Jazyk zvolený pre vypracovanie práce bol Python, pseudonáhodné dáta reprezentujúce signál boli vygenerované programom Matlab. \\ \\ Kód je dostupný na nasledujúcom odkaze:\\ \url{https://git.dotya.ml/wanderer/ak9im/src/branch/development/p1}. \\ Kód tohto protokolu je dostupný na nasledujúcom odkaze:\\ \url{https://git.dotya.ml/wanderer/ak9im-proto1}. \subsection{Vygenerovanie signálu} \begin{figure}[ht] \includegraphics[width=.75\textwidth]{res/u_input_plot} \caption{Náhodne vygenerovaný signál} \label{signalorig} \end{figure} \begin{figure}[ht] \includegraphics[width=.75\textwidth]{res/y_input_plot} \caption{Náhodne vygenerovaný signál s filtrom} \label{signalfiltered} \end{figure} \newpage \subsection{Histogram} \begin{figure}[ht] \includegraphics[width=.75\textwidth]{res/u_hist} \caption{Histogram u} \label{histu} \end{figure} \begin{figure}[ht] \includegraphics[width=.75\textwidth]{res/y_hist} \caption{Histogram y} \label{histy} \end{figure} \newpage \subsection{Distribučná funkcia} \begin{figure}[ht] \includegraphics[width=.75\textwidth]{res/u_dist} \caption{Distribučná funkcia u} \label{distfuncu} \end{figure} \begin{figure}[ht] \includegraphics[width=.75\textwidth]{res/y_dist} \caption{Distribučná funkcia y} \label{distfuncy} \end{figure} \newpage \subsection{Štatistické charakteristiky\ 1.\ a\ 2.\ rádu} Boli vypočítané štatistické charakteristiky prvého a druhého rádu, ktorými sú: \begin{itemize} \item stredná hodnota \item rozptyl \item koeficient korelácie \item kovariančná matica (viď~\ref{covmatrix}) \item autokorelačná funkcia pre u, y \item vzájomne korelačná funkcia \item autokovariačná funkcia pre u, y \item vzájomná kovariačná funkcia \end{itemize} \begin{table}[!hbt] \centering \begin{tabular}{r|cc} & \textbf{u} & \textbf{y} \\ \hline \textbf{u} & 2.889406e-02 & 1.584866e+09 \\ \textbf{y} & 1.584866e+09 & 1.948590e+23 \\ \end{tabular} \label{covmatrix} \caption{Kovariačná matica} \end{table} \newpage \subsection{Korelácia} \subsubsection{Autokorelačná funkcia u} \begin{figure}[ht] \includegraphics[width=.75\textwidth]{res/u_autocorellation} \caption{Autokorelačná funkcia u} \label{autocorrelationu} \end{figure} \subsubsection{Autokorelačná funkcia y} \begin{figure}[ht] \includegraphics[width=.75\textwidth]{res/y_autocorellation} \caption{Autokorelačná funkcia y} \label{autocorrelationy} \end{figure} \newpage \subsubsection{Vzájomne korelačná funkcia} \begin{figure}[ht] \includegraphics[width=.75\textwidth]{res/mutual_corellation_uy} \caption{Vzájomne korelačná funkcia} \label{mutualcorrelation} \end{figure} \newpage \subsection{Kovariancia} \subsubsection{Autokovariačná funkcia u} \begin{figure}[ht] \includegraphics[width=.75\textwidth]{res/u_autocovariance} \caption{Autokovariačná funkcia u} \label{autocovarianceu} \end{figure} \subsubsection{Autokovariačná funkcia y} \begin{figure}[ht] \includegraphics[width=.75\textwidth]{res/y_autocovariance} \caption{Autokovariačná funkcia y} \label{autocovariancey} \end{figure} \newpage \subsubsection{Vzájomne kovariačná funkcia} \begin{figure}[ht] \includegraphics[width=.75\textwidth]{res/mutual_covariance_uy} \caption{Vzájomne kovariačná funkcia} \label{mutcovariance} \end{figure} \newpage \subsection{Štatistické charakteristiky} \begin{table}[!hbt] \centering \begin{tabular}{r|cc} & \textbf{u} & \textbf{y} \\ \hline \textbf{stredná hodnota} & 0.13739797971503992 & 20217121352.41238 \\ \textbf{rozptyl} & 0.028836383482803592 & 1.9447005240730458e+23 \\ \textbf{koeficient korelácie} & \multicolumn{2}{c}{0.021121664240700538} \\ \textbf{koeficient kovariancie} & \multicolumn{2}{c}{1.58170285e+09} \\ \end{tabular} \label{stats} \caption{Súhrn štatistickúch charakteristík} \end{table} \newpage \section{Záver} V tejto úlohe sme si oprášili vedomosti týkajúce sa štatistických charakteristík prvého a druhého rádu, museli sme zistiť, ako vygenerovať pseudonáhodný signál v programe Matlab-Simulink, upraviť vygenerované dáta do formátu, v ktorom sa dajú jednoducho spracovať \texttt{python} knižnicou \texttt{Pandas} a nakoniec napísať malý program, ktorý tieto dáta konečne spracuje a vygeneruje z nich grafy. Už na prvý grafy pohľad vyzerajú veľmi prekvapivo a následná analýza\\ štatistických charakteristík len potvrdila môj dojem z vygenerovaných dát -- zatiaľ čo pôvodné dáta nadobúdali hodnoty takmer s normálnym rozložení, po prejdení filtrom došlo v signále k veľkému skresleniu a tak je možné neprekvapivo konštatovať, že z korelačných hodnôt nie je vidieť priveľký súvis medzi vstupným a výstupným signálom (koeficient korelácie blízky 0 signifikuje neexistujúci súvis). Za dôvod vyššie konštatovaného je mimo programátorskej chyby možné považovať už snáď len vstupné dáta, resp. konfiguráciu sústavy v programe Matlab-Simulink, s~ktorým nie som príliš oboznámený.