algo: rm cec2020 package
All checks were successful
continuous-integration/drone/push Build is passing

This commit is contained in:
leo 2023-02-23 23:13:11 +01:00
parent 806e513b55
commit 6c1458f08b
Signed by: wanderer
SSH Key Fingerprint: SHA256:Dp8+iwKHSlrMEHzE3bJnPng70I7LEsa3IJXRH/U+idQ
4 changed files with 0 additions and 684 deletions

@ -1,5 +0,0 @@
// Copyright 2023 wanderer <a_mirre at utb dot cz>
// SPDX-License-Identifier: GPL-3.0-or-later
// Package cec2020 implements algorithms required by CEC2020: jDE and T3A.
package cec2020

@ -1,500 +0,0 @@
// Copyright 2023 wanderer <a_mirre at utb dot cz>
// SPDX-License-Identifier: GPL-3.0-or-later
package cec2020
import (
"sort"
"time"
"golang.org/x/exp/rand"
"git.dotya.ml/wanderer/math-optim/bench/cec2020"
"git.dotya.ml/wanderer/math-optim/stats"
"gonum.org/v1/gonum/stat/distuv"
)
// JDE is a holder for the settings of an instance of a self-adapting
// differential evolution (jDE) algorithm.
type JDE struct {
// Generations denotes the number of generations the population evolves
// for. Special value -1 disables limiting the number of generations.
Generations int
// BenchMinIters is the number of iterations the bench function will be re-run (for statistical purposes).
BenchMinIters int
// Dimensions to solve the problem for.
Dimensions []int
// F is the initial value of the differential weight (mutation/weighting factor).
F float64
// CR is the initial value of the crossover probability constant.
CR float64
// rngF is a random number generator for differential weight (mutation/weighting factor).
rngF distuv.Uniform
// cr is a random number generator for crossover probability constant adapted over time.
rngCR distuv.Uniform
// MutationStrategy selects the mutation strategy, i.e. the variant of the
// jDE algorithm (0..17), see mutationStrategies.go for more details.
MutationStrategy int
// AdptScheme is the parameter self-adaptation scheme (0..1).
AdptScheme int
// NP is the initial population size.
NP int
// BenchName is a name of the problem to optimise.
BenchName string
// ch is a channel for writing back computed results.
ch chan []stats.Stats
// chAlgoMeans is a channel for writing back algo means.
chAlgoMeans chan *stats.AlgoBenchMean
// initialised denotes the initialisation state of the struct.
initialised bool
}
const (
// jDEMinNP is the minimum size of the initial population for jDE.
// for jDE PaGMO specifies 8.
jDEMinNP = 4
// fMin is the minimum allowed value of the differential weight.
fMin = 0.36
// fMax is the maximum allowed value of the differential weight.
fMax = 1.0
// crMin is the minimum allowed value of the crossover probability constant.
crMin = 0.0
// crMax is the maximum allowed value of the crossover probability constant.
crMax = 1.0
// tau1 is used in parameter self-adaptation.
tau1 = 0.1
// tau2 is used in parameter self-adaptation.
tau2 = 0.1
// fl is used in parameter self-adaptation.
fl = 0.1
// fu is used in parameter self-adaptation.
fu = 0.9
)
// Init initialises the jDE algorithm, performs sanity checks on the inputs.
func (j *JDE) Init(generations, benchMinIters, mutStrategy, adptScheme, np int, f, cr float64, dimensions []int, bench string, ch chan []stats.Stats, chAlgoMeans chan *stats.AlgoBenchMean) {
if j == nil {
cec2020Logger.Fatalln("jDE needs to be initialised before calling RunjDE, exiting...")
}
// check input parameters.
switch {
case generations == 0:
cec2020Logger.Fatalln("Generations cannot be 0, got", generations)
case generations == -1:
cec2020Logger.Println("Generations is '-1', disabling generation limits..")
case benchMinIters < 1:
cec2020Logger.Fatalln("Minimum bench iterations cannot be less than 1, got:", benchMinIters)
case mutStrategy < 0 || mutStrategy > 17:
cec2020Logger.Fatalln("Mutation strategy needs to be from the interval <0; 17>, got", mutStrategy)
case adptScheme < 0 || adptScheme > 1:
cec2020Logger.Fatalln("Parameter self-adaptation scheme needs to be from the interval <0; 1>, got", adptScheme)
case np < jDEMinNP:
cec2020Logger.Fatalf("NP cannot be less than %d, got: %d\n.", jDEMinNP, np)
case f < fMin || f > fMax:
cec2020Logger.Fatalf("F needs to be from the interval <%f;%f>, got: %f\n.", fMin, fMax, f)
case cr < crMin || cr > crMax:
cec2020Logger.Fatalf("CR needs to be from the interval <%f;>%f, got: %f\n.", crMin, crMax, cr)
case len(dimensions) == 0:
cec2020Logger.Fatalf("Dimensions cannot be empty, got: %+v\n", dimensions)
case bench == "":
cec2020Logger.Fatalln("Bench cannot be empty, got:", bench)
}
j.Generations = generations
j.BenchMinIters = benchMinIters
j.MutationStrategy = mutStrategy
j.AdptScheme = adptScheme
j.NP = np
j.F = f
j.CR = cr
rngsrc := rand.NewSource(uint64(rand.Int63()))
j.rngF = distuv.Uniform{Min: fMin, Max: fMax, Src: rngsrc}
j.rngCR = distuv.Uniform{Min: crMin, Max: crMax, Src: rngsrc}
j.Dimensions = dimensions
j.BenchName = bench
j.ch = ch
j.chAlgoMeans = chAlgoMeans
j.initialised = true
cec2020Logger.Printf("jDE init done, jDE:%+v", j)
}
// InitAndRun initialises the jDE algorithm, performs sanity checks on the
// inputs and calls the Run method.
func (j *JDE) InitAndRun(generations, benchMinIters, mutStrategy, adptScheme, np int, f, cr float64, dimensions []int, bench string, ch chan []stats.Stats, chAlgoMeans chan *stats.AlgoBenchMean) {
if j == nil {
cec2020Logger.Fatalln("jDE is nil, NewjDE() needs to be called first. exiting...")
}
j.Init(generations, benchMinIters, mutStrategy, adptScheme, np, f, cr, dimensions, bench, ch, chAlgoMeans)
j.Run()
}
// Run self-adapting differential evolution algorithm.
func (j *JDE) Run() {
if j == nil {
cec2020Logger.Fatalln("jDE is nil, NewjDE() needs to be called first. exiting...")
}
if !j.initialised {
cec2020Logger.Fatalln("jDE needs to be initialised before calling Run(), exiting...")
}
var jDEStats []stats.Stats
jDEMeans := &stats.AlgoBenchMean{
Algo: "jDE",
BenchMeans: make([]stats.BenchMean, 0, len(j.Dimensions)),
}
// run evolve for all dimensions.
for _, dim := range j.Dimensions {
maxFES := cec2020.GetMaxFES(dim)
fesPerIter := int(float64(maxFES / j.NP))
jDEStatDimX := &stats.Stats{
Algo: "jDE",
Dimens: dim,
Iterations: j.BenchMinIters,
Generations: maxFES,
NP: j.NP,
F: j.F,
CR: j.CR,
}
funcStats := &stats.FuncStats{BenchName: j.BenchName}
dimXMean := &stats.BenchMean{
Bench: j.BenchName,
Dimens: dim,
Iterations: j.BenchMinIters,
Generations: maxFES,
Neighbours: -1,
}
uniDist := distuv.Uniform{
Min: cec2020.SearchRange.Min(),
Max: cec2020.SearchRange.Max(),
}
if maxFES == -1 {
cec2020Logger.Fatalf("could not get maxFES for current dim (%d), bailing", dim)
}
cec2020Logger.Printf("running bench \"%s\" for %dD, maxFES: %d\n",
j.BenchName, dim, maxFES,
)
funcStats.BenchResults = make([]stats.BenchRound, j.BenchMinIters)
// rand.Seed(uint64(time.Now().UnixNano()))
// create and seed a source of pseudo-randomness
src := rand.NewSource(uint64(rand.Int63()))
// track execution duration.
start := time.Now()
for iter := 0; iter < j.BenchMinIters; iter++ {
cec2020Logger.Printf("run: %d, bench: %s, %dD, started at %s",
iter, j.BenchName, dim, start,
)
funcStats.BenchResults[iter].Iteration = iter
uniDist.Src = src
// create a population with known params.
pop := newPopulation(j.BenchName, j.NP, dim)
// set population seed.
pop.Seed = uint64(time.Now().UnixNano())
// initialise the population.
pop.Init()
var bestResult float64
// the core.
for i := 0; i < fesPerIter; i++ {
r := j.evaluate(pop)
// distinguish the first or any of the subsequent iterations.
switch i {
case 0:
bestResult = r
default:
// call evolve where jDE runs.
j.evolve(pop, &uniDist)
// take measurements of current population fitness.
r = j.evaluate(pop)
// save if better.
if r < bestResult {
bestResult = r
}
}
funcStats.BenchResults[iter].Results = append(
funcStats.BenchResults[iter].Results,
bestResult,
)
// this block makes sure we properly count func evaluations for
// the purpose of correctly comparable plot comparison. i.e.
// append the winning (current best) value NP-1 (the first best
// is already saved at this point) times to represent the fact
// that while evaluating (and comparing) other population
// individuals to the current best value is taking place in the
// background, the current best value itself is kept around and
// symbolically saved as the best of the Generation.
for x := 0; x < j.NP-1; x++ {
funcStats.BenchResults[iter].Results = append(
funcStats.BenchResults[iter].Results,
bestResult,
)
}
}
}
elapsed := time.Since(start)
cec2020Logger.Printf("completed: bench: %s, %dD, computing took %s\n",
j.BenchName, dim, elapsed,
)
// get mean vals.
dimXMean.MeanVals = stats.GetMeanVals(funcStats.BenchResults, maxFES)
funcStats.MeanVals = dimXMean.MeanVals
jDEStatDimX.BenchFuncStats = append(
jDEStatDimX.BenchFuncStats, *funcStats,
)
jDEStats = append(jDEStats, *jDEStatDimX)
jDEMeans.BenchMeans = append(jDEMeans.BenchMeans, *dimXMean)
}
sort.Sort(jDEMeans)
j.chAlgoMeans <- jDEMeans
j.ch <- jDEStats
}
// evaluate evaluates the fitness of current population.
func (j *JDE) evaluate(pop *Population) float64 {
f := cec2020.Functions[pop.Problem]
bestIndividual := pop.Population[pop.GetBestIdx()].CurX
bestSolution := f(bestIndividual)
return bestSolution
}
// evolve evolves a population by running the jDE (self-adapting Differential
// Evolution) algorithm on the passed population until termination conditions
// are met.
// nolint: gocognit
func (j *JDE) evolve(pop *Population, uniDist *distuv.Uniform) {
popCount := len(pop.Population)
for i, currentIndividual := range pop.Population {
idcs := make([]int, 0, popCount-1)
// idcs := make([]int, popCount-1)
// gather indices.
for k := 0; k < popCount; k++ {
if k != i {
idcs = append(idcs, k)
}
}
// randomly choose 3 of those idcs.
selectedIdcs := make([]int, 0)
selectedA := false
selectedB := false
selectedC := false
for !selectedA {
candidateA := rand.Intn(len(idcs)) % len(idcs)
if candidateA != i {
selectedIdcs = append(selectedIdcs, candidateA)
selectedA = true
}
}
for !selectedB {
a := selectedIdcs[0]
candidateB := rand.Intn(len(idcs)) % len(idcs)
if candidateB != i && candidateB != a {
selectedIdcs = append(selectedIdcs, candidateB)
selectedB = true
}
}
for !selectedC {
a := selectedIdcs[0]
b := selectedIdcs[1]
candidateC := rand.Intn(len(idcs)) % len(idcs)
if candidateC != i && candidateC != a && candidateC != b {
selectedIdcs = append(selectedIdcs, candidateC)
selectedC = true
}
}
// selected contains the selected population individuals.
selected := make([]PopulationIndividual, 0)
// select individuals for rand/1/bin
for _, idx := range selectedIdcs {
for k := 0; k < popCount; k++ {
if k == idx {
selected = append(selected, pop.Population[idx])
}
}
}
mutant := make([]float64, pop.Dimen)
// mutate.
for k := 0; k < pop.Dimen; k++ {
// mutant = a + mut * (b - c)
mutant[k] = selected[0].CurX[k] + (pop.BestF * (selected[1].CurX[k] - selected[2].CurX[k]))
// clip values to <0;1>.
switch {
case mutant[k] < 0:
mutant[k] = 0
case mutant[k] > 1:
mutant[k] = 1
}
}
crossPoints := make([]bool, pop.Dimen)
// prepare crossover points (binomial crossover).
for k := 0; k < pop.Dimen; k++ {
if v := uniDist.Rand(); v < pop.BestCR {
crossPoints[k] = true
} else {
crossPoints[k] = false
}
}
trial := make([]float64, pop.Dimen)
// recombine using crossover points.
for k := 0; k < pop.Dimen; k++ {
if crossPoints[k] {
trial[k] = currentIndividual.CurX[k]
} else {
trial[k] = mutant[k]
}
}
f := cec2020.Functions[pop.Problem]
currentFitness := f(currentIndividual.CurX)
trialFitness := f(trial)
// replace if better.
if trialFitness < currentFitness {
pop.Population[i].CurX = trial
}
}
// adapt parameters.
j.adaptParameters(pop)
}
// adptParameters adapts parameters F and CR based on
// https://labraj.feri.um.si/images/0/05/CEC09_slides_Brest.pdf.
func (j *JDE) adaptParameters(p *Population) {
var nuF float64
var nuCR float64
switch {
case j.AdptScheme == 0:
if rand2 := j.getRandF(); rand2 < tau1 {
nuF = fl + (j.getRandF() * fu)
} else {
nuF = p.f[len(p.f)-1]
}
if rand4 := j.getRandCR(); rand4 < tau2 {
nuCR = j.getRandCR()
} else {
nuCR = p.cr[len(p.cr)-1]
}
case j.AdptScheme == 1:
nuF = p.BestF + j.getRandF()*0.5
nuCR = p.BestCR + j.getRandCR()*0.5
}
// sort out F.
p.f = append(p.f, nuF)
// sort out CR
p.cr = append(p.cr, nuCR)
// update best, if improved.
switch {
case nuF < p.BestF:
p.BestF = nuF
case nuCR < p.BestCR:
p.BestCR = nuCR
}
}
// getRandF returns a random value of F for parameter self-adaptation.
func (j *JDE) getRandF() float64 {
return j.rngF.Rand()
}
// getRandCR returns a random value of CR for parameter self-adaptation.
func (j *JDE) getRandCR() float64 {
return j.rngCR.Rand()
}
// NewjDE returns a pointer to a new, uninitialised jDE instance.
func NewjDE() *JDE {
return &JDE{}
}
// LogPrintln wraps the jDE logger's Println func.
func LogPrintln(v ...any) {
cec2020Logger.Println(v...)
}
// LogPrintf wraps the jDE logger's Printf func.
func LogPrintf(s string, v ...any) {
cec2020Logger.Printf(s, v...)
}
// LogFatalln wraps the jDE logger's Fatalln func.
func LogFatalln(s string) {
cec2020Logger.Fatalln(s)
}
// LogFatalf wraps the jDE logger's Fatalf func.
func LogFatalf(s string, v ...any) {
cec2020Logger.Fatalf(s, v...)
}

@ -1,12 +0,0 @@
// Copyright 2023 wanderer <a_mirre at utb dot cz>
// SPDX-License-Identifier: GPL-3.0-or-later
package cec2020
import (
"log"
"os"
)
// cec2020Logger declares and initialises a "custom" CEC2020 logger.
var cec2020Logger = log.New(os.Stderr, " *** ∁ cec2020:", log.Ldate|log.Ltime|log.Lshortfile)

@ -1,167 +0,0 @@
// Copyright 2023 wanderer <a_mirre at utb dot cz>
// SPDX-License-Identifier: GPL-3.0-or-later
package cec2020
import (
"git.dotya.ml/wanderer/math-optim/bench/cec2020"
"golang.org/x/exp/rand"
"gonum.org/v1/gonum/stat/distuv"
)
type (
// DecisionVector is a []float64 abstraction representing the decision vector.
DecisionVector []float64
// FitnessVector is a []float64 abstraction representing the fitness vector.
FitnessVector []float64
// ConstraintVector is a []float64 abstraction representing the constraint vector.
ConstraintVector []float64
)
// PopulationIndividual representats a single population individual.
type PopulationIndividual struct {
CurX DecisionVector
CurV DecisionVector
CurC ConstraintVector
CurF FitnessVector
BestX DecisionVector
BestC ConstraintVector
BestF FitnessVector
}
// ChampionIndividual is a representation of the best individual currently
// available in the population.
type ChampionIndividual struct {
X DecisionVector
C ConstraintVector
F FitnessVector
}
// Population groups population individuals (agents) with metadata about the population.
type Population struct {
// Population is a slice of population individuals.
Population []PopulationIndividual
// Problem is the current benchmarking function this population is attempting to optimise.
Problem string
// Dimen is the dimensionality of the problem being optimised.
Dimen int
// Seed is the value used to (re)init population.
Seed uint64
// f is the differential weight (mutation/weighting factor) adapted over time.
f []float64
// cr is the crossover probability constant adapted over time.
cr []float64
// BestF is the best recorded value of the differential weight F.
BestF float64
// BestCR is the best recorded value of the differential weight CR.
BestCR float64
}
// GetIndividual returns a reference to individual at position n.
func (p *Population) GetIndividual(n uint) *PopulationIndividual { return &PopulationIndividual{} }
// GetBestIdx returns the index of the best population individual.
func (p *Population) GetBestIdx() int {
f := cec2020.Functions[p.Problem]
bestIndividual := 0
// the first one is the best one.
bestVal := f(p.Population[0].CurX)
for i, v := range p.Population {
current := f(v.CurX)
if current < bestVal {
bestIndividual = i
}
}
return bestIndividual
}
// GetWorstIdx returns the index of the worst population individual.
func (p *Population) GetWorstIdx() int {
f := cec2020.Functions[p.Problem]
worstIndividual := 0
// the first one is the worst one.
worstVal := f(p.Population[0].CurX)
for i, v := range p.Population {
current := f(v.CurX)
if current > worstVal {
worstIndividual = i
}
}
return worstIndividual
}
// Init initialises all individuals to random values.
func (p *Population) Init() {
uniform := distuv.Uniform{
Min: cec2020.SearchRange.Min(),
Max: cec2020.SearchRange.Max(),
}
uniform.Src = rand.NewSource(p.Seed)
for i, v := range p.Population {
v.CurX = make([]float64, p.Dimen)
for j := 0; j < p.Dimen; j++ {
v.CurX[j] = uniform.Rand()
}
p.Population[i] = v
}
p.f = make([]float64, p.Size())
p.cr = make([]float64, p.Size())
}
// Reinit reinitialises all individuals.
func (p *Population) Reinit() {
p.Init()
}
// ReinitN reinitialises the individual at position n.
func (p *Population) ReinitN(n uint) {}
// Clear sets all vectors to 0.
func (p *Population) Clear() {
if p.Population != nil {
for _, v := range p.Population {
v.CurX = make([]float64, p.Dimen)
v.CurC = make([]float64, p.Dimen)
v.CurF = make([]float64, p.Dimen)
v.CurV = make([]float64, p.Dimen)
v.BestX = make([]float64, p.Dimen)
v.BestC = make([]float64, p.Dimen)
v.BestF = make([]float64, p.Dimen)
}
}
}
// MeanVelocity computes the mean current velocity of all individuals in the population.
func (p *Population) MeanVelocity() float64 { return 0.0 }
// Size returns the number of population individuals.
func (p *Population) Size() int { return len(p.Population) }
// newPopulation returns a pointer to a new, uninitialised population.
func newPopulation(benchProblem string, np, dimen int) *Population {
p := &Population{}
p.Problem = benchProblem
p.Dimen = dimen
// pre-alloc.
p.Population = make([]PopulationIndividual, np)
return p
}