initial commit

This commit is contained in:
surtur 2022-11-03 21:18:55 +01:00
commit 5cf892c7ea
Signed by: wanderer
SSH Key Fingerprint: SHA256:MdCZyJ2sHLltrLBp0xQO0O1qTW9BT/xl5nXkDvhlMCI
16 changed files with 583 additions and 0 deletions

28
.editorconfig Normal file

@ -0,0 +1,28 @@
root = true
[*]
charset = utf-8
end_of_line = lf
# starlark
[*.star]
indent_style = tab
indent_size = 4
tab_width = 4
# go files (excluding templates)
[*.{go,mod,sum}]
indent_style = tab
indent_size = 4
tab_width = 4
[*.nix]
indent_style = space
indent_size = 2
[*.md]
trim_trailing_whitespace = false
[*.{yaml,yml}]
indent_style = space
indent_size = 2

7
.envrc Normal file

@ -0,0 +1,7 @@
use flake
# ref: https://github.com/direnv/direnv/wiki/Vim
# comment out if not planning to use this
#add_extra_vimrc
# vim: ff=unix ft=sh

1
.gitattributes vendored Normal file

@ -0,0 +1 @@
*.md diff=markdown

97
.gitignore vendored Normal file

@ -0,0 +1,97 @@
.direnv
# binaries/symlinks to binaries
result
result-*
# generated from starlark
.drone.yml
.vimrc
# coverage or other binary files
*.out
### Python ###
# Byte-compiled / optimized / DLL files
__pycache__/
*.py[cod]
*$py.class
# Distribution / packaging
.Python
build/
develop-eggs/
dist/
downloads/
eggs/
.eggs/
lib/
lib64/
parts/
sdist/
var/
wheels/
share/python-wheels/
*.egg-info/
.installed.cfg
*.egg
MANIFEST
# PyInstaller
# Usually these files are written by a python script from a template
# before PyInstaller builds the exe, so as to inject date/other infos into it.
*.manifest
*.spec
# Installer logs
pip-log.txt
pip-delete-this-directory.txt
# Unit test / coverage reports
htmlcov/
.tox/
.nox/
.coverage
.coverage.*
.cache
nosetests.xml
coverage.xml
*.cover
*.py,cover
.hypothesis/
.pytest_cache/
cover/
# PyBuilder
.pybuilder/
target/
# Jupyter Notebook
.ipynb_checkpoints
# pdm stores project-wide configurations in .pdm.toml, but it is recommended to not include it
# in version control.
# https://pdm.fming.dev/#use-with-ide
.pdm.toml
# PEP 582; used by e.g. github.com/David-OConnor/pyflow and github.com/pdm-project/pdm
__pypackages__/
# SageMath parsed files
*.sage.py
# Environments
.env
.venv
env/
venv/
ENV/
env.bak/
venv.bak/
# Pyre type checker
.pyre/
# pytype static type analyzer
.pytype/

16
default.nix Normal file

@ -0,0 +1,16 @@
(
import
(
let
lock = builtins.fromJSON (builtins.readFile ./flake.lock);
in
fetchTarball {
url = "https://github.com/edolstra/flake-compat/archive/${lock.nodes.flake-compat.locked.rev}.tar.gz";
sha256 = lock.nodes.flake-compat.locked.narHash;
}
)
{
src = ./.;
}
)
.defaultNix

44
flake.lock Normal file

@ -0,0 +1,44 @@
{
"nodes": {
"flake-compat": {
"flake": false,
"locked": {
"lastModified": 1650374568,
"narHash": "sha256-Z+s0J8/r907g149rllvwhb4pKi8Wam5ij0st8PwAh+E=",
"owner": "edolstra",
"repo": "flake-compat",
"rev": "b4a34015c698c7793d592d66adbab377907a2be8",
"type": "github"
},
"original": {
"owner": "edolstra",
"repo": "flake-compat",
"type": "github"
}
},
"nixpkgs": {
"locked": {
"lastModified": 1666244578,
"narHash": "sha256-OO0F2b83isMVHYtcvxiExig28zPE7Weo7r1fHtQTZzU=",
"owner": "NixOS",
"repo": "nixpkgs",
"rev": "260eb420a2e55e3a0411e731b933c3a8bf6b778e",
"type": "github"
},
"original": {
"owner": "NixOS",
"ref": "nixpkgs-unstable",
"repo": "nixpkgs",
"type": "github"
}
},
"root": {
"inputs": {
"flake-compat": "flake-compat",
"nixpkgs": "nixpkgs"
}
}
},
"root": "root",
"version": 7
}

102
flake.nix Normal file

@ -0,0 +1,102 @@
{
description = "Identification and modeling of stochastic signals - protocols";
inputs = {
nixpkgs.url = "github:NixOS/nixpkgs/nixpkgs-unstable";
flake-compat = {
url = "github:edolstra/flake-compat";
flake = false;
};
};
outputs = {
self,
nixpkgs,
...
}: let
projname = "ak9im";
# to work with older version of flakes
lastModifiedDate =
self.lastModifiedDate or self.lastModified or "19700101";
# Generate a user-friendly version number.
version = "v0.0.0";
supportedSystems = ["x86_64-linux" "x86_64-darwin" "aarch64-linux" "aarch64-darwin"];
forAllSystems = nixpkgs.lib.genAttrs supportedSystems;
pkgs = forAllSystems (system: nixpkgs.legacyPackages.${system});
# Nixpkgs instantiated for supported system types.
nixpkgsFor = forAllSystems (system:
import nixpkgs {
inherit system;
overlays = [
# no overlay imports atm
# (import ./overlay.nix)
];
});
in {
formatter = forAllSystems (
system:
nixpkgsFor.${system}.alejandra
);
packages = forAllSystems (system: let
baseurl = "https://git.dotya.ml/wanderer/ak9im/";
in rec {
p1 = pkgs.${system}.poetry2nix.mkPoetryApplication {
name = "p1";
projectDir = ./p1;
meta = {
description = self.description + ": p1";
homepage = baseurl + "p1";
license = nixpkgs.lib.licenses.gpl3;
maintainers = ["wanderer"];
platforms = nixpkgs.lib.platforms.linux ++ nixpkgs.lib.platforms.darwin;
};
};
default = p1;
});
apps = forAllSystems (system: rec {
p1 = {
type = "app";
program = "${self.packages.${system}.${projname}}/bin/p1";
};
default = p1;
});
devShells = forAllSystems (system: let
upcache = pkgs.writeShellScriptBin "upcache" ''
## refs:
## https://fzakaria.com/2020/08/11/caching-your-nix-shell.html
## https://nixos.wiki/wiki/Caching_nix_shell_build_inputs
nix-store --query --references $(nix-instantiate shell.nix) | \
xargs nix-store --realise | \
xargs nix-store --query --requisites | \
cachix push ${projname}
nix build --json \
| jq -r '.[].outputs | to_entries[].value' \
| cachix push ${projname}
'';
add-license = pkgs.writeShellScriptBin "add-license" ''
go run github.com/google/addlicense@v1.0.0 -v \
-c "wanderer <a_mirre at utb dot cz>" \
-l "GPL-3.0-or-later" -s .
'';
in {
default = pkgs.${system}.mkShellNoCC {
name = "${projname}-" + version;
shellHook = ''
echo " -- in ${projname} dev shell..."
'';
packages = with pkgs.${system}; [
(poetry2nix.mkPoetryEnv {projectDir = ./p1;})
python3Packages.numpy
python3Packages.pandas
python3Packages.matplotlib
poetry
];
};
});
};
}

3
p1/README.md Normal file

@ -0,0 +1,3 @@
# p1
this subproject contains code for protocol no. 1.

0
p1/p1/__init__.py Normal file

169
p1/p1/funcs.py Normal file

@ -0,0 +1,169 @@
import pandas as pd
import numpy as np
import matplotlib.pyplot as pyplt
def plt_ticks_size() -> int:
return 10
def load_d(path: str) -> pd.DataFrame():
return pd.read_csv(path, float_precision='round_trip', dtype='float64')
def plot_d(dat: pd.Series, fname: str = 'plot_input_data', colour: str = ''):
if colour == '':
colour = 'blue'
pyplt.plot(dat, color=colour)
pyplt.xlim(0, len(dat))
pyplt.ylim(min(dat) - 0.3, max(dat) + 0.3)
pyplt.xticks(size=plt_ticks_size())
pyplt.yticks(size=plt_ticks_size())
pyplt.savefig(fname + '.jpg')
# pplt.show(block=0)
# rework this
# ref: https://stackoverflow.com/a/46418284
pyplt.close()
def mean(dat: pd.Series) -> float:
return dat.sum() / len(dat)
def variance(dat: pd.Series) -> float:
return sum(pow(dat - mean(dat), 2)) / len(dat)
def histogram(dat: pd.Series, bins: int = 10, fname: str = 'hist', colour: str = 'blue'):
pyplt.hist(dat, color=colour, bins=bins)
pyplt.xticks(size=plt_ticks_size())
pyplt.yticks(size=plt_ticks_size())
pyplt.savefig(fname + '.jpg')
pyplt.close()
def distr_func(dat: pd.Series, fname: str = 'dist', colour: str = 'blue'):
dat.plot.density(color=colour)
pyplt.savefig(fname + '.jpg')
pyplt.close()
def std_dev(dat: pd.Series) -> float:
return np.sqrt(variance(dat))
def mean_diff(dat: pd.DataFrame) -> pd.Series:
return dat - dat.mean()
def covar(dat: pd.DataFrame) -> float:
dat = dat.apply(mean_diff)
return dat['u'].dot(dat['y']) / len(dat)
def covar_coeff(cov: float, std_dev_u: float, std_dev_y: float) -> float:
return cov / (std_dev_u * std_dev_y)
# m is the max permissible shift value.
def auto_corellation(dat: list, max_shift_n: int = .1) -> float:
v = []
m = len(dat) * max_shift_n
cur_shift = 0
while m >= cur_shift:
r = 0
for i in range(len(dat) - cur_shift):
r += dat[i] * dat[i + cur_shift]
r = r / len(dat) - cur_shift
v.append(r)
cur_shift += 1
return v
def mutual_corellation(dx: list, dy: list, max_shift_n: int = .1) -> float:
v = []
m = len(dx) * max_shift_n
cur_shift = 0
while m >= cur_shift:
r = 0
for i in range(len(dx) - cur_shift):
r += dx[i] * dy[i + cur_shift]
r = r / (len(dx) - cur_shift)
v.append(r)
cur_shift += 1
return v
def auto_covar(dat: list, max_shift_n: int = .1) -> float:
v = []
mean = np.mean(dat)
m = len(dat) * max_shift_n
cur_shift = 0
while m >= cur_shift:
r = 0
for i in range(len(dat) - cur_shift):
r += (dat[i] - mean) * (dat[i + cur_shift] - mean)
r = r / (len(dat) - cur_shift)
v.append(r)
cur_shift += 1
return v
def mutual_covar(dx: list, dy: list, max_shift_n: int = .1) -> float:
v = []
mean_x, mean_y = np.mean(dx), np.mean(dy)
m = len(dx) * max_shift_n
cur_shift = 0
while m >= cur_shift:
r = 0
for i in range(len(dx) - cur_shift):
r += (dx[i] - mean_x) * (dy[i + cur_shift] - mean_y)
r = r / (len(dx) - cur_shift)
v.append(r)
cur_shift += 1
return v
def plot_autocorellation(dat: pd.DataFrame, fname: str = 'autocorellation', colour: str = 'blue'):
d = auto_corellation(dat.tolist())
pyplt.scatter(range(0, len(d)), d, color=colour)
pyplt.savefig(fname + '.jpg')
pyplt.close()
def plot_mutual_corellation(d1: pd.DataFrame, d2: pd.DataFrame, fname: str = 'mutcorellation', colour: str = 'blue'):
d = mutual_corellation(d1.tolist(), d2.tolist())
pyplt.scatter(range(0, len(d)), d, color=colour)
pyplt.savefig(fname + '.jpg')
pyplt.close()
def plot_autocovariance(dat: pd.DataFrame, fname: str = 'autocovariance', colour: str = 'blue'):
d = auto_covar(dat.tolist())
pyplt.scatter(range(0, len(d)), d, color=colour)
pyplt.savefig(fname + '.jpg')
pyplt.close()
def plot_mutual_covariance(d1: pd.DataFrame, d2: pd.DataFrame, fname: str = 'mutcovariance', colour: str = 'blue'):
d = mutual_covar(d1.tolist(), d2.tolist())
pyplt.scatter(range(0, len(d)), d, color=colour)
pyplt.savefig(fname + '.jpg')
pyplt.close()

72
p1/p1/main.py Normal file

@ -0,0 +1,72 @@
import sys
import getopt
import numpy as np
import funcs as f
def main(argv):
inputfile = ''
try:
opts, args = getopt.getopt(argv, "hi:o:", ["ifile="])
except getopt.GetoptError:
print('main.py -i <inputfile>')
sys.exit(2)
for opt, arg in opts:
if opt == '-h':
print('main.py -i <inputfile>')
sys.exit()
elif opt in ("-i", "--ifile"):
inputfile = arg
if inputfile != '':
print('Input file is', inputfile)
else:
print('no input file provided, see help (-h)\nexiting...')
sys.exit(1)
# d = f.load_d("./dat.csv")
d = f.load_d(inputfile)
# d = d.astype('float64')
print(d.head())
# data plots
du = d['u']
dy = d['y']
f.plot_d(du, fname='u_input_plot')
f.plot_d(dy, fname='y_input_plot', colour='green')
# mean and variance
mean_u = f.mean(d['u'])
mean_y = f.mean(d['y'])
variance_u = f.variance(d['u'])
variance_y = f.variance(d['y'])
hist_u = f.histogram(d['u'], fname='u_hist')
hist_y = f.histogram(d['y'], fname='y_hist', colour='green')
dist_u = f.distr_func(d['u'], fname='u_dist')
dist_y = f.distr_func(d['y'], fname='y_dist', colour='green')
cov = f.covar(d)
std_dev_u = f.std_dev(d['u'])
std_dev_y = f.std_dev(d['y'])
cov_c = f.covar_coeff(cov, std_dev_u, std_dev_y)
print("data covariance:\n", d.cov())
# print the matrix.
print(np.array([[variance_u, cov], [cov, variance_y]]))
f.plot_autocorellation(dat=d['u'], fname='u_autocorellation')
f.plot_autocorellation(dat=d['y'], fname='y_autocorellation', colour='green')
f.plot_mutual_corellation(d1=d['u'], d2=d['y'], fname='mutual_corellation_uy')
f.plot_autocovariance(dat=d['u'], fname='u_autocovariance')
f.plot_autocovariance(dat=d['y'], fname='y_autocovariance', colour='green')
f.plot_mutual_covariance(d1=d['u'], d2=d['y'], fname='mutual_covariance_uy')
if __name__ == "__main__":
main(sys.argv[1:])

8
p1/poetry.lock generated Normal file

@ -0,0 +1,8 @@
package = []
[metadata]
lock-version = "1.1"
python-versions = "^3.10"
content-hash = "53f2eabc9c26446fbcc00d348c47878e118afc2054778c3c803a0a8028af27d9"
[metadata.files]

14
p1/pyproject.toml Normal file

@ -0,0 +1,14 @@
[tool.poetry]
name = "p1"
version = "0.0.0"
description = ""
authors = ["surtur <a_mirre@utb.cz>"]
readme = "README.md"
[tool.poetry.dependencies]
python = "^3.10"
[build-system]
requires = ["poetry-core"]
build-backend = "poetry.core.masonry.api"

0
p1/tests/__init__.py Normal file

6
p1/tox.ini Normal file

@ -0,0 +1,6 @@
[flake8]
indent_char='tab'
extend-ignore = W191, E501
; ignore =
; # tabs are ok
; W191

16
shell.nix Normal file

@ -0,0 +1,16 @@
(
import
(
let
lock = builtins.fromJSON (builtins.readFile ./flake.lock);
in
fetchTarball {
url = "https://github.com/edolstra/flake-compat/archive/${lock.nodes.flake-compat.locked.rev}.tar.gz";
sha256 = lock.nodes.flake-compat.locked.narHash;
}
)
{
src = ./.;
}
)
.shellNix