import seaborn as sb import pandas as pd import scipy import matplotlib.pyplot as plt data_uy=pd.read_csv('data/m.csv') # head(data_uy) correlation_result=scipy.stats.pearsonr(data_uy['u'], data_uy['y']) print(correlation_result) p = sb.lmplot( data=data_uy, x='u', y='y', fit_reg=True, height=8, order=2, ) p.set(title='Correlation UY') p.savefig('res/uy-correlation-analysis.png') plt.clf() lp = sb.lineplot(data=data_uy['u']) lp.set( title='Signal u', xlabel='kT', ylabel='u', ) fig = lp.get_figure() fig.subplots_adjust(top=.97) fig.savefig('res/signal_u.png') plt.clf() lp = sb.lineplot(data=data_uy['y']) lp.set( title='Signal y', xlabel='kT', ylabel='y', ) fig = lp.get_figure() fig.subplots_adjust(top=.97) fig.savefig('res/signal_y.png') plt.clf() imf=pd.read_csv('data/impulse_func.csv') lp = sb.lineplot(data=imf, legend=False, linewidth=2.5) lp.set( title='Impulse Function Estimate (gCustom)', xlabel='time (s)', ylabel='amplitude', ) fig = lp.get_figure() fig.subplots_adjust(top=.97) fig.savefig('res/impulse_func_estimate.png') plt.clf() acr=pd.read_csv('data/autocorrelation_u.csv') lp = sb.lineplot(data=acr, legend=False, linewidth=2.5) lp.set( title='Autocorrelation of u (Ruu)', xlabel='shift', ylabel='Ruu', ) fig = lp.get_figure() fig.subplots_adjust(top=.97) fig.savefig('res/autocorrelation_u.png') plt.clf() acr=pd.read_csv('data/autocorrelation_y.csv') lp = sb.lineplot(data=acr, legend=False, linewidth=2.5) lp.set( title='Autocorrelation of y (Ryy)', xlabel='shift', ylabel='Ryy', ) fig = lp.get_figure() fig.subplots_adjust(top=.97) fig.savefig('res/autocorrelation_y.png') plt.clf() mcr=pd.read_csv('data/mutual_correlation_uy.csv') lp = sb.lineplot(data=mcr, legend=False, linewidth=2.5) lp.set( title='Mutual correlation of uy (Ruy)', xlabel='shift', ylabel='Ruy', ) fig = lp.get_figure() fig.subplots_adjust(top=.97) fig.savefig('res/mutual_correlation_uy.png') plt.clf() mcr=pd.read_csv('data/mutual_correlation_yu.csv') lp = sb.lineplot(data=mcr, legend=False, linewidth=2.5) lp.set( title='Mutual correlation of yu (Ryu)', xlabel='shift', ylabel='Ryu', ) fig = lp.get_figure() fig.subplots_adjust(top=.97) fig.savefig('res/mutual_correlation_yu.png') plt.clf() # plot comparison imf=pd.read_csv('data/impulse_func.csv') imfM=pd.read_csv('data/ircra.csv') plt.plot(range(0, len(imf)), imf, label='gCustom') plt.plot(range(0, len(imfM)), imfM, label='gSIT') plt.legend(loc="upper right") plt.title('Impulse Function Estimate Comparison') plt.xlabel('time (s)') plt.ylabel('amplitude') plt.savefig('res/impulse_func_estimate_comparison.png') plt.close()