ga: implement SOMA T3A algorithm
All checks were successful
continuous-integration/drone/push Build is passing

This commit is contained in:
leo 2023-02-21 23:51:52 +01:00
parent f4f5f366e9
commit 74109521b0
Signed by: wanderer
SSH Key Fingerprint: SHA256:Dp8+iwKHSlrMEHzE3bJnPng70I7LEsa3IJXRH/U+idQ
6 changed files with 632 additions and 0 deletions

28
algo/ga/error.go Normal file

@ -0,0 +1,28 @@
// Copyright 2023 wanderer <a_mirre at utb dot cz>
// SPDX-License-Identifier: GPL-3.0-or-later
package ga
type gaError struct {
s string
}
var (
errGenerationsIsZero = newGAError("Generations cannot be 0")
errBenchMinItersIsLTOne = newGAError("Minimum bench iterations cannot be less than 1")
errNPIsZero = newGAError("NP cannot be 0")
errKIsZero = newGAError("K cannot be 0")
errMIsZero = newGAError("M cannot be 0")
errNIsZero = newGAError("N cannot be 0")
errNjumpsIsZero = newGAError("Njumps cannot be 0")
errDimensionsUnset = newGAError("Dimensions cannot be unset")
errBenchUnset = newGAError("Bench cannot be unset")
)
func (e *gaError) Error() string {
return e.s
}
func newGAError(text string) error {
return &gaError{s: text}
}

@ -4,7 +4,12 @@
package ga
import (
"sort"
"time"
"git.dotya.ml/wanderer/math-optim/bench/cec2020"
"git.dotya.ml/wanderer/math-optim/stats"
"golang.org/x/exp/rand"
"gonum.org/v1/gonum/stat/distuv"
)
@ -21,6 +26,17 @@ type SOMAT3A struct {
Dimensions []int
// NP is the initial population size.
NP int
// K is the number of individuals to choose the leader from.
K int
// M denotes how many individuals are picked from the population to form a
// `team` during the organisation phase, can be thought of as "team size".
M int
// N is the number of best individuals in each team selected for actual
// migration.
N int
// Njumps is the fixed number of jumps that each chosen migrating
// individual performs on their way to the leader.
Njumps int
// BenchName is the human-friendly name of the benchmarking function.
BenchName string
// ch is a channel for writing back computed results.
@ -34,3 +50,230 @@ type SOMAT3A struct {
// initialised denotes the initialisation state of the struct.
initialised bool
}
var somat3aLogger = newLogger(" ***  SOMA T3A")
// Init performs checks on the input params and initialises an instance of
// SOMAT3A.
func (s *SOMAT3A) Init(
generations, benchMinIters, np, k, m, n, njumps int,
dimensions []int,
bench string,
ch chan []stats.Stats,
chAlgoMeans chan *stats.AlgoBenchMean,
) error {
switch {
case generations == 0:
return errGenerationsIsZero
case generations == -1:
somat3aLogger.Println("Generations is '-1', disabling generation limits")
case benchMinIters < 1:
return errBenchMinItersIsLTOne
case np == 0:
return errNPIsZero
case k == 0:
return errKIsZero
case m == 0:
return errMIsZero
case n == 0:
return errNIsZero
case njumps == 0:
return errNjumpsIsZero
case len(dimensions) == 0:
return errDimensionsUnset
case bench == "":
return errBenchUnset
}
s.Generations = generations
s.BenchMinIters = benchMinIters
s.NP = np
s.K = k
s.M = m
s.N = n
s.Njumps = njumps
s.Dimensions = dimensions
s.BenchName = bench
s.ch = ch
s.chAlgoMeans = chAlgoMeans
s.initialised = true
gaLogger.Printf("%s init done for bench %s", s.getAlgoName(), s.BenchName)
return nil
}
// Run runs the SOMA T3A algo for each of `s.Dimensions` with benchmarking
// function `s.BenchName`, repeats the run `s.BenchMinIters` times and returns
// the stats via chans.
func (s *SOMAT3A) Run() {
if !s.initialised {
somat3aLogger.Fatalln(s.getAlgoName(), "needs to be initialised before calling Run(), exiting..")
}
var somat3aStats []stats.Stats
// testing purposes.
// s.BenchMinIters = 5
somat3aMeans := &stats.AlgoBenchMean{
Algo: s.getAlgoName(),
BenchMeans: make([]stats.BenchMean, 0, len(s.Dimensions)),
}
for _, dim := range s.Dimensions {
maxFES := cec2020.GetMaxFES(dim)
// TODO(me): check the slides for the formula to calculate this.
// 4 fes per member per njump.
// fesPerIter := int(float64(maxFES / (4 * s.NP * s.Njumps)))
fesPerIter := int(float64(maxFES / (4 * s.NP)))
somat3aStatDimX := &stats.Stats{
Algo: s.getAlgoName(),
Dimens: dim,
Iterations: s.BenchMinIters,
Generations: maxFES,
NP: s.NP,
}
funcStats := &stats.FuncStats{BenchName: s.BenchName}
dimXMean := &stats.BenchMean{
Bench: s.BenchName,
Dimens: dim,
Iterations: s.BenchMinIters,
Generations: maxFES,
Neighbours: -1,
}
uniDist := distuv.Uniform{
Min: cec2020.SearchRange.Min(),
Max: cec2020.SearchRange.Max(),
}
if maxFES == -1 {
somat3aLogger.Fatalf("could not get maxFES for current dim (%d), bailing", dim)
}
somat3aLogger.Printf("running bench \"%s\" for %dD, maxFES: %d\n",
s.BenchName, dim, maxFES,
)
funcStats.BenchResults = make([]stats.BenchRound, s.BenchMinIters)
// rand.Seed(uint64(time.Now().UnixNano()))
// create and seed a source of pseudo-randomness
src := rand.NewSource(uint64(rand.Int63()))
// track execution duration.
start := time.Now()
for iter := 0; iter < s.BenchMinIters; iter++ {
somat3aLogger.Printf("run: %d, bench: %s, %dD, started at %s",
iter, s.BenchName, dim, start,
)
funcStats.BenchResults[iter].Iteration = iter
uniDist.Src = src
// uniDist.Src = rand.NewSource(uint64(rand.Int63()))
// create a population with known params.
pop := newSOMAT3APopulation(s.BenchName, s.NP, s.K, s.M, s.N, s.Njumps, dim)
// set population seed.
pop.Seed = uint64(time.Now().UnixNano())
// initialise the population.
pop.Init()
bestResult := s.evaluate(pop)
// the core.
for i := 0; i < fesPerIter; i++ {
funcStats.BenchResults[iter].Results = append(
funcStats.BenchResults[iter].Results,
bestResult,
)
// call evolve where the inner workngs of SOMA T3A run.
s.evolve(pop)
// take measurements of current population fitness.
r := s.evaluate(pop)
// save if better.
if r < bestResult {
bestResult = r
}
// this block makes sure we properly count func evaluations for
// the purpose of correctly comparable plot comparison. i.e.
// append the winning (current best) value 4*NP-1 (the first
// best is already saved at this point) times to represent the
// fact that while evaluating (and comparing) other population
// individuals to the current best value is taking place in the
// background, the current best value itself is kept around and
// symbolically saved as the best of the Generation.
for x := 0; x < 4*s.NP-1; x++ {
funcStats.BenchResults[iter].Results = append(
funcStats.BenchResults[iter].Results,
bestResult,
)
}
}
}
elapsed := time.Since(start)
somat3aLogger.Printf("completed: bench: %s, %dD, computing took %s\n",
s.BenchName, dim, elapsed,
)
// get mean vals.
dimXMean.MeanVals = stats.GetMeanVals(funcStats.BenchResults, maxFES)
funcStats.MeanVals = dimXMean.MeanVals
somat3aStatDimX.BenchFuncStats = append(
somat3aStatDimX.BenchFuncStats, *funcStats,
)
somat3aStats = append(somat3aStats, *somat3aStatDimX)
somat3aMeans.BenchMeans = append(somat3aMeans.BenchMeans, *dimXMean)
}
sort.Sort(somat3aMeans)
s.chAlgoMeans <- somat3aMeans
s.ch <- somat3aStats
}
func (s *SOMAT3A) evaluate(pop *SOMAT3APopulation) float64 {
bestIndividual := pop.Population[pop.GetBestIdx()]
return pop.ProblemFunc(bestIndividual.CurX)
}
func (s *SOMAT3A) evolve(pop *SOMAT3APopulation) {
// organise.
leader, migrants := pop.organise()
// migrate.
pop.migrate(leader, migrants)
// actualise (position, best values..).
pop.actualise(migrants)
}
func (s *SOMAT3A) getAlgoName() string {
return "SOMA T3A"
}
// NewSOMAT3A returns a pointer to a new, uninitialised SOMAT3A instance.
func NewSOMAT3A() *SOMAT3A {
return &SOMAT3A{}
}

@ -0,0 +1,31 @@
// Copyright 2023 wanderer <a_mirre at utb dot cz>
// SPDX-License-Identifier: GPL-3.0-or-later
package ga
func (p *SOMAT3APopulation) actualise(migrants []int) {
f := p.ProblemFunc
for _, i := range migrants {
bestJump := p.Population[i].Jumps[0]
for j := 1; j < p.Njumps; j++ {
jump := p.Population[i].Jumps[j]
// incrementing fes for the following is done in
// somat3aMigration.go.
if f(jump) < f(bestJump) {
bestJump = jump
}
}
if f(bestJump) < f(p.Population[i].CurX) {
p.Population[i].CurX = bestJump
}
p.fes += 2
// clean jump history
p.Population[i].Jumps = nil
}
}

@ -0,0 +1,80 @@
// Copyright 2023 wanderer <a_mirre at utb dot cz>
// SPDX-License-Identifier: GPL-3.0-or-later
package ga
import (
"git.dotya.ml/wanderer/math-optim/bench/cec2020"
)
// migration is used in SOMA-type algos.
func (p *SOMAT3APopulation) migrate(leader int, migrants []int) {
for _, i := range migrants {
jumps := make([][]float64, p.Njumps)
// jump zero.
// jumps[0] = p.jump(i, leader, getStep(0, maxFES))
// bestJump of this migrant is now the jump zero.
// bestJump := jumps[0]
for j := 0; j < p.Njumps; j++ {
step := p.getStep()
jump := p.jump(i, leader, step)
p.fes += 2
jumps[j] = jump
}
p.Population[i].Jumps = jumps
p.Population[i].PRTVector = p.getPrtVector()
}
p.PRT = p.getPrt()
}
func (p *SOMAT3APopulation) jump(migrant, leader int, step float64) []float64 {
m := p.Population[migrant]
l := p.Population[leader]
prtv := m.PRTVector
t := step
jumpPosition := make([]float64, len(m.CurX))
for i := range m.CurX {
jumpPosition[i] = m.CurX[i] + ((l.CurX[i] - m.CurX[i]) * t * prtv[i])
}
return jumpPosition
}
// getPrtVector creates and returns the perturbation vector.
func (p *SOMAT3APopulation) getPrtVector() []float64 {
prtv := make([]float64, p.Dimen)
for i := range prtv {
r := p.zeroToOneRNG.Rand()
switch {
case r < p.PRT:
prtv[i] = 1
case r > p.PRT:
prtv[i] = 0
}
}
return prtv
}
// getPrt calculates the adaptive PRT.
func (p *SOMAT3APopulation) getPrt() float64 {
return 0.05 + 0.9*float64(p.fes/cec2020.GetMaxFES(p.Dimen))
}
// getStep calculates the step size.
func (p *SOMAT3APopulation) getStep() float64 {
return 0.15 + 0.08*float64(p.fes/cec2020.GetMaxFES(p.Dimen))
}

@ -0,0 +1,76 @@
// Copyright 2023 wanderer <a_mirre at utb dot cz>
// SPDX-License-Identifier: GPL-3.0-or-later
package ga
import "golang.org/x/exp/rand"
func (p *SOMAT3APopulation) organise() (int, []int) {
leader := p.selectLeader()
migrants := p.selectMigrants(leader)
return leader, migrants
}
func (p *SOMAT3APopulation) selectMigrants(leader int) []int {
m := make([]int, p.M)
n := make([]int, p.N)
popCount := len(p.Population)
m[0] = rand.Intn(popCount)
for i := 1; i < p.M; i++ {
mgen:
candidateM := rand.Intn(popCount)
for _, v := range m {
if candidateM == v {
goto mgen
}
}
m[i] = candidateM
}
n[0] = rand.Intn(p.M)
for i := 1; i < p.N; i++ {
ngen:
candidateN := rand.Intn(p.M)
for _, v := range n {
if candidateN == v || candidateN == leader {
goto ngen
}
}
n[i] = candidateN
}
return n
}
func (p *SOMAT3APopulation) selectLeader() int {
k := make([]int, p.K)
popCount := len(p.Population)
k[0] = rand.Intn(popCount)
for i := 1; i < p.K; i++ {
kgen:
candidate := rand.Intn(popCount)
for _, v := range k {
if candidate == v {
goto kgen
}
}
k[i] = candidate
}
// choose one of K to become the leader.
leader := k[rand.Intn(p.K)]
return leader
}

@ -0,0 +1,174 @@
// Copyright 2023 wanderer <a_mirre at utb dot cz>
// SPDX-License-Identifier: GPL-3.0-or-later
package ga
import (
"git.dotya.ml/wanderer/math-optim/bench/cec2020"
"golang.org/x/exp/rand"
"gonum.org/v1/gonum/stat/distuv"
)
// PopulationIndividual represents a single population individual.
type SOMAT3APopulationIndividual struct {
CurX DecisionVector
PRTVector []float64
Jumps [][]float64
}
// ChampionIndividual is a representation of the best individual currently
// available in the population.
type SOMAT3AChampionIndividual struct {
X DecisionVector
}
// Population groups population individuals (agents) with metadata about the population.
type SOMAT3APopulation struct {
// Population is a slice of population individuals.
Population []SOMAT3APopulationIndividual
// Champion represents the best individual of the population.
Champion SOMAT3AChampionIndividual
// Problem is the current benchmarking function this population is attempting to optimise.
Problem string
// ProblemFunction is the actual function to optimise.
ProblemFunc func([]float64) float64
// Dimen is the dimensionality of the problem being optimised.
Dimen int
// fes is the current number of function evaluations.
fes int
// Seed is the value used to (re)init population.
Seed uint64
zeroToOneRNG distuv.Uniform
// PRT is the perturbation parameter.
PRT float64
// K is the number of individuals to choose the leader from.
K int
// M denotes how many individuals are picked from the population to form a
// `team` during the organisation phase, can be thought of as "team size".
M int
// N is the number of best individuals in each team selected for actual
// migration.
N int
// Njumps is the fixed number of jumps that each chosen migrating
// individual performs on their way to the leader.
Njumps int
}
// GetIndividual returns a reference to individual at position n.
func (p *SOMAT3APopulation) GetIndividual(n uint) *PopulationIndividual {
return &PopulationIndividual{}
}
// GetBestIdx returns the index of the best population individual.
func (p *SOMAT3APopulation) GetBestIdx() int {
f := p.ProblemFunc
bestIndividual := 0
// the first one is the best one.
bestVal := f(p.Population[0].CurX)
for i, v := range p.Population {
current := f(v.CurX)
if current < bestVal {
bestIndividual = i
}
}
return bestIndividual
}
// GetWorstIdx returns the index of the worst population individual.
func (p *SOMAT3APopulation) GetWorstIdx() int {
f := p.ProblemFunc
worstIndividual := 0
// the first one is the worst one.
worstVal := f(p.Population[0].CurX)
for i, v := range p.Population {
current := f(v.CurX)
if current > worstVal {
worstIndividual = i
}
}
return worstIndividual
}
// Init initialises all individuals to random values.
func (p *SOMAT3APopulation) Init() {
low := cec2020.SearchRange.Min()
high := cec2020.SearchRange.Max()
// zeroToOneRNG := distuv.Uniform{
p.zeroToOneRNG = distuv.Uniform{
Min: 0,
Max: 1,
Src: rand.NewSource(p.Seed),
}
// gaLogger.Printf("population initialisation - popCount: %d, seed: %d\n",
// len(p.Population), p.Seed,
// )
p.PRT = p.getPrt()
// for i,v := range p.Population {
for i := range p.Population {
v := SOMAT3APopulationIndividual{}
v.CurX = make([]float64, p.Dimen)
for j := 0; j < p.Dimen; j++ {
// with current settings, this will always be `low + 0` since
// `high - low = 0`.
v.CurX[j] = low + p.zeroToOneRNG.Rand()*(high-low)
}
v.PRTVector = p.getPrtVector()
v.Jumps = make([][]float64, p.Njumps)
p.Population[i] = v
}
p.Champion = SOMAT3AChampionIndividual{X: p.Population[p.GetBestIdx()].CurX}
}
// Reinit reinitialises all individuals.
func (p *SOMAT3APopulation) Reinit() {
p.Init()
}
// Clear sets all vectors to 0.
func (p *SOMAT3APopulation) Clear() {
if p.Population != nil {
for _, v := range p.Population {
v.CurX = make([]float64, p.Dimen)
}
}
}
// Size returns the number of population individuals.
func (p *SOMAT3APopulation) Size() int {
return len(p.Population)
}
// newPopulation returns a pointer to a new, uninitialised population.
func newSOMAT3APopulation(benchProblem string, np, k, m, n, nj, dimen int) *SOMAT3APopulation {
p := &SOMAT3APopulation{
Problem: benchProblem,
ProblemFunc: cec2020.Functions[benchProblem],
K: k,
M: m,
N: n,
Njumps: nj,
Dimen: dimen,
Population: make([]SOMAT3APopulationIndividual, np),
}
return p
}