math-optim/algo/de/jDE.go

425 lines
11 KiB
Go
Raw Normal View History

// Copyright 2023 wanderer <a_mirre at utb dot cz>
// SPDX-License-Identifier: GPL-3.0-or-later
package de
import (
"log"
"os"
2023-01-21 02:35:29 +01:00
"sort"
2023-01-20 18:36:04 +01:00
"time"
2023-01-21 02:35:29 +01:00
"golang.org/x/exp/rand"
"git.dotya.ml/wanderer/math-optim/bench"
"git.dotya.ml/wanderer/math-optim/stats"
2023-01-21 02:35:29 +01:00
"gonum.org/v1/gonum/stat/distuv"
)
// JDE is a holder for the settings of an instance of a self-adapting
// differential evolution (jDE) algorithm.
type JDE struct {
// Generations denotes the number of generations the population evolves
// for. Special value -1 disables limiting the number of generations.
Generations int
2023-01-20 15:52:45 +01:00
// BenchMinIters is the number of iterations the bench function will be re-run (for statistical purposes).
BenchMinIters int
// Dimensions to solve the problem for.
Dimensions []int
// F is the differential weight (mutation/weighting factor).
F float64
// CR is the crossover probability constant.
CR float64
// MutationStrategy selects the mutation strategy, i.e. the variant of the
// jDE algorithm (0..17), see mutationStrategies.go for more details.
MutationStrategy int
// AdptScheme is the parameter self-adaptation scheme (0..1).
AdptScheme int
// NP is the initial population size.
NP int
// BenchName is a name of the problem to optimise.
BenchName string
2023-01-19 20:22:07 +01:00
// ch is a channel for writing back computed results.
ch chan []stats.Stats
2023-01-21 02:35:29 +01:00
// chAlgoMeans is a channel for writing back algo means.
chAlgoMeans chan *stats.AlgoBenchMean
// initialised denotes the initialisation state of the struct.
initialised bool
}
const (
// jDEMinNP is the minimum size of the initial population for jDE.
jDEMinNP = 4
// fMin is the minimum allowed value of the differential weight.
fMin = 0.5
// fMax is the maximum allowed value of the differential weight.
fMax = 2.0
// crMin is the minimum allowed value of the crossover probability constant.
crMin = 0.2
// crMax is the maximum allowed value of the crossover probability constant.
crMax = 0.9
)
// jDELogger declares and initialises a "custom" jDE logger.
var jDELogger = log.New(os.Stderr, " *** δ jDE:", log.Ldate|log.Ltime|log.Lshortfile)
// Init initialises the jDE algorithm, performs sanity checks on the inputs.
2023-01-21 02:35:29 +01:00
func (j *JDE) Init(generations, benchMinIters, mutStrategy, adptScheme, np int, f, cr float64, dimensions []int, bench string, ch chan []stats.Stats, chAlgoMeans chan *stats.AlgoBenchMean) {
if j == nil {
jDELogger.Fatalln("jDE needs to be initialised before calling RunjDE, exiting...")
}
// check input parameters.
switch {
case generations == 0:
jDELogger.Fatalln("Generations cannot be 0, got", generations)
case generations == -1:
jDELogger.Println("Generations is '-1', disabling generation limits..")
2023-01-20 15:52:45 +01:00
case benchMinIters < 1:
jDELogger.Fatalln("Minimum bench iterations cannot be less than 1, got:", benchMinIters)
case mutStrategy < 0 || mutStrategy > 17:
jDELogger.Fatalln("Mutation strategy needs to be from the interval <0; 17>, got", mutStrategy)
case adptScheme < 0 || adptScheme > 1:
jDELogger.Fatalln("Parameter self-adaptation scheme needs to be from the interval <0; 1>, got", adptScheme)
case np < jDEMinNP:
jDELogger.Fatalf("NP cannot be less than %d, got: %d\n.", jDEMinNP, np)
case f < fMin || f > fMax:
jDELogger.Fatalf("F needs to be from the interval <%f;%f>, got: %f\n.", fMin, fMax, f)
case cr < crMin || cr > crMax:
jDELogger.Fatalf("CR needs to be from the interval <%f;>%f, got: %f\n.", crMin, crMax, cr)
case len(dimensions) == 0:
jDELogger.Fatalf("Dimensions cannot be empty, got: %+v\n", dimensions)
case bench == "":
jDELogger.Fatalln("Bench cannot be empty, got:", bench)
}
j.Generations = generations
2023-01-20 15:52:45 +01:00
j.BenchMinIters = benchMinIters
j.MutationStrategy = mutStrategy
j.AdptScheme = adptScheme
j.NP = np
j.F = f
j.CR = cr
j.Dimensions = dimensions
j.BenchName = bench
2023-01-19 20:22:07 +01:00
j.ch = ch
2023-01-21 02:35:29 +01:00
j.chAlgoMeans = chAlgoMeans
j.initialised = true
}
2023-01-19 19:57:41 +01:00
// InitAndRun initialises the jDE algorithm, performs sanity checks on the
// inputs and calls the Run method.
2023-01-21 02:35:29 +01:00
func (j *JDE) InitAndRun(generations, benchMinIters, mutStrategy, adptScheme, np int, f, cr float64, dimensions []int, bench string, ch chan []stats.Stats, chAlgoMeans chan *stats.AlgoBenchMean) {
2023-01-19 19:57:41 +01:00
if j == nil {
jDELogger.Fatalln("jDE is nil, NewjDE() needs to be called first. exiting...")
}
2023-01-21 02:35:29 +01:00
j.Init(generations, benchMinIters, mutStrategy, adptScheme, np, f, cr, dimensions, bench, ch, chAlgoMeans)
2023-01-19 19:57:41 +01:00
j.Run()
}
// Run self-adapting differential evolution algorithm.
func (j *JDE) Run() {
if j == nil {
jDELogger.Fatalln("jDE is nil, NewjDE() needs to be called first. exiting...")
}
if !j.initialised {
jDELogger.Fatalln("jDE needs to be initialised before calling Run(), exiting...")
}
2023-01-21 02:35:29 +01:00
var jDEStats []stats.Stats
jDEMeans := &stats.AlgoBenchMean{
Algo: "jDE",
BenchMeans: make([]stats.BenchMean, 0, len(j.Dimensions)),
}
// run evolve for for all dimensions.
for _, dim := range j.Dimensions {
maxFES := bench.GetGAMaxFES(dim)
2023-01-21 02:35:29 +01:00
fesPerIter := int(float64(maxFES / j.NP))
jDEStatDimX := &stats.Stats{
Algo: "jDE",
Dimens: dim,
Iterations: j.BenchMinIters,
Generations: maxFES,
NP: j.NP,
F: j.F,
CR: j.CR,
2023-01-21 02:35:29 +01:00
}
funcStats := &stats.FuncStats{BenchName: j.BenchName}
dimXMean := &stats.BenchMean{
Bench: j.BenchName,
Dimens: dim,
Iterations: j.BenchMinIters,
Generations: maxFES,
Neighbours: -1,
}
benchFuncParams := bench.FunctionParams[j.BenchName]
uniDist := distuv.Uniform{
Min: benchFuncParams.Min(),
Max: benchFuncParams.Max(),
}
2023-02-09 03:56:31 +01:00
// jDELogger.Printf("running bench \"%s\" for %dD, maxFES: %d\n",
// j.BenchName, dim, maxFES,
// )
2023-01-21 02:35:29 +01:00
funcStats.BenchResults = make([]stats.BenchRound, j.BenchMinIters)
// rand.Seed(uint64(time.Now().UnixNano()))
// create and seed a source of preudo-randomness
src := rand.NewSource(uint64(rand.Int63()))
// track execution duration.
start := time.Now()
for iter := 0; iter < j.BenchMinIters; iter++ {
jDELogger.Printf("run: %d, bench: %s, %dD, started at %s",
iter, j.BenchName, dim, start,
)
funcStats.BenchResults[iter].Iteration = iter
uniDist.Src = src
// create a population with known params.
pop := newPopulation(j.BenchName, j.NP, dim)
// set population seed.
pop.Seed = uint64(time.Now().UnixNano())
// initialise the population.
pop.Init()
// jDELogger.Printf("%+v\n", pop.Population)
var bestResult float64
// the core.
for i := 0; i < fesPerIter; i++ {
r := j.evaluate(pop)
// distinguish the first or any of the subsequent iterations.
switch i {
case 0:
bestResult = r
default:
// call evolve where jDE runs.
j.evolve(pop, &uniDist)
// take measurements of current population fitness.
r = j.evaluate(pop)
// save if better.
if r < bestResult {
bestResult = r
}
}
funcStats.BenchResults[iter].Results = append(
funcStats.BenchResults[iter].Results,
bestResult,
)
// this block makes sure we properly count func evaluations for
// the purpose of correctly comparable plot comparison. i.e.
// append the winning (current best) value NP-1 (the first best
// is already saved at this point) times to represent the fact
// that while evaluating (and comparing) other population
// individuals to the current best value is taking place in the
// background, the current best value itself is kept around and
// symbolically saved as the best of the Generation.
for x := 0; x < j.NP-1; x++ {
funcStats.BenchResults[iter].Results = append(
funcStats.BenchResults[iter].Results,
bestResult,
)
}
}
}
elapsed := time.Since(start)
jDELogger.Printf("completed: bench: %s, %dD, computing took %s\n",
j.BenchName, dim, elapsed,
)
// get mean vals.
dimXMean.MeanVals = stats.GetMeanVals(funcStats.BenchResults, maxFES)
funcStats.MeanVals = dimXMean.MeanVals
jDEStatDimX.BenchFuncStats = append(
jDEStatDimX.BenchFuncStats, *funcStats,
)
jDEStats = append(jDEStats, *jDEStatDimX)
jDEMeans.BenchMeans = append(jDEMeans.BenchMeans, *dimXMean)
}
2023-01-21 02:35:29 +01:00
sort.Sort(jDEMeans)
2023-01-20 18:36:04 +01:00
2023-01-21 02:35:29 +01:00
j.chAlgoMeans <- jDEMeans
j.ch <- jDEStats
}
2023-01-20 18:36:04 +01:00
2023-01-21 02:35:29 +01:00
// evaluate evaluates the fitness of current population.
func (j *JDE) evaluate(pop *Population) float64 {
f := bench.Functions[pop.Problem]
bestIndividual := pop.Population[pop.GetBestIdx()].CurX
2023-01-21 02:35:29 +01:00
bestSolution := f(bestIndividual)
return bestSolution
}
// evolve evolves a population by running the jDE (self-adapting Differential
// Evolution) algorithm on the passed population until termination conditions
// are met.
2023-01-21 02:35:29 +01:00
// nolint: gocognit
func (j *JDE) evolve(pop *Population, uniDist *distuv.Uniform) {
popCount := len(pop.Population)
for i, currentIndividual := range pop.Population {
idcs := make([]int, 0, popCount-1)
// gather indices.
for k := 0; k < popCount; k++ {
if k != i {
idcs = append(idcs, k)
}
}
// randomly choose 3 of those idcs.
selectedIdcs := make([]int, 0)
selectedA := false
selectedB := false
selectedC := false
for !selectedA {
candidateA := rand.Intn(len(idcs)) % len(idcs)
if candidateA != i {
selectedIdcs = append(selectedIdcs, candidateA)
selectedA = true
}
}
for !selectedB {
a := selectedIdcs[0]
candidateB := rand.Intn(len(idcs)) % len(idcs)
if candidateB != i && candidateB != a {
selectedIdcs = append(selectedIdcs, candidateB)
selectedB = true
}
}
for !selectedC {
a := selectedIdcs[0]
b := selectedIdcs[1]
candidateC := rand.Intn(len(idcs)) % len(idcs)
if candidateC != i && candidateC != a && candidateC != b {
selectedIdcs = append(selectedIdcs, candidateC)
selectedC = true
}
}
// selected contains the selected population individuals.
selected := make([]PopulationIndividual, 0)
// select individuals for rand/1/bin
for _, idx := range selectedIdcs {
for k := 0; k < popCount; k++ {
if k == idx {
selected = append(selected, pop.Population[idx])
}
}
}
mutant := make([]float64, pop.Dimen)
// mutate.
for k := 0; k < pop.Dimen; k++ {
// mutant = a + mut * (b - c)
mutant[k] = selected[0].CurX[k] + (j.F * (selected[1].CurX[k] - selected[2].CurX[k]))
// clip values to <0;1>.
switch {
case mutant[k] < 0:
mutant[k] = 0
case mutant[k] > 1:
mutant[k] = 1
}
}
crossPoints := make([]bool, pop.Dimen)
// prepare crossover points (binomial crossover).
for k := 0; k < pop.Dimen; k++ {
if v := uniDist.Rand(); v < j.CR {
crossPoints[k] = true
} else {
crossPoints[k] = false
}
}
trial := make([]float64, pop.Dimen)
// recombine using crossover points.
for k := 0; k < pop.Dimen; k++ {
if crossPoints[k] {
trial[k] = currentIndividual.CurX[k]
}
}
f := bench.Functions[pop.Problem]
currentFitness := f(currentIndividual.CurX)
trialFitness := f(trial)
// replace if better.
if trialFitness < currentFitness {
pop.Population[i].CurX = trial
}
}
}
// NewjDE returns a pointer to a new, uninitialised jDE instance.
func NewjDE() *JDE {
return &JDE{}
}
// LogPrintln wraps the jDE logger's Println func.
func LogPrintln(v ...any) {
jDELogger.Println(v...)
}
// LogPrintf wraps the jDE logger's Printf func.
func LogPrintf(s string, v ...any) {
jDELogger.Printf(s, v...)
}
// LogFatalln wraps the jDE logger's Fatalln func.
func LogFatalln(s string) {
jDELogger.Fatalln(s)
}
// LogFatalf wraps the jDE logger's Fatalf func.
func LogFatalf(s string, v ...any) {
jDELogger.Fatalf(s, v...)
}