package main import ( "flag" "log" "os/exec" "git.dotya.ml/wanderer/ak9im/p2/stats" "git.dotya.ml/wanderer/ak9im/p3/lrls" ) var ( datafile = flag.String("datafile", "", "read data from this file") vis = flag.Bool("vis", false, "run 'python visualise.py' to produce visualisations") ) func run() error { flag.Parse() if *datafile != "" { data, err := readFile(datafile) if err != nil { return err } u := 0 y := 1 meanU := stats.Mean(data[u]) meanY := stats.Mean(data[y]) varianceU := stats.Variance(data[u]) varianceY := stats.Variance(data[y]) maxShift := 0.1 autocorrelationU := stats.Autocorrelate(data[u], maxShift) autocorrelationY := stats.Autocorrelate(data[y], maxShift) mutCorrelationUY, err := stats.MutCorrelate(data[u], data[y], maxShift) if err != nil { return err } mutCorrelationYU, err := stats.MutCorrelate(data[y], data[u], maxShift) if err != nil { return err } cov := stats.Covariance(data[u], data[y]) theta, errVals, err := lrls.Estimate(1, data[u], data[y]) if err != nil { return err } thetaT := lrls.TransposeTheta(theta) log.Printf("len(data): %d", len(data[u])) log.Printf("means - u: %v, y: %v", meanU, meanY) log.Printf("variance - u: %v, y: %v", varianceU, varianceY) log.Printf("covariance U,Y: %v", cov) log.Printf("correlation U,Y: %v", stats.Correlation(data[u], data[y])) err = saveStuff( meanU, meanY, varianceU, varianceY, cov, autocorrelationU, autocorrelationY, mutCorrelationUY, mutCorrelationYU, errVals, theta, thetaT, ) if err != nil { return err } } if *vis { err := visualise() if err != nil { return err } } return nil } func visualise() error { red := "\033[31m" cyan := "\033[36m" reset := "\033[0m" f := "visualise.py" log.Printf("running %s`python %s`%s", cyan, f, reset) out, err := exec.Command("python", f).CombinedOutput() if err != nil { log.Printf("visualise failed with:\n\n%s%s%s\n", red, out, reset) return err } return nil }