chore: add package de (Differential Evolution)
All checks were successful
continuous-integration/drone/push Build is passing

base package (wip)
This commit is contained in:
leo 2023-01-16 13:30:38 +01:00
parent 84fcad715c
commit 525b30c38e
Signed by: wanderer
SSH Key Fingerprint: SHA256:Dp8+iwKHSlrMEHzE3bJnPng70I7LEsa3IJXRH/U+idQ
5 changed files with 271 additions and 9 deletions

6
algo/de/doc.go Normal file

@ -0,0 +1,6 @@
// Copyright 2023 wanderer <a_mirre at utb dot cz>
// SPDX-License-Identifier: GPL-3.0-or-later
// Package de contains implementation details of Differential Evolution kind of
// algorithms.
package de

139
algo/de/jDE.go Normal file

@ -0,0 +1,139 @@
// Copyright 2023 wanderer <a_mirre at utb dot cz>
// SPDX-License-Identifier: GPL-3.0-or-later
package de
import (
"log"
"os"
"sync"
"git.dotya.ml/wanderer/math-optim/stats"
)
// JDE is a holder for the settings of an instance of a self-adapting
// differential evolution (jDE) algorithm.
type JDE struct {
// Generations denotes the number of generations the population evolves
// for. Special value -1 disables limiting the number of generations.
Generations int
// Dimensions to solve the problem for.
Dimensions []int
// F is the differential weight (mutation/weighting factor).
F float64
// CR is the crossover probability constant.
CR float64
// MutationStrategy selects the mutation strategy, i.e. the variant of the
// jDE algorithm (0..17), see mutationStrategies.go for more details.
MutationStrategy int
// AdptScheme is the parameter self-adaptation scheme (0..1).
AdptScheme int
// NP is the initial population size.
NP int
// Population is a pointer to population
Population *Population
// BenchName is a name of the problem to optimise.
BenchName string
// initialised denotes the initialisation state of the struct.
initialised bool
}
const (
// jDEMinNP is the minimum size of the initial population for jDE.
jDEMinNP = 4
// fMin is the minimum allowed value of the differential weight.
fMin = 0.5
// fMax is the maximum allowed value of the differential weight.
fMax = 2.0
// crMin is the minimum allowed value of the crossover probability constant.
crMin = 0.2
// crMax is the maximum allowed value of the crossover probability constant.
crMax = 0.9
)
// jDELogger declares and initialises a "custom" jDE logger.
var jDELogger = log.New(os.Stderr, " *** δ jDE:", log.Ldate|log.Ltime|log.Lshortfile)
// Init initialises the jDE algorithm, performs sanity checks on the inputs.
func (j *JDE) Init(generations, mutStrategy, adptScheme, np int, f, cr float64, dimensions []int, bench string, ch chan []stats.Stats) {
if j == nil {
jDELogger.Fatalln("jDE needs to be initialised before calling RunjDE, exiting...")
}
// check input parameters.
switch {
case generations == 0:
jDELogger.Fatalln("Generations cannot be 0, got", generations)
case generations == -1:
jDELogger.Println("Generations is '-1', disabling generation limits..")
case mutStrategy < 0 || mutStrategy > 17:
jDELogger.Fatalln("Mutation strategy needs to be from the interval <0; 17>, got", mutStrategy)
case adptScheme < 0 || adptScheme > 1:
jDELogger.Fatalln("Parameter self-adaptation scheme needs to be from the interval <0; 1>, got", adptScheme)
case np < jDEMinNP:
jDELogger.Fatalf("NP needs to be greater than %d, got: %d\n.", jDEMinNP, np)
case f < fMin || f > fMax:
jDELogger.Fatalf("F needs to be from the interval <%f;%f>, got: %f\n.", fMin, fMax, f)
case cr < crMin || cr > crMax:
jDELogger.Fatalf("CR needs to be from the interval <%f;>%f, got: %f\n.", crMin, crMax, cr)
case len(dimensions) == 0:
jDELogger.Fatalf("Dimensions cannot be empty, got: %+v\n", dimensions)
case bench == "":
jDELogger.Fatalln("Bench cannot be empty, got:", bench)
}
j.Generations = generations
j.MutationStrategy = mutStrategy
j.AdptScheme = adptScheme
j.NP = np
j.F = f
j.CR = cr
j.Dimensions = dimensions
j.BenchName = bench
j.initialised = true
pop := newPopulation(bench, j.NP)
pop.Init()
}
// Evolve evolves a population by running the jDE (self-adapting Differential
// Evolution) algorithm on the passed population until termination conditions
// are met.
func (j *JDE) Evolve(maxFES int, wg *sync.WaitGroup) {}
// Run self-adapting differential evolution algorithm.
func RunjDE(jDE *JDE) {}
// NewjDE returns a pointer to a new, uninitialised jDE instance.
func NewjDE() *JDE {
return &JDE{}
}
// LogPrintln wraps the jDE logger's Println func.
func LogPrintln(v ...any) {
jDELogger.Println(v...)
}
// LogPrintf wraps the jDE logger's Printf func.
func LogPrintf(s string, v ...any) {
jDELogger.Printf(s, v...)
}
// LogFatalln wraps the jDE logger's Fatalln func.
func LogFatalln(s string) {
jDELogger.Fatalln(s)
}
// LogFatalf wraps the jDE logger's Fatalf func.
func LogFatalf(s string, v ...any) {
jDELogger.Fatalf(s, v...)
}

@ -0,0 +1,51 @@
// Copyright 2023 wanderer <a_mirre at utb dot cz>
// SPDX-License-Identifier: GPL-3.0-or-later
package de
const (
// DEBest1Exp is the DE/best/1/exp strategy.
DEBest1Exp int = iota
// DERand1Exp is the DE/rand/1/exp strategy.
DERand1Exp
// DERandtoBest1Exp is the DE/rand-to-best/1/exp strategy.
DERandtoBest1Exp
// DEBest2Exp is the DE/best/2/exp strategy.
DEBest2Exp
// DERand2Exp is the DE/rand/2/exp strategy.
DERand2Exp
// binomial cross-over strategies.
// DEBest1Bin is the DE/best/1/bin strategy.
DEBest1Bin
// DERand1Bin is the DE/rand/1/bin strategy.
DERand1Bin
// DERandtoBest1Bin is the DE/rand-to-best/1/bin strategy.
DERandtoBest1Bin
// DEBest2Bin is the DE/best/2/bin strategy.
DEBest2Bin
// DERand2Bin is the DE/rand/2/bin strategy.
DERand2Bin
// 3-wide changes.
// DEBest3Exp is the DE/best/3/exp strategy.
DEBest3Exp
// DEBest3Bin is the DE/best/3/bin strategy.
DEBest3Bin
// DERand3Exp is the DE/rand/3/exp strategy.
DERand3Exp
// DERand3Bin is the DE/rand/3/bin strategy.
DERand3Bin
// DERandtoCurrent2E is the DE/rand-to-current/2/exp strategy.
DERandtoCurrent2Exp
// DERandtoCurrent2Bin is the DE/rand-to-current/2/bin strategy.
DERandtoCurrent2Bin
// DERandtoBestandCurrent2Exp is the DE/rand-to-best-and-current/2/exp strategy.
DERandtoBestandCurrent2Exp
// DERandtoBestandCurrent2Bin is the DE/rand-to-best-and-current/2/bin strategy.
DERandtoBestandCurrent2Bin
)

75
algo/de/population.go Normal file

@ -0,0 +1,75 @@
// Copyright 2023 wanderer <a_mirre at utb dot cz>
// SPDX-License-Identifier: GPL-3.0-or-later
package de
type (
// DecisionVector is a []float64 abstraction representing the decision vector.
DecisionVector []float64
// FitnessVector is a []float64 abstraction representing the fitness vector.
FitnessVector []float64
// ConstraintVector is a []float64 abstraction representing the constraint vector.
ConstraintVector []float64
)
// PopulationIndividual representats a single population individual.
type PopulationIndividual struct {
CurX DecisionVector
CurV DecisionVector
CurC ConstraintVector
CurF FitnessVector
BestX DecisionVector
BestC ConstraintVector
BestF FitnessVector
}
// ChampionIndividual is a representation of the best individual currently
// available in the population.
type ChampionIndividual struct {
X DecisionVector
C ConstraintVector
F FitnessVector
}
// Population groups population individuals (agents) with metadata about the population.
type Population struct {
// Population is a slice of population individuals.
Population []PopulationIndividual
// Problem is the current benchmarking function this population is attempting to optimise.
Problem string
// Seed is the value used to (re)init population.
Seed uint64
}
// GetIndividal returns a reference to individual at position n.
func (p *Population) GetIndividual(n uint) *PopulationIndividual { return &PopulationIndividual{} }
func (p *Population) GetBestIdx() int { return 0 }
func (p *Population) GetWorstIdx() int { return 0 }
func (p *Population) SetX(n int, nuX DecisionVector) {}
func (p *Population) SetV(n int, nuV DecisionVector) {}
// Init initialises all individuals.
func (p *Population) Init() {}
// Reinit reinitialises all individuals.
func (p *Population) Reinit() {}
// ReinitN reinitialises the individual at position n.
func (p *Population) ReinitN(n uint) {}
func (p *Population) Clear() {}
// meanVelocity computes the mean current velocity of all individuals in the population.
func (p *Population) MeanVelocity() float64 { return 0.0 }
// newPopulation returns a pointer to a new, uninitialised population.
func newPopulation(benchProblem string, np int) *Population {
p := &Population{}
p.Problem = benchProblem
// pre-alloc.
p.Population = make([]PopulationIndividual, 0, np)
return p
}

@ -1,9 +0,0 @@
// Copyright 2022 wanderer <a_mirre at utb dot cz>
// SPDX-License-Identifier: GPL-3.0-or-later
package algo
// Evolve runs an evolution algorithm on population (WIP).
func Evolve(population any) any {
return population
}