMean := <-pMeanCh
|
||||
|
||||
pLs = append(pLs, pL)
|
||||
pLsMean = append(pLsMean, pLMean)
|
||||
}
|
||||
|
||||
algoName := "SOMA T3A"
|
||||
|
||||
// protect access to shared data.
|
||||
m.Lock()
|
||||
report.SavePicsToFile(pLs, pLsMean, algoName)
|
||||
|
||||
stats.SaveTable(algoName, algoStats)
|
||||
m.Unlock()
|
||||
}
|
||||
|
@ -1,5 +0,0 @@
|
||||
// Copyright 2023 wanderer <a_mirre at utb dot cz>
|
||||
// SPDX-License-Identifier: GPL-3.0-or-later
|
||||
|
||||
// Package cec2020 implements algorithms required by CEC2020: jDE and T3A.
|
||||
package cec2020
|
@ -1,500 +0,0 @@
|
||||
// Copyright 2023 wanderer <a_mirre at utb dot cz>
|
||||
// SPDX-License-Identifier: GPL-3.0-or-later
|
||||
|
||||
package cec2020
|
||||
|
||||
import (
|
||||
"sort"
|
||||
"time"
|
||||
|
||||
"golang.org/x/exp/rand"
|
||||
|
||||
"git.dotya.ml/wanderer/math-optim/bench/cec2020"
|
||||
"git.dotya.ml/wanderer/math-optim/stats"
|
||||
"gonum.org/v1/gonum/stat/distuv"
|
||||
)
|
||||
|
||||
// JDE is a holder for the settings of an instance of a self-adapting
|
||||
// differential evolution (jDE) algorithm.
|
||||
type JDE struct {
|
||||
// Generations denotes the number of generations the population evolves
|
||||
// for. Special value -1 disables limiting the number of generations.
|
||||
Generations int
|
||||
// BenchMinIters is the number of iterations the bench function will be re-run (for statistical purposes).
|
||||
BenchMinIters int
|
||||
// Dimensions to solve the problem for.
|
||||
Dimensions []int
|
||||
// F is the initial value of the differential weight (mutation/weighting factor).
|
||||
F float64
|
||||
// CR is the initial value of the crossover probability constant.
|
||||
CR float64
|
||||
// rngF is a random number generator for differential weight (mutation/weighting factor).
|
||||
rngF distuv.Uniform
|
||||
// cr is a random number generator for crossover probability constant adapted over time.
|
||||
rngCR distuv.Uniform
|
||||
// MutationStrategy selects the mutation strategy, i.e. the variant of the
|
||||
// jDE algorithm (0..17), see mutationStrategies.go for more details.
|
||||
MutationStrategy int
|
||||
// AdptScheme is the parameter self-adaptation scheme (0..1).
|
||||
AdptScheme int
|
||||
// NP is the initial population size.
|
||||
NP int
|
||||
// BenchName is a name of the problem to optimise.
|
||||
BenchName string
|
||||
// ch is a channel for writing back computed results.
|
||||
ch chan []stats.Stats
|
||||
// chAlgoMeans is a channel for writing back algo means.
|
||||
chAlgoMeans chan *stats.AlgoBenchMean
|
||||
// initialised denotes the initialisation state of the struct.
|
||||
initialised bool
|
||||
}
|
||||
|
||||
const (
|
||||
// jDEMinNP is the minimum size of the initial population for jDE.
|
||||
// for jDE PaGMO specifies 8.
|
||||
jDEMinNP = 4
|
||||
// fMin is the minimum allowed value of the differential weight.
|
||||
fMin = 0.36
|
||||
// fMax is the maximum allowed value of the differential weight.
|
||||
fMax = 1.0
|
||||
// crMin is the minimum allowed value of the crossover probability constant.
|
||||
crMin = 0.0
|
||||
// crMax is the maximum allowed value of the crossover probability constant.
|
||||
crMax = 1.0
|
||||
|
||||
// tau1 is used in parameter self-adaptation.
|
||||
tau1 = 0.1
|
||||
// tau2 is used in parameter self-adaptation.
|
||||
tau2 = 0.1
|
||||
// fl is used in parameter self-adaptation.
|
||||
fl = 0.1
|
||||
// fu is used in parameter self-adaptation.
|
||||
fu = 0.9
|
||||
)
|
||||
|
||||
// Init initialises the jDE algorithm, performs sanity checks on the inputs.
|
||||
func (j *JDE) Init(generations, benchMinIters, mutStrategy, adptScheme, np int, f, cr float64, dimensions []int, bench string, ch chan []stats.Stats, chAlgoMeans chan *stats.AlgoBenchMean) {
|
||||
if j == nil {
|
||||
cec2020Logger.Fatalln("jDE needs to be initialised before calling RunjDE, exiting...")
|
||||
}
|
||||
|
||||
// check input parameters.
|
||||
switch {
|
||||
case generations == 0:
|
||||
cec2020Logger.Fatalln("Generations cannot be 0, got", generations)
|
||||
|
||||
case generations == -1:
|
||||
cec2020Logger.Println("Generations is '-1', disabling generation limits..")
|
||||
|
||||
case benchMinIters < 1:
|
||||
cec2020Logger.Fatalln("Minimum bench iterations cannot be less than 1, got:", benchMinIters)
|
||||
|
||||
case mutStrategy < 0 || mutStrategy > 17:
|
||||
cec2020Logger.Fatalln("Mutation strategy needs to be from the interval <0; 17>, got", mutStrategy)
|
||||
|
||||
case adptScheme < 0 || adptScheme > 1:
|
||||
cec2020Logger.Fatalln("Parameter self-adaptation scheme needs to be from the interval <0; 1>, got", adptScheme)
|
||||
|
||||
case np < jDEMinNP:
|
||||
cec2020Logger.Fatalf("NP cannot be less than %d, got: %d\n.", jDEMinNP, np)
|
||||
|
||||
case f < fMin || f > fMax:
|
||||
cec2020Logger.Fatalf("F needs to be from the interval <%f;%f>, got: %f\n.", fMin, fMax, f)
|
||||
|
||||
case cr < crMin || cr > crMax:
|
||||
cec2020Logger.Fatalf("CR needs to be from the interval <%f;>%f, got: %f\n.", crMin, crMax, cr)
|
||||
|
||||
case len(dimensions) == 0:
|
||||
cec2020Logger.Fatalf("Dimensions cannot be empty, got: %+v\n", dimensions)
|
||||
|
||||
case bench == "":
|
||||
cec2020Logger.Fatalln("Bench cannot be empty, got:", bench)
|
||||
}
|
||||
|
||||
j.Generations = generations
|
||||
j.BenchMinIters = benchMinIters
|
||||
j.MutationStrategy = mutStrategy
|
||||
j.AdptScheme = adptScheme
|
||||
j.NP = np
|
||||
j.F = f
|
||||
j.CR = cr
|
||||
|
||||
rngsrc := rand.NewSource(uint64(rand.Int63()))
|
||||
|
||||
j.rngF = distuv.Uniform{Min: fMin, Max: fMax, Src: rngsrc}
|
||||
j.rngCR = distuv.Uniform{Min: crMin, Max: crMax, Src: rngsrc}
|
||||
|
||||
j.Dimensions = dimensions
|
||||
j.BenchName = bench
|
||||
j.ch = ch
|
||||
j.chAlgoMeans = chAlgoMeans
|
||||
|
||||
j.initialised = true
|
||||
|
||||
cec2020Logger.Printf("jDE init done, jDE:%+v", j)
|
||||
}
|
||||
|
||||
// InitAndRun initialises the jDE algorithm, performs sanity checks on the
|
||||
// inputs and calls the Run method.
|
||||
func (j *JDE) InitAndRun(generations, benchMinIters, mutStrategy, adptScheme, np int, f, cr float64, dimensions []int, bench string, ch chan []stats.Stats, chAlgoMeans chan *stats.AlgoBenchMean) {
|
||||
if j == nil {
|
||||
cec2020Logger.Fatalln("jDE is nil, NewjDE() needs to be called first. exiting...")
|
||||
}
|
||||
|
||||
j.Init(generations, benchMinIters, mutStrategy, adptScheme, np, f, cr, dimensions, bench, ch, chAlgoMeans)
|
||||
|
||||
j.Run()
|
||||
}
|
||||
|
||||
// Run self-adapting differential evolution algorithm.
|
||||
func (j *JDE) Run() {
|
||||
if j == nil {
|
||||
cec2020Logger.Fatalln("jDE is nil, NewjDE() needs to be called first. exiting...")
|
||||
}
|
||||
|
||||
if !j.initialised {
|
||||
cec2020Logger.Fatalln("jDE needs to be initialised before calling Run(), exiting...")
|
||||
}
|
||||
|
||||
var jDEStats []stats.Stats
|
||||
|
||||
jDEMeans := &stats.AlgoBenchMean{
|
||||
Algo: "jDE",
|
||||
BenchMeans: make([]stats.BenchMean, 0, len(j.Dimensions)),
|
||||
}
|
||||
|
||||
// run evolve for all dimensions.
|
||||
for _, dim := range j.Dimensions {
|
||||
maxFES := cec2020.GetMaxFES(dim)
|
||||
fesPerIter := int(float64(maxFES / j.NP))
|
||||
jDEStatDimX := &stats.Stats{
|
||||
Algo: "jDE",
|
||||
Dimens: dim,
|
||||
Iterations: j.BenchMinIters,
|
||||
Generations: maxFES,
|
||||
NP: j.NP,
|
||||
F: j.F,
|
||||
CR: j.CR,
|
||||
}
|
||||
funcStats := &stats.FuncStats{BenchName: j.BenchName}
|
||||
dimXMean := &stats.BenchMean{
|
||||
Bench: j.BenchName,
|
||||
Dimens: dim,
|
||||
Iterations: j.BenchMinIters,
|
||||
Generations: maxFES,
|
||||
Neighbours: -1,
|
||||
}
|
||||
uniDist := distuv.Uniform{
|
||||
Min: cec2020.SearchRange.Min(),
|
||||
Max: cec2020.SearchRange.Max(),
|
||||
}
|
||||
|
||||
if maxFES == -1 {
|
||||
cec2020Logger.Fatalf("could not get maxFES for current dim (%d), bailing", dim)
|
||||
}
|
||||
|
||||
cec2020Logger.Printf("running bench \"%s\" for %dD, maxFES: %d\n",
|
||||
j.BenchName, dim, maxFES,
|
||||
)
|
||||
|
||||
funcStats.BenchResults = make([]stats.BenchRound, j.BenchMinIters)
|
||||
|
||||
// rand.Seed(uint64(time.Now().UnixNano()))
|
||||
// create and seed a source of pseudo-randomness
|
||||
src := rand.NewSource(uint64(rand.Int63()))
|
||||
|
||||
// track execution duration.
|
||||
start := time.Now()
|
||||
|
||||
for iter := 0; iter < j.BenchMinIters; iter++ {
|
||||
cec2020Logger.Printf("run: %d, bench: %s, %dD, started at %s",
|
||||
iter, j.BenchName, dim, start,
|
||||
)
|
||||
|
||||
funcStats.BenchResults[iter].Iteration = iter
|
||||
|
||||
uniDist.Src = src
|
||||
|
||||
// create a population with known params.
|
||||
pop := newPopulation(j.BenchName, j.NP, dim)
|
||||
|
||||
// set population seed.
|
||||
pop.Seed = uint64(time.Now().UnixNano())
|
||||
// initialise the population.
|
||||
pop.Init()
|
||||
|
||||
var bestResult float64
|
||||
|
||||
// the core.
|
||||
for i := 0; i < fesPerIter; i++ {
|
||||
r := j.evaluate(pop)
|
||||
|
||||
// distinguish the first or any of the subsequent iterations.
|
||||
switch i {
|
||||
case 0:
|
||||
bestResult = r
|
||||
|
||||
default:
|
||||
// call evolve where jDE runs.
|
||||
j.evolve(pop, &uniDist)
|
||||
|
||||
// take measurements of current population fitness.
|
||||
r = j.evaluate(pop)
|
||||
|
||||
// save if better.
|
||||
if r < bestResult {
|
||||
bestResult = r
|
||||
}
|
||||
}
|
||||
|
||||
funcStats.BenchResults[iter].Results = append(
|
||||
funcStats.BenchResults[iter].Results,
|
||||
bestResult,
|
||||
)
|
||||
// this block makes sure we properly count func evaluations for
|
||||
// the purpose of correctly comparable plot comparison. i.e.
|
||||
// append the winning (current best) value NP-1 (the first best
|
||||
// is already saved at this point) times to represent the fact
|
||||
// that while evaluating (and comparing) other population
|
||||
// individuals to the current best value is taking place in the
|
||||
// background, the current best value itself is kept around and
|
||||
// symbolically saved as the best of the Generation.
|
||||
for x := 0; x < j.NP-1; x++ {
|
||||
funcStats.BenchResults[iter].Results = append(
|
||||
funcStats.BenchResults[iter].Results,
|
||||
bestResult,
|
||||
)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
elapsed := time.Since(start)
|
||||
|
||||
cec2020Logger.Printf("completed: bench: %s, %dD, computing took %s\n",
|
||||
j.BenchName, dim, elapsed,
|
||||
)
|
||||
|
||||
// get mean vals.
|
||||
dimXMean.MeanVals = stats.GetMeanVals(funcStats.BenchResults, maxFES)
|
||||
funcStats.MeanVals = dimXMean.MeanVals
|
||||
|
||||
jDEStatDimX.BenchFuncStats = append(
|
||||
jDEStatDimX.BenchFuncStats, *funcStats,
|
||||
)
|
||||
|
||||
jDEStats = append(jDEStats, *jDEStatDimX)
|
||||
|
||||
jDEMeans.BenchMeans = append(jDEMeans.BenchMeans, *dimXMean)
|
||||
}
|
||||
|
||||
sort.Sort(jDEMeans)
|
||||
|
||||
j.chAlgoMeans <- jDEMeans
|
||||
j.ch <- jDEStats
|
||||
}
|
||||
|
||||
// evaluate evaluates the fitness of current population.
|
||||
func (j *JDE) evaluate(pop *Population) float64 {
|
||||
f := cec2020.Functions[pop.Problem]
|
||||
|
||||
bestIndividual := pop.Population[pop.GetBestIdx()].CurX
|
||||
bestSolution := f(bestIndividual)
|
||||
|
||||
return bestSolution
|
||||
}
|
||||
|
||||
// evolve evolves a population by running the jDE (self-adapting Differential
|
||||
// Evolution) algorithm on the passed population until termination conditions
|
||||
// are met.
|
||||
// nolint: gocognit
|
||||
func (j *JDE) evolve(pop *Population, uniDist *distuv.Uniform) {
|
||||
popCount := len(pop.Population)
|
||||
|
||||
for i, currentIndividual := range pop.Population {
|
||||
idcs := make([]int, 0, popCount-1)
|
||||
// idcs := make([]int, popCount-1)
|
||||
|
||||
// gather indices.
|
||||
for k := 0; k < popCount; k++ {
|
||||
if k != i {
|
||||
idcs = append(idcs, k)
|
||||
}
|
||||
}
|
||||
|
||||
// randomly choose 3 of those idcs.
|
||||
selectedIdcs := make([]int, 0)
|
||||
|
||||
selectedA := false
|
||||
selectedB := false
|
||||
selectedC := false
|
||||
|
||||
for !selectedA {
|
||||
candidateA := rand.Intn(len(idcs)) % len(idcs)
|
||||
|
||||
if candidateA != i {
|
||||
selectedIdcs = append(selectedIdcs, candidateA)
|
||||
selectedA = true
|
||||
}
|
||||
}
|
||||
|
||||
for !selectedB {
|
||||
a := selectedIdcs[0]
|
||||
candidateB := rand.Intn(len(idcs)) % len(idcs)
|
||||
|
||||
if candidateB != i && candidateB != a {
|
||||
selectedIdcs = append(selectedIdcs, candidateB)
|
||||
selectedB = true
|
||||
}
|
||||
}
|
||||
|
||||
for !selectedC {
|
||||
a := selectedIdcs[0]
|
||||
b := selectedIdcs[1]
|
||||
candidateC := rand.Intn(len(idcs)) % len(idcs)
|
||||
|
||||
if candidateC != i && candidateC != a && candidateC != b {
|
||||
selectedIdcs = append(selectedIdcs, candidateC)
|
||||
selectedC = true
|
||||
}
|
||||
}
|
||||
|
||||
// selected contains the selected population individuals.
|
||||
selected := make([]PopulationIndividual, 0)
|
||||
|
||||
// select individuals for rand/1/bin
|
||||
for _, idx := range selectedIdcs {
|
||||
for k := 0; k < popCount; k++ {
|
||||
if k == idx {
|
||||
selected = append(selected, pop.Population[idx])
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
mutant := make([]float64, pop.Dimen)
|
||||
|
||||
// mutate.
|
||||
for k := 0; k < pop.Dimen; k++ {
|
||||
// mutant = a + mut * (b - c)
|
||||
mutant[k] = selected[0].CurX[k] + (pop.BestF * (selected[1].CurX[k] - selected[2].CurX[k]))
|
||||
|
||||
// clip values to <0;1>.
|
||||
switch {
|
||||
case mutant[k] < 0:
|
||||
mutant[k] = 0
|
||||
|
||||
case mutant[k] > 1:
|
||||
mutant[k] = 1
|
||||
}
|
||||
}
|
||||
|
||||
crossPoints := make([]bool, pop.Dimen)
|
||||
|
||||
// prepare crossover points (binomial crossover).
|
||||
for k := 0; k < pop.Dimen; k++ {
|
||||
if v := uniDist.Rand(); v < pop.BestCR {
|
||||
crossPoints[k] = true
|
||||
} else {
|
||||
crossPoints[k] = false
|
||||
}
|
||||
}
|
||||
|
||||
trial := make([]float64, pop.Dimen)
|
||||
|
||||
// recombine using crossover points.
|
||||
for k := 0; k < pop.Dimen; k++ {
|
||||
if crossPoints[k] {
|
||||
trial[k] = currentIndividual.CurX[k]
|
||||
} else {
|
||||
trial[k] = mutant[k]
|
||||
}
|
||||
}
|
||||
|
||||
f := cec2020.Functions[pop.Problem]
|
||||
currentFitness := f(currentIndividual.CurX)
|
||||
trialFitness := f(trial)
|
||||
|
||||
// replace if better.
|
||||
if trialFitness < currentFitness {
|
||||
pop.Population[i].CurX = trial
|
||||
}
|
||||
}
|
||||
|
||||
// adapt parameters.
|
||||
j.adaptParameters(pop)
|
||||
}
|
||||
|
||||
// adptParameters adapts parameters F and CR based on
|
||||
// https://labraj.feri.um.si/images/0/05/CEC09_slides_Brest.pdf.
|
||||
func (j *JDE) adaptParameters(p *Population) {
|
||||
var nuF float64
|
||||
|
||||
var nuCR float64
|
||||
|
||||
switch {
|
||||
case j.AdptScheme == 0:
|
||||
if rand2 := j.getRandF(); rand2 < tau1 {
|
||||
nuF = fl + (j.getRandF() * fu)
|
||||
} else {
|
||||
nuF = p.f[len(p.f)-1]
|
||||
}
|
||||
|
||||
if rand4 := j.getRandCR(); rand4 < tau2 {
|
||||
nuCR = j.getRandCR()
|
||||
} else {
|
||||
nuCR = p.cr[len(p.cr)-1]
|
||||
}
|
||||
|
||||
case j.AdptScheme == 1:
|
||||
nuF = p.BestF + j.getRandF()*0.5
|
||||
nuCR = p.BestCR + j.getRandCR()*0.5
|
||||
}
|
||||
|
||||
// sort out F.
|
||||
p.f = append(p.f, nuF)
|
||||
// sort out CR
|
||||
p.cr = append(p.cr, nuCR)
|
||||
|
||||
// update best, if improved.
|
||||
switch {
|
||||
case nuF < p.BestF:
|
||||
p.BestF = nuF
|
||||
|
||||
case nuCR < p.BestCR:
|
||||
p.BestCR = nuCR
|
||||
}
|
||||
}
|
||||
|
||||
// getRandF returns a random value of F for parameter self-adaptation.
|
||||
func (j *JDE) getRandF() float64 {
|
||||
return j.rngF.Rand()
|
||||
}
|
||||
|
||||
// getRandCR returns a random value of CR for parameter self-adaptation.
|
||||
func (j *JDE) getRandCR() float64 {
|
||||
return j.rngCR.Rand()
|
||||
}
|
||||
|
||||
// NewjDE returns a pointer to a new, uninitialised jDE instance.
|
||||
func NewjDE() *JDE {
|
||||
return &JDE{}
|
||||
}
|
||||
|
||||
// LogPrintln wraps the jDE logger's Println func.
|
||||
func LogPrintln(v ...any) {
|
||||
cec2020Logger.Println(v...)
|
||||
}
|
||||
|
||||
// LogPrintf wraps the jDE logger's Printf func.
|
||||
func LogPrintf(s string, v ...any) {
|
||||
cec2020Logger.Printf(s, v...)
|
||||
}
|
||||
|
||||
// LogFatalln wraps the jDE logger's Fatalln func.
|
||||
func LogFatalln(s string) {
|
||||
cec2020Logger.Fatalln(s)
|
||||
}
|
||||
|
||||
// LogFatalf wraps the jDE logger's Fatalf func.
|
||||
func LogFatalf(s string, v ...any) {
|
||||
cec2020Logger.Fatalf(s, v...)
|
||||
}
|
@ -1,12 +0,0 @@
|
||||
// Copyright 2023 wanderer <a_mirre at utb dot cz>
|
||||
// SPDX-License-Identifier: GPL-3.0-or-later
|
||||
|
||||
package cec2020
|
||||
|
||||
import (
|
||||
"log"
|
||||
"os"
|
||||
)
|
||||
|
||||
// cec2020Logger declares and initialises a "custom" CEC2020 logger.
|
||||
var cec2020Logger = log.New(os.Stderr, " *** ∁ cec2020:", log.Ldate|log.Ltime|log.Lshortfile)
|
@ -1,167 +0,0 @@
|
||||
// Copyright 2023 wanderer <a_mirre at utb dot cz>
|
||||
// SPDX-License-Identifier: GPL-3.0-or-later
|
||||
|
||||
package cec2020
|
||||
|
||||
import (
|
||||
"git.dotya.ml/wanderer/math-optim/bench/cec2020"
|
||||
"golang.org/x/exp/rand"
|
||||
|
||||
"gonum.org/v1/gonum/stat/distuv"
|
||||
)
|
||||
|
||||
type (
|
||||
// DecisionVector is a []float64 abstraction representing the decision vector.
|
||||
DecisionVector []float64
|
||||
// FitnessVector is a []float64 abstraction representing the fitness vector.
|
||||
FitnessVector []float64
|
||||
// ConstraintVector is a []float64 abstraction representing the constraint vector.
|
||||
ConstraintVector []float64
|
||||
)
|
||||
|
||||
// PopulationIndividual representats a single population individual.
|
||||
type PopulationIndividual struct {
|
||||
CurX DecisionVector
|
||||
CurV DecisionVector
|
||||
CurC ConstraintVector
|
||||
CurF FitnessVector
|
||||
|
||||
BestX DecisionVector
|
||||
BestC ConstraintVector
|
||||
BestF FitnessVector
|
||||
}
|
||||
|
||||
// ChampionIndividual is a representation of the best individual currently
|
||||
// available in the population.
|
||||
type ChampionIndividual struct {
|
||||
X DecisionVector
|
||||
C ConstraintVector
|
||||
F FitnessVector
|
||||
}
|
||||
|
||||
// Population groups population individuals (agents) with metadata about the population.
|
||||
type Population struct {
|
||||
// Population is a slice of population individuals.
|
||||
Population []PopulationIndividual
|
||||
// Problem is the current benchmarking function this population is attempting to optimise.
|
||||
Problem string
|
||||
// Dimen is the dimensionality of the problem being optimised.
|
||||
Dimen int
|
||||
// Seed is the value used to (re)init population.
|
||||
Seed uint64
|
||||
|
||||
// f is the differential weight (mutation/weighting factor) adapted over time.
|
||||
f []float64
|
||||
// cr is the crossover probability constant adapted over time.
|
||||
cr []float64
|
||||
// BestF is the best recorded value of the differential weight F.
|
||||
BestF float64
|
||||
// BestCR is the best recorded value of the differential weight CR.
|
||||
BestCR float64
|
||||
}
|
||||
|
||||
// GetIndividual returns a reference to individual at position n.
|
||||
func (p *Population) GetIndividual(n uint) *PopulationIndividual { return &PopulationIndividual{} }
|
||||
|
||||
// GetBestIdx returns the index of the best population individual.
|
||||
func (p *Population) GetBestIdx() int {
|
||||
f := cec2020.Functions[p.Problem]
|
||||
|
||||
bestIndividual := 0
|
||||
// the first one is the best one.
|
||||
bestVal := f(p.Population[0].CurX)
|
||||
|
||||
for i, v := range p.Population {
|
||||
current := f(v.CurX)
|
||||
|
||||
if current < bestVal {
|
||||
bestIndividual = i
|
||||
}
|
||||
}
|
||||
|
||||
return bestIndividual
|
||||
}
|
||||
|
||||
// GetWorstIdx returns the index of the worst population individual.
|
||||
func (p *Population) GetWorstIdx() int {
|
||||
f := cec2020.Functions[p.Problem]
|
||||
|
||||
worstIndividual := 0
|
||||
// the first one is the worst one.
|
||||
worstVal := f(p.Population[0].CurX)
|
||||
|
||||
for i, v := range p.Population {
|
||||
current := f(v.CurX)
|
||||
|
||||
if current > worstVal {
|
||||
worstIndividual = i
|
||||
}
|
||||
}
|
||||
|
||||
return worstIndividual
|
||||
}
|
||||
|
||||
// Init initialises all individuals to random values.
|
||||
func (p *Population) Init() {
|
||||
uniform := distuv.Uniform{
|
||||
Min: cec2020.SearchRange.Min(),
|
||||
Max: cec2020.SearchRange.Max(),
|
||||
}
|
||||
uniform.Src = rand.NewSource(p.Seed)
|
||||
|
||||
for i, v := range p.Population {
|
||||
v.CurX = make([]float64, p.Dimen)
|
||||
|
||||
for j := 0; j < p.Dimen; j++ {
|
||||
v.CurX[j] = uniform.Rand()
|
||||
}
|
||||
|
||||
p.Population[i] = v
|
||||
}
|
||||
|
||||
p.f = make([]float64, p.Size())
|
||||
p.cr = make([]float64, p.Size())
|
||||
}
|
||||
|
||||
// Reinit reinitialises all individuals.
|
||||
func (p *Population) Reinit() {
|
||||
p.Init()
|
||||
}
|
||||
|
||||
// ReinitN reinitialises the individual at position n.
|
||||
func (p *Population) ReinitN(n uint) {}
|
||||
|
||||
// Clear sets all vectors to 0.
|
||||
func (p *Population) Clear() {
|
||||
if p.Population != nil {
|
||||
for _, v := range p.Population {
|
||||
v.CurX = make([]float64, p.Dimen)
|
||||
v.CurC = make([]float64, p.Dimen)
|
||||
v.CurF = make([]float64, p.Dimen)
|
||||
v.CurV = make([]float64, p.Dimen)
|
||||
v.BestX = make([]float64, p.Dimen)
|
||||
v.BestC = make([]float64, p.Dimen)
|
||||
v.BestF = make([]float64, p.Dimen)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// MeanVelocity computes the mean current velocity of all individuals in the population.
|
||||
func (p *Population) MeanVelocity() float64 { return 0.0 }
|
||||
|
||||
// Size returns the number of population individuals.
|
||||
func (p *Population) Size() int { return len(p.Population) }
|
||||
|
||||
// newPopulation returns a pointer to a new, uninitialised population.
|
||||
func newPopulation(benchProblem string, np, dimen int) *Population {
|
||||
p := &Population{}
|
||||
|
||||
p.Problem = benchProblem
|
||||
|
||||
p.Dimen = dimen
|
||||
|
||||
// pre-alloc.
|
||||
p.Population = make([]PopulationIndividual, np)
|
||||
|
||||
return p
|
||||
}
|
411
algo/ga/de.go
Normal file
411
algo/ga/de.go
Normal file
@ -0,0 +1,411 @@
|
||||
// Copyright 2023 wanderer <a_mirre at utb dot cz>
|
||||
// SPDX-License-Identifier: GPL-3.0-or-later
|
||||
|
||||
package ga
|
||||
|
||||
import (
|
||||
"sort"
|
||||
"time"
|
||||
|
||||
"golang.org/x/exp/rand"
|
||||
|
||||
"git.dotya.ml/wanderer/math-optim/bench"
|
||||
"git.dotya.ml/wanderer/math-optim/stats"
|
||||
"gonum.org/v1/gonum/stat/distuv"
|
||||
)
|
||||
|
||||
// DE is a holder for the settings of an instance of a Differential Evolution
|
||||
// (DE) algorithm.
|
||||
type DE struct {
|
||||
// Generations denotes the number of generations the population evolves
|
||||
// for. Special value -1 disables limiting the number of generations.
|
||||
Generations int
|
||||
// BenchMinIters is the number of iterations the bench function will be re-run (for statistical purposes).
|
||||
BenchMinIters int
|
||||
// Dimensions to solve the problem for.
|
||||
Dimensions []int
|
||||
// F is the differential weight (mutation/weighting factor).
|
||||
F float64
|
||||
// CR is the crossover probability constant.
|
||||
CR float64
|
||||
// MutationStrategy selects the mutation strategy, i.e. the variant of the
|
||||
// DE algorithm (0..17), see mutationStrategies.go for more details.
|
||||
MutationStrategy int
|
||||
// NP is the initial population size.
|
||||
NP int
|
||||
// BenchName is a name of the problem to optimise.
|
||||
BenchName string
|
||||
// ch is a channel for writing back computed results.
|
||||
ch chan []stats.Stats
|
||||
// chAlgoMeans is a channel for writing back algo means.
|
||||
chAlgoMeans chan *stats.AlgoBenchMean
|
||||
// initialised denotes the initialisation state of the struct.
|
||||
initialised bool
|
||||
}
|
||||
|
||||
const (
|
||||
// MinNPDE is the minimum size of the initial population for DE.
|
||||
minNPDE = 4
|
||||
// fMin is the minimum allowed value of the differential weight.
|
||||
fMinDE = 0.5
|
||||
// fMax is the maximum allowed value of the differential weight.
|
||||
fMaxDE = 2.0
|
||||
// crMin is the minimum allowed value of the crossover probability constant.
|
||||
crMinDE = 0.2
|
||||
// crMax is the maximum allowed value of the crossover probability constant.
|
||||
crMaxDE = 0.9
|
||||
)
|
||||
|
||||
// dELogger is a "custom" DE logger.
|
||||
var dELogger = newLogger(" *** δ DE:")
|
||||
|
||||
// Init initialises the DE algorithm, performs sanity checks on the inputs.
|
||||
func (d *DE) Init(
|
||||
generations, benchMinIters, mutStrategy, np int,
|
||||
f, cr float64,
|
||||
dimensions []int,
|
||||
bench string,
|
||||
ch chan []stats.Stats,
|
||||
chAlgoMeans chan *stats.AlgoBenchMean,
|
||||
) {
|
||||
if d == nil {
|
||||
dELogger.Fatalln("DE needs to be initialised before calling Run(), exiting...")
|
||||
}
|
||||
|
||||
// check input parameters.
|
||||
switch {
|
||||
case generations == 0:
|
||||
dELogger.Fatalln("Generations cannot be 0, got", generations)
|
||||
|
||||
case generations == -1:
|
||||
dELogger.Println("Generations is '-1', disabling generation limits..")
|
||||
|
||||
case benchMinIters < 1:
|
||||
dELogger.Fatalln("Minimum bench iterations cannot be less than 1, got:", benchMinIters)
|
||||
|
||||
case mutStrategy < 0 || mutStrategy > 17:
|
||||
dELogger.Fatalln("Mutation strategy needs to be from the interval <0; 17>, got", mutStrategy)
|
||||
|
||||
case np < minNPDE:
|
||||
dELogger.Fatalf("NP cannot be less than %d, got: %d\n.", minNPDE, np)
|
||||
|
||||
case f < fMinDE || f > fMaxDE:
|
||||
dELogger.Fatalf("F needs to be from the interval <%f;%f>, got: %f\n.", fMinDE, fMaxDE, f)
|
||||
|
||||
case cr < crMinDE || cr > crMaxDE:
|
||||
dELogger.Fatalf("CR needs to be from the interval <%f;>%f, got: %f\n.", crMinDE, crMaxDE, cr)
|
||||
|
||||
case len(dimensions) == 0:
|
||||
dELogger.Fatalf("Dimensions cannot be empty, got: %+v\n", dimensions)
|
||||
|
||||
case bench == "":
|
||||
dELogger.Fatalln("Bench cannot be unset, got:", bench)
|
||||
}
|
||||
|
||||
d.Generations = generations
|
||||
d.BenchMinIters = benchMinIters
|
||||
d.MutationStrategy = mutStrategy
|
||||
d.NP = np
|
||||
d.F = f
|
||||
d.CR = cr
|
||||
d.Dimensions = dimensions
|
||||
d.BenchName = bench
|
||||
d.ch = ch
|
||||
d.chAlgoMeans = chAlgoMeans
|
||||
|
||||
d.initialised = true
|
||||
}
|
||||
|
||||
// InitAndRun initialises the DE algorithm, performs sanity checks on the
|
||||
// inputs and calls the Run method.
|
||||
func (d *DE) InitAndRun(
|
||||
generations, benchMinIters, mutStrategy, np int,
|
||||
f, cr float64,
|
||||
dimensions []int,
|
||||
bench string,
|
||||
ch chan []stats.Stats,
|
||||
chAlgoMeans chan *stats.AlgoBenchMean,
|
||||
) {
|
||||
if d == nil {
|
||||
dELogger.Fatalln("DE is nil, NewDE() needs to be called first. exiting...")
|
||||
}
|
||||
|
||||
d.Init(
|
||||
generations, benchMinIters, mutStrategy, np,
|
||||
f, cr,
|
||||
dimensions,
|
||||
bench,
|
||||
ch,
|
||||
chAlgoMeans,
|
||||
)
|
||||
|
||||
d.Run()
|
||||
}
|
||||
|
||||
// Run self-adapting differential evolution algorithm.
|
||||
func (d *DE) Run() {
|
||||
if d == nil {
|
||||
dELogger.Fatalln("DE is nil, NewDE() needs to be called first. exiting...")
|
||||
}
|
||||
|
||||
if !d.initialised {
|
||||
dELogger.Fatalln("DE needs to be initialised before calling Run(), exiting...")
|
||||
}
|
||||
|
||||
var dEStats []stats.Stats
|
||||
|
||||
dEMeans := &stats.AlgoBenchMean{
|
||||
Algo: "DE",
|
||||
BenchMeans: make([]stats.BenchMean, 0, len(d.Dimensions)),
|
||||
}
|
||||
|
||||
// run evolve for for all dimensions.
|
||||
for _, dim := range d.Dimensions {
|
||||
maxFES := bench.GetGAMaxFES(dim)
|
||||
fesPerIter := int(float64(maxFES / d.NP))
|
||||
dEStatDimX := &stats.Stats{
|
||||
Algo: "DE",
|
||||
Dimens: dim,
|
||||
Iterations: d.BenchMinIters,
|
||||
Generations: maxFES,
|
||||
NP: d.NP,
|
||||
F: d.F,
|
||||
CR: d.CR,
|
||||
}
|
||||
funcStats := &stats.FuncStats{BenchName: d.BenchName}
|
||||
dimXMean := &stats.BenchMean{
|
||||
Bench: d.BenchName,
|
||||
Dimens: dim,
|
||||
Iterations: d.BenchMinIters,
|
||||
Generations: maxFES,
|
||||
Neighbours: -1,
|
||||
}
|
||||
benchFuncParams := bench.FunctionParams[d.BenchName]
|
||||
uniDist := distuv.Uniform{
|
||||
Min: benchFuncParams.Min(),
|
||||
Max: benchFuncParams.Max(),
|
||||
}
|
||||
|
||||
funcStats.BenchResults = make([]stats.BenchRound, d.BenchMinIters)
|
||||
|
||||
// rand.Seed(uint64(time.Now().UnixNano()))
|
||||
// create and seed a source of preudo-randomness
|
||||
src := rand.NewSource(uint64(rand.Int63()))
|
||||
|
||||
// track execution duration.
|
||||
start := time.Now()
|
||||
|
||||
for iter := 0; iter < d.BenchMinIters; iter++ {
|
||||
dELogger.Printf("run: %d, bench: %s, %dD, started at %s",
|
||||
iter, d.BenchName, dim, start,
|
||||
)
|
||||
|
||||
funcStats.BenchResults[iter].Iteration = iter
|
||||
|
||||
uniDist.Src = src
|
||||
|
||||
// create a population with known params.
|
||||
pop := newPopulation(d.BenchName, d.NP, dim)
|
||||
|
||||
// set population seed.
|
||||
pop.Seed = uint64(time.Now().UnixNano())
|
||||
// initialise the population.
|
||||
pop.Init()
|
||||
|
||||
var bestResult float64
|
||||
|
||||
// the core.
|
||||
for i := 0; i < fesPerIter; i++ {
|
||||
r := d.evaluate(pop)
|
||||
|
||||
// distinguish the first or any of the subsequent iterations.
|
||||
switch i {
|
||||
case 0:
|
||||
bestResult = r
|
||||
|
||||
default:
|
||||
// call evolve where actual DE runs.
|
||||
d.evolve(pop, &uniDist)
|
||||
|
||||
// take measurements of current population fitness.
|
||||
r = d.evaluate(pop)
|
||||
|
||||
// save if better.
|
||||
if r < bestResult {
|
||||
bestResult = r
|
||||
}
|
||||
}
|
||||
|
||||
funcStats.BenchResults[iter].Results = append(
|
||||
funcStats.BenchResults[iter].Results,
|
||||
bestResult,
|
||||
)
|
||||
// this block makes sure we properly count func evaluations for
|
||||
// the purpose of correctly comparable plot comparison. i.e.
|
||||
// append the winning (current best) value NP-1 (the first best
|
||||
// is already saved at this point) times to represent the fact
|
||||
// that while evaluating (and comparing) other population
|
||||
// individuals to the current best value is taking place in the
|
||||
// background, the current best value itself is kept around and
|
||||
// symbolically saved as the best of the Generation.
|
||||
for x := 0; x < d.NP-1; x++ {
|
||||
funcStats.BenchResults[iter].Results = append(
|
||||
funcStats.BenchResults[iter].Results,
|
||||
bestResult,
|
||||
)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
elapsed := time.Since(start)
|
||||
|
||||
dELogger.Printf("completed: bench: %s, %dD, computing took %s\n",
|
||||
d.BenchName, dim, elapsed,
|
||||
)
|
||||
|
||||
// get mean vals.
|
||||
dimXMean.MeanVals = stats.GetMeanVals(funcStats.BenchResults, maxFES)
|
||||
funcStats.MeanVals = dimXMean.MeanVals
|
||||
|
||||
dEStatDimX.BenchFuncStats = append(
|
||||
dEStatDimX.BenchFuncStats, *funcStats,
|
||||
)
|
||||
|
||||
dEStats = append(dEStats, *dEStatDimX)
|
||||
|
||||
dEMeans.BenchMeans = append(dEMeans.BenchMeans, *dimXMean)
|
||||
}
|
||||
|
||||
sort.Sort(dEMeans)
|
||||
|
||||
d.chAlgoMeans <- dEMeans
|
||||
d.ch <- dEStats
|
||||
}
|
||||
|
||||
// evaluate evaluates the fitness of current population.
|
||||
func (d *DE) evaluate(pop *Population) float64 {
|
||||
f := bench.Functions[pop.Problem]
|
||||
|
||||
bestIndividual := pop.Population[pop.GetBestIdx()].CurX
|
||||
bestSolution := f(bestIndividual)
|
||||
|
||||
return bestSolution
|
||||
}
|
||||
|
||||
// evolve evolves a population by running the DE (Differential Evolution)
|
||||
// algorithm on the passed population until termination conditions are met.
|
||||
// nolint: gocognit
|
||||
func (d *DE) evolve(pop *Population, uniDist *distuv.Uniform) {
|
||||
popCount := len(pop.Population)
|
||||
|
||||
for i, currentIndividual := range pop.Population {
|
||||
idcs := make([]int, 0, popCount-1)
|
||||
|
||||
// gather indices.
|
||||
for k := 0; k < popCount; k++ {
|
||||
if k != i {
|
||||
idcs = append(idcs, k)
|
||||
}
|
||||
}
|
||||
|
||||
// randomly choose 3 of those idcs.
|
||||
selectedIdcs := make([]int, 0)
|
||||
|
||||
selectedA := false
|
||||
selectedB := false
|
||||
selectedC := false
|
||||
|
||||
for !selectedA {
|
||||
candidateA := rand.Intn(len(idcs)) % len(idcs)
|
||||
|
||||
if candidateA != i {
|
||||
selectedIdcs = append(selectedIdcs, candidateA)
|
||||
selectedA = true
|
||||
}
|
||||
}
|
||||
|
||||
for !selectedB {
|
||||
a := selectedIdcs[0]
|
||||
candidateB := rand.Intn(len(idcs)) % len(idcs)
|
||||
|
||||
if candidateB != i && candidateB != a {
|
||||
selectedIdcs = append(selectedIdcs, candidateB)
|
||||
selectedB = true
|
||||
}
|
||||
}
|
||||
|
||||
for !selectedC {
|
||||
a := selectedIdcs[0]
|
||||
b := selectedIdcs[1]
|
||||
candidateC := rand.Intn(len(idcs)) % len(idcs)
|
||||
|
||||
if candidateC != i && candidateC != a && candidateC != b {
|
||||
selectedIdcs = append(selectedIdcs, candidateC)
|
||||
selectedC = true
|
||||
}
|
||||
}
|
||||
|
||||
// selected contains the selected population individuals.
|
||||
selected := make([]PopulationIndividual, 0)
|
||||
|
||||
// select individuals for rand/1/bin
|
||||
for _, idx := range selectedIdcs {
|
||||
for k := 0; k < popCount; k++ {
|
||||
if k == idx {
|
||||
selected = append(selected, pop.Population[idx])
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
mutant := make([]float64, pop.Dimen)
|
||||
|
||||
// mutate.
|
||||
for k := 0; k < pop.Dimen; k++ {
|
||||
// mutant = a + mut * (b - c)
|
||||
mutant[k] = selected[0].CurX[k] + (d.F * (selected[1].CurX[k] - selected[2].CurX[k]))
|
||||
|
||||
// clip values to <0;1>.
|
||||
switch {
|
||||
case mutant[k] < 0:
|
||||
mutant[k] = 0
|
||||
|
||||
case mutant[k] > 1:
|
||||
mutant[k] = 1
|
||||
}
|
||||
}
|
||||
|
||||
crossPoints := make([]bool, pop.Dimen)
|
||||
|
||||
// prepare crossover points (binomial crossover).
|
||||
for k := 0; k < pop.Dimen; k++ {
|
||||
if v := uniDist.Rand(); v < d.CR {
|
||||
crossPoints[k] = true
|
||||
} else {
|
||||
crossPoints[k] = false
|
||||
}
|
||||
}
|
||||
|
||||
trial := make([]float64, pop.Dimen)
|
||||
|
||||
// recombine using crossover points.
|
||||
for k := 0; k < pop.Dimen; k++ {
|
||||
if crossPoints[k] {
|
||||
trial[k] = currentIndividual.CurX[k]
|
||||
}
|
||||
}
|
||||
|
||||
f := bench.Functions[pop.Problem]
|
||||
currentFitness := f(currentIndividual.CurX)
|
||||
trialFitness := f(trial)
|
||||
|
||||
// replace if better.
|
||||
if trialFitness < currentFitness {
|
||||
pop.Population[i].CurX = trial
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// NewDE returns a pointer to a new, uninitialised DE instance.
|
||||
func NewDE() *DE {
|
||||
return &DE{}
|
||||
}
|
@ -76,7 +76,14 @@ const (
|
||||
var jDELogger = newLogger(" *** δ jDE:")
|
||||
|
||||
// Init initialises the jDE algorithm, performs sanity checks on the inputs.
|
||||
func (j *JDE) Init(generations, benchMinIters, mutStrategy, adptScheme, np int, f, cr float64, dimensions []int, bench string, ch chan []stats.Stats, chAlgoMeans chan *stats.AlgoBenchMean) {
|
||||
func (j *JDE) Init(
|
||||
generations, benchMinIters, mutStrategy, adptScheme, np int,
|
||||
f, cr float64,
|
||||
dimensions []int,
|
||||
bench string,
|
||||
ch chan []stats.Stats,
|
||||
chAlgoMeans chan *stats.AlgoBenchMean,
|
||||
) {
|
||||
if j == nil {
|
||||
jDELogger.Fatalln("jDE needs to be initialised before calling Run(), exiting...")
|
||||
}
|
||||
@ -124,8 +131,16 @@ func (j *JDE) Init(generations, benchMinIters, mutStrategy, adptScheme, np int,
|
||||
|
||||
rngsrc := rand.NewSource(uint64(rand.Int63()))
|
||||
|
||||
j.rngF = distuv.Uniform{Min: fMin, Max: fMax, Src: rngsrc}
|
||||
j.rngCR = distuv.Uniform{Min: crMin, Max: crMax, Src: rngsrc}
|
||||
j.rngF = distuv.Uniform{
|
||||
Min: fMin,
|
||||
Max: fMax,
|
||||
Src: rngsrc,
|
||||
}
|
||||
j.rngCR = distuv.Uniform{
|
||||
Min: crMin,
|
||||
Max: crMax,
|
||||
Src: rngsrc,
|
||||
}
|
||||
|
||||
j.Dimensions = dimensions
|
||||
j.BenchName = bench
|
||||
@ -139,12 +154,25 @@ func (j *JDE) Init(generations, benchMinIters, mutStrategy, adptScheme, np int,
|
||||
|
||||
// InitAndRun initialises the jDE algorithm, performs sanity checks on the
|
||||
// inputs and calls the Run method.
|
||||
func (j *JDE) InitAndRun(generations, benchMinIters, mutStrategy, adptScheme, np int, f, cr float64, dimensions []int, bench string, ch chan []stats.Stats, chAlgoMeans chan *stats.AlgoBenchMean) {
|
||||
func (j *JDE) InitAndRun(
|
||||
generations, benchMinIters, mutStrategy, adptScheme, np int,
|
||||
f, cr float64,
|
||||
dimensions []int,
|
||||
bench string,
|
||||
ch chan []stats.Stats,
|
||||
chAlgoMeans chan *stats.AlgoBenchMean,
|
||||
) {
|
||||
if j == nil {
|
||||
jDELogger.Fatalln("jDE is nil, NewjDE() needs to be called first. exiting...")
|
||||
}
|
||||
|
||||
j.Init(generations, benchMinIters, mutStrategy, adptScheme, np, f, cr, dimensions, bench, ch, chAlgoMeans)
|
||||
j.Init(
|
||||
generations, benchMinIters, mutStrategy, adptScheme, np,
|
||||
f, cr,
|
||||
dimensions,
|
||||
bench,
|
||||
ch, chAlgoMeans,
|
||||
)
|
||||
|
||||
j.Run()
|
||||
}
|
||||
|
@ -153,6 +153,7 @@ func SchwefelModified(x []float64) float64 {
|
||||
|
||||
case zi < -500:
|
||||
// g(zi)
|
||||
sum += (math.Mod(math.Abs(zi), 500)-500)*math.Sin(math.Sqrt(math.Abs(math.Mod(math.Abs(zi), 500)-500))) - (math.Pow(zi-500, 2) - 10000*fnx)
|
||||
|
||||
case math.Abs(zi) <= 500:
|
||||
// g(zi)
|
||||
|
@ -35,9 +35,10 @@ func SaveComparisonOfMeans(p PicList, benchCount int) {
|
||||
|
||||
// split the slice to smaller, per-bench slices.
|
||||
for i := 0; i < len(p.Pics); i += benchCount {
|
||||
pL := &PicList{}
|
||||
pL.Pics = p.Pics[i : i+benchCount]
|
||||
pL.Bench = p.Pics[i].Bench
|
||||
pL := &PicList{
|
||||
Pics: p.Pics[i : i+benchCount],
|
||||
Bench: p.Pics[i].Bench,
|
||||
}
|
||||
benchPicLists = append(benchPicLists, *pL)
|
||||
}
|
||||
|
||||
|
@ -11,7 +11,7 @@
|
||||
\begin{figure}[h!]
|
||||
\centering
|
||||
{{- range $i, $v := .Pics }}
|
||||
\begin{subfigure}{0.30\textwidth}
|
||||
\begin{subfigure}{0.46\textwidth}
|
||||
% note: this accomodates 3 plots a row comfortably..should the requirements
|
||||
% change, this would have to be reworked.
|
||||
% {\includesvg[scale=0.45]{ {{- printf "%s" $v.FilePath -}} }}
|
||||
@ -24,7 +24,7 @@
|
||||
{{- end -}}
|
||||
% \newline
|
||||
{{ range $k, $w := .PicsMean }}
|
||||
\begin{subfigure}{0.30\textwidth}
|
||||
\begin{subfigure}{0.46\textwidth}
|
||||
\vspace{2em}
|
||||
% {\includesvg[scale=0.45]{ {{- printf "%s" $w.FilePath -}} }}
|
||||
% using .pdf
|
||||
|
21
run.go
21
run.go
@ -26,6 +26,7 @@ var (
|
||||
jDE = flag.Bool("jde", false, "run Differential Evolution algorithm with parameter self adaptation")
|
||||
// run CEC2020 jDE by default.
|
||||
c2jDE = flag.Bool("c2jde", true, "run CEC2020 version of the Differential Evolution algorithm with parameter self adaptation")
|
||||
c2SOMAT3A = flag.Bool("c2somat3a", false, "run CEC2020 version of the SOMA Team-to-Team Adaptive (T3A)")
|
||||
)
|
||||
|
||||
func run() {
|
||||
@ -34,7 +35,7 @@ func run() {
|
||||
flag.Parse()
|
||||
|
||||
if *generate {
|
||||
if !*jDE && !*c2jDE && !*sHC && !*rS {
|
||||
if !*jDE && !*c2jDE && !*c2SOMAT3A && !*sHC && !*rS {
|
||||
log.Println("at least one algo needs to be specified, exiting...")
|
||||
|
||||
return
|
||||
@ -56,6 +57,12 @@ func run() {
|
||||
go algo.DoCEC2020jDE(&wg, &m)
|
||||
}
|
||||
|
||||
if *c2SOMAT3A {
|
||||
wg.Add(1)
|
||||
|
||||
go algo.DoCEC2020SOMAT3A(&wg, &m)
|
||||
}
|
||||
|
||||
if *rS {
|
||||
wg.Add(1)
|
||||
|
||||
@ -74,9 +81,17 @@ func run() {
|
||||
|
||||
wg.Wait()
|
||||
|
||||
// pL, benchCount := algo.PrepComparisonOfMeans(&wg)
|
||||
var pL *report.PicList
|
||||
|
||||
// report.SaveComparisonOfMeans(*pL, benchCount)
|
||||
var benchCount int
|
||||
|
||||
if *c2jDE && *c2SOMAT3A {
|
||||
pL, benchCount = algo.PrepCEC2020ComparisonOfMeans(&wg)
|
||||
} else {
|
||||
pL, benchCount = algo.PrepComparisonOfMeans(&wg)
|
||||
}
|
||||
|
||||
report.SaveComparisonOfMeans(*pL, benchCount)
|
||||
report.SaveTexAllPics()
|
||||
report.SaveTexAllTables()
|
||||
}
|
||||
|
Loading…
Reference in New Issue
Block a user