1
0
Fork 0
mirror of https://github.com/BLAKE3-team/BLAKE3 synced 2024-05-21 15:16:09 +02:00
BLAKE3/src/lib.rs
Cesar Eduardo Barros 4690c5f14e Use fixed-size constant_time_eq
The generic constant_time_eq has several branches on the slice length,
which are not necessary when the slice length is known. However, the
optimizer is not allowed to look into the core of constant_time_eq, so
these branches cannot be elided.

Use instead a fixed-size variant of constant_time_eq, which has no
branches since the length is known.
2020-01-12 17:40:57 -05:00

1141 lines
43 KiB
Rust

//! The official Rust implementation of the [BLAKE3](https://blake3.io)
//! cryptographic hash function.
//!
//! # Examples
//!
//! ```
//! # fn main() -> Result<(), Box<dyn std::error::Error>> {
//! // Hash an input all at once.
//! let hash1 = blake3::hash(b"foobarbaz");
//!
//! // Hash an input incrementally.
//! let mut hasher = blake3::Hasher::new();
//! hasher.update(b"foo");
//! hasher.update(b"bar");
//! hasher.update(b"baz");
//! let hash2 = hasher.finalize();
//! assert_eq!(hash1, hash2);
//!
//! // Extended output. OutputReader also implements Read and Seek.
//! # #[cfg(feature = "std")] {
//! let mut output = [0; 1000];
//! let mut output_reader = hasher.finalize_xof();
//! output_reader.fill(&mut output);
//! assert_eq!(&output[..32], hash1.as_bytes());
//! # }
//! # Ok(())
//! # }
//! ```
#![cfg_attr(not(feature = "std"), no_std)]
#[cfg(test)]
mod test;
// The guts module is for incremental use cases like the `bao` crate that need
// to explicitly compute chunk and parent chaining values. It is semi-stable
// and likely to keep working, but largely undocumented and not intended for
// widespread use.
#[doc(hidden)]
pub mod guts;
// These modules are pub for benchmarks only. They are not stable.
#[cfg(any(target_arch = "x86", target_arch = "x86_64"))]
#[doc(hidden)]
pub mod avx2;
#[cfg(feature = "c_avx512")]
#[cfg(any(target_arch = "x86", target_arch = "x86_64"))]
#[doc(hidden)]
pub mod c_avx512;
#[cfg(feature = "c_neon")]
#[doc(hidden)]
pub mod c_neon;
#[doc(hidden)]
pub mod platform;
#[doc(hidden)]
pub mod portable;
#[cfg(any(target_arch = "x86", target_arch = "x86_64"))]
#[doc(hidden)]
pub mod sse41;
use arrayref::{array_mut_ref, array_ref};
use arrayvec::{ArrayString, ArrayVec};
use core::cmp;
use core::fmt;
use platform::{Platform, MAX_SIMD_DEGREE, MAX_SIMD_DEGREE_OR_2};
/// The number of bytes in a [`Hash`](struct.Hash.html), 32.
pub const OUT_LEN: usize = 32;
/// The number of bytes in a key, 32.
pub const KEY_LEN: usize = 32;
// These constants are pub for incremental use cases like `bao`, as well as
// tests and benchmarks. Most callers should not need them.
#[doc(hidden)]
pub const BLOCK_LEN: usize = 64;
#[doc(hidden)]
pub const CHUNK_LEN: usize = 1024;
#[doc(hidden)]
pub const MAX_DEPTH: usize = 54; // 2^54 * CHUNK_LEN = 2^64
// While iterating the compression function within a chunk, the CV is
// represented as words, to avoid doing two extra endianness conversions for
// each compression in the portable implementation. But the hash_many interface
// needs to hash both input bytes and parent nodes, so its better for its
// output CVs to be represented as bytes.
type CVWords = [u32; 8];
type CVBytes = [u8; 32]; // little-endian
const IV: &CVWords = &[
0x6A09E667, 0xBB67AE85, 0x3C6EF372, 0xA54FF53A, 0x510E527F, 0x9B05688C, 0x1F83D9AB, 0x5BE0CD19,
];
const MSG_SCHEDULE: [[usize; 16]; 7] = [
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15],
[2, 6, 3, 10, 7, 0, 4, 13, 1, 11, 12, 5, 9, 14, 15, 8],
[3, 4, 10, 12, 13, 2, 7, 14, 6, 5, 9, 0, 11, 15, 8, 1],
[10, 7, 12, 9, 14, 3, 13, 15, 4, 0, 11, 2, 5, 8, 1, 6],
[12, 13, 9, 11, 15, 10, 14, 8, 7, 2, 5, 3, 0, 1, 6, 4],
[9, 14, 11, 5, 8, 12, 15, 1, 13, 3, 0, 10, 2, 6, 4, 7],
[11, 15, 5, 0, 1, 9, 8, 6, 14, 10, 2, 12, 3, 4, 7, 13],
];
// These are the internal flags that we use to domain separate root/non-root,
// chunk/parent, and chunk beginning/middle/end. These get set at the high end
// of the block flags word in the compression function, so their values start
// high and go down.
const CHUNK_START: u8 = 1 << 0;
const CHUNK_END: u8 = 1 << 1;
const PARENT: u8 = 1 << 2;
const ROOT: u8 = 1 << 3;
const KEYED_HASH: u8 = 1 << 4;
const DERIVE_KEY_CONTEXT: u8 = 1 << 5;
const DERIVE_KEY_MATERIAL: u8 = 1 << 6;
fn counter_low(counter: u64) -> u32 {
counter as u32
}
fn counter_high(counter: u64) -> u32 {
(counter >> 32) as u32
}
/// An output of the default size, 32 bytes, which provides constant-time
/// equality checking.
///
/// `Hash` implements [`From`] and [`Into`] for `[u8; 32]`, and it provides an
/// explicit [`as_bytes`] method returning `&[u8; 32]`. However, byte arrays
/// and slices don't provide constant-time equality checking, which is often a
/// security requirement in software that handles private data. `Hash` doesn't
/// implement [`Deref`] or [`AsRef`], to avoid situations where a type
/// conversion happens implicitly and the constant-time property is
/// accidentally lost.
///
/// [`From`]: https://doc.rust-lang.org/std/convert/trait.From.html
/// [`Into`]: https://doc.rust-lang.org/std/convert/trait.Into.html
/// [`as_bytes`]: #method.as_bytes
/// [`Deref`]: https://doc.rust-lang.org/stable/std/ops/trait.Deref.html
/// [`AsRef`]: https://doc.rust-lang.org/std/convert/trait.AsRef.html
#[derive(Clone, Copy, Hash)]
pub struct Hash([u8; OUT_LEN]);
impl Hash {
/// The bytes of the `Hash`. Note that byte arrays don't provide
/// constant-time equality checking, so if you need to compare hashes,
/// prefer the `Hash` type.
pub fn as_bytes(&self) -> &[u8; OUT_LEN] {
&self.0
}
/// The hexadecimal encoding of the `Hash`. The returned [`ArrayString`] is
/// a fixed size and doesn't allocate memory on the heap. Note that
/// [`ArrayString`] doesn't provide constant-time equality checking, so if
/// you need to compare hashes, prefer the `Hash` type.
///
/// [`ArrayString`]: https://docs.rs/arrayvec/0.5.1/arrayvec/struct.ArrayString.html
pub fn to_hex(&self) -> ArrayString<[u8; 2 * OUT_LEN]> {
let mut s = ArrayString::new();
let table = b"0123456789abcdef";
for &b in self.0.iter() {
s.push(table[(b >> 4) as usize] as char);
s.push(table[(b & 0xf) as usize] as char);
}
s
}
}
impl From<[u8; OUT_LEN]> for Hash {
fn from(bytes: [u8; OUT_LEN]) -> Self {
Self(bytes)
}
}
impl From<Hash> for [u8; OUT_LEN] {
fn from(hash: Hash) -> Self {
hash.0
}
}
/// This implementation is constant-time.
impl PartialEq for Hash {
fn eq(&self, other: &Hash) -> bool {
constant_time_eq::constant_time_eq_32(&self.0, &other.0)
}
}
/// This implementation is constant-time.
impl PartialEq<[u8; OUT_LEN]> for Hash {
fn eq(&self, other: &[u8; OUT_LEN]) -> bool {
constant_time_eq::constant_time_eq_32(&self.0, other)
}
}
impl Eq for Hash {}
impl fmt::Debug for Hash {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "Hash({})", self.to_hex())
}
}
// Each chunk or parent node can produce either a 32-byte chaining value or, by
// setting the ROOT flag, any number of final output bytes. The Output struct
// captures the state just prior to choosing between those two possibilities.
#[derive(Clone)]
struct Output {
input_chaining_value: CVWords,
block: [u8; 64],
block_len: u8,
counter: u64,
flags: u8,
platform: Platform,
}
impl Output {
fn chaining_value(&self) -> CVBytes {
let mut cv = self.input_chaining_value;
self.platform.compress_in_place(
&mut cv,
&self.block,
self.block_len,
self.counter,
self.flags,
);
platform::le_bytes_from_words_32(&cv)
}
fn root_hash(&self) -> Hash {
debug_assert_eq!(self.counter, 0);
let mut cv = self.input_chaining_value;
self.platform
.compress_in_place(&mut cv, &self.block, self.block_len, 0, self.flags | ROOT);
Hash(platform::le_bytes_from_words_32(&cv))
}
fn root_output_block(&self) -> [u8; 2 * OUT_LEN] {
self.platform.compress_xof(
&self.input_chaining_value,
&self.block,
self.block_len,
self.counter,
self.flags | ROOT,
)
}
}
#[derive(Clone)]
struct ChunkState {
cv: CVWords,
chunk_counter: u64,
buf: [u8; BLOCK_LEN],
buf_len: u8,
blocks_compressed: u8,
flags: u8,
platform: Platform,
}
impl ChunkState {
fn new(key: &CVWords, chunk_counter: u64, flags: u8, platform: Platform) -> Self {
Self {
cv: *key,
chunk_counter,
buf: [0; BLOCK_LEN],
buf_len: 0,
blocks_compressed: 0,
flags,
platform,
}
}
fn len(&self) -> usize {
BLOCK_LEN * self.blocks_compressed as usize + self.buf_len as usize
}
fn fill_buf(&mut self, input: &mut &[u8]) {
let want = BLOCK_LEN - self.buf_len as usize;
let take = cmp::min(want, input.len());
self.buf[self.buf_len as usize..][..take].copy_from_slice(&input[..take]);
self.buf_len += take as u8;
*input = &input[take..];
}
fn start_flag(&self) -> u8 {
if self.blocks_compressed == 0 {
CHUNK_START
} else {
0
}
}
// Try to avoid buffering as much as possible, by compressing directly from
// the input slice when full blocks are available.
fn update(&mut self, mut input: &[u8]) -> &mut Self {
if self.buf_len > 0 {
self.fill_buf(&mut input);
if !input.is_empty() {
debug_assert_eq!(self.buf_len as usize, BLOCK_LEN);
let block_flags = self.flags | self.start_flag(); // borrowck
self.platform.compress_in_place(
&mut self.cv,
&self.buf,
BLOCK_LEN as u8,
self.chunk_counter,
block_flags,
);
self.buf_len = 0;
self.buf = [0; BLOCK_LEN];
self.blocks_compressed += 1;
}
}
while input.len() > BLOCK_LEN {
debug_assert_eq!(self.buf_len, 0);
let block_flags = self.flags | self.start_flag(); // borrowck
self.platform.compress_in_place(
&mut self.cv,
array_ref!(input, 0, BLOCK_LEN),
BLOCK_LEN as u8,
self.chunk_counter,
block_flags,
);
self.blocks_compressed += 1;
input = &input[BLOCK_LEN..];
}
self.fill_buf(&mut input);
debug_assert!(input.is_empty());
debug_assert!(self.len() <= CHUNK_LEN);
self
}
fn output(&self) -> Output {
let block_flags = self.flags | self.start_flag() | CHUNK_END;
Output {
input_chaining_value: self.cv,
block: self.buf,
block_len: self.buf_len,
counter: self.chunk_counter,
flags: block_flags,
platform: self.platform,
}
}
}
// Don't derive(Debug), because the state may be secret.
impl fmt::Debug for ChunkState {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(
f,
"ChunkState {{ len: {}, chunk_counter: {}, flags: {:?}, platform: {:?} }}",
self.len(),
self.chunk_counter,
self.flags,
self.platform
)
}
}
// IMPLEMENTATION NOTE
// ===================
// The recursive function compress_subtree_wide(), implemented below, is the
// basis of high-performance BLAKE3. We use it both for all-at-once hashing,
// and for the incremental input with Hasher (though we have to be careful with
// subtree boundaries in the incremental case). compress_subtree_wide() applies
// several optimizations at the same time:
// - Multi-threading with Rayon.
// - Parallel chunk hashing with SIMD.
// - Parallel parent hashing with SIMD. Note that while SIMD chunk hashing
// maxes out at MAX_SIMD_DEGREE*CHUNK_LEN, parallel parent hashing continues
// to benefit from larger inputs, because more levels of the tree benefit can
// use full-width SIMD vectors for parent hashing. Without parallel parent
// hashing, we lose about 10% of overall throughput on AVX2 and AVX-512.
// pub for benchmarks
#[doc(hidden)]
#[derive(Clone, Copy)]
pub enum IncrementCounter {
Yes,
No,
}
impl IncrementCounter {
fn yes(&self) -> bool {
match self {
IncrementCounter::Yes => true,
IncrementCounter::No => false,
}
}
}
// The largest power of two less than or equal to `n`, used for left_len()
// immediately below, and also directly in Hasher::update().
fn largest_power_of_two_leq(n: usize) -> usize {
((n / 2) + 1).next_power_of_two()
}
// Given some input larger than one chunk, return the number of bytes that
// should go in the left subtree. This is the largest power-of-2 number of
// chunks that leaves at least 1 byte for the right subtree.
fn left_len(content_len: usize) -> usize {
debug_assert!(content_len > CHUNK_LEN);
// Subtract 1 to reserve at least one byte for the right side.
let full_chunks = (content_len - 1) / CHUNK_LEN;
largest_power_of_two_leq(full_chunks) * CHUNK_LEN
}
// Recurse in parallel with rayon::join() if the "rayon" feature is active.
// Rayon uses a global thread pool and a work-stealing algorithm to hand the
// right side off to another thread, if idle threads are available. If the
// "rayon" feature is disabled, just make ordinary function calls for the left
// and the right.
fn join<A, B, RA, RB>(oper_a: A, oper_b: B) -> (RA, RB)
where
A: FnOnce() -> RA + Send,
B: FnOnce() -> RB + Send,
RA: Send,
RB: Send,
{
#[cfg(feature = "rayon")]
return rayon::join(oper_a, oper_b);
#[cfg(not(feature = "rayon"))]
return (oper_a(), oper_b());
}
// Use SIMD parallelism to hash up to MAX_SIMD_DEGREE chunks at the same time
// on a single thread. Write out the chunk chaining values and return the
// number of chunks hashed. These chunks are never the root and never empty;
// those cases use a different codepath.
fn compress_chunks_parallel(
input: &[u8],
key: &CVWords,
chunk_counter: u64,
flags: u8,
platform: Platform,
out: &mut [u8],
) -> usize {
debug_assert!(!input.is_empty(), "empty chunks below the root");
debug_assert!(input.len() <= MAX_SIMD_DEGREE * CHUNK_LEN);
let mut chunks_exact = input.chunks_exact(CHUNK_LEN);
let mut chunks_array = ArrayVec::<[&[u8; CHUNK_LEN]; MAX_SIMD_DEGREE]>::new();
for chunk in &mut chunks_exact {
chunks_array.push(array_ref!(chunk, 0, CHUNK_LEN));
}
platform.hash_many(
&chunks_array,
key,
chunk_counter,
IncrementCounter::Yes,
flags,
CHUNK_START,
CHUNK_END,
out,
);
// Hash the remaining partial chunk, if there is one. Note that the empty
// chunk (meaning the empty message) is a different codepath.
let chunks_so_far = chunks_array.len();
if !chunks_exact.remainder().is_empty() {
let counter = chunk_counter + chunks_so_far as u64;
let mut chunk_state = ChunkState::new(key, counter, flags, platform);
chunk_state.update(chunks_exact.remainder());
*array_mut_ref!(out, chunks_so_far * OUT_LEN, OUT_LEN) =
chunk_state.output().chaining_value();
chunks_so_far + 1
} else {
chunks_so_far
}
}
// Use SIMD parallelism to hash up to MAX_SIMD_DEGREE parents at the same time
// on a single thread. Write out the parent chaining values and return the
// number of parents hashed. (If there's an odd input chaining value left over,
// return it as an additional output.) These parents are never the root and
// never empty; those cases use a different codepath.
fn compress_parents_parallel(
child_chaining_values: &[u8],
key: &CVWords,
flags: u8,
platform: Platform,
out: &mut [u8],
) -> usize {
debug_assert_eq!(child_chaining_values.len() % OUT_LEN, 0, "wacky hash bytes");
let num_children = child_chaining_values.len() / OUT_LEN;
debug_assert!(num_children >= 2, "not enough children");
debug_assert!(num_children <= 2 * MAX_SIMD_DEGREE_OR_2, "too many");
let mut parents_exact = child_chaining_values.chunks_exact(BLOCK_LEN);
// Use MAX_SIMD_DEGREE_OR_2 rather than MAX_SIMD_DEGREE here, because of
// the requirements of compress_subtree_wide().
let mut parents_array = ArrayVec::<[&[u8; BLOCK_LEN]; MAX_SIMD_DEGREE_OR_2]>::new();
for parent in &mut parents_exact {
parents_array.push(array_ref!(parent, 0, BLOCK_LEN));
}
platform.hash_many(
&parents_array,
key,
0, // Parents always use counter 0.
IncrementCounter::No,
flags | PARENT,
0, // Parents have no start flags.
0, // Parents have no end flags.
out,
);
// If there's an odd child left over, it becomes an output.
let parents_so_far = parents_array.len();
if !parents_exact.remainder().is_empty() {
out[parents_so_far * OUT_LEN..][..OUT_LEN].copy_from_slice(parents_exact.remainder());
parents_so_far + 1
} else {
parents_so_far
}
}
// The wide helper function returns (writes out) an array of chaining values
// and returns the length of that array. The number of chaining values returned
// is the dyanmically detected SIMD degree, at most MAX_SIMD_DEGREE. Or fewer,
// if the input is shorter than that many chunks. The reason for maintaining a
// wide array of chaining values going back up the tree, is to allow the
// implementation to hash as many parents in parallel as possible.
//
// As a special case when the SIMD degree is 1, this function will still return
// at least 2 outputs. This guarantees that this function doesn't perform the
// root compression. (If it did, it would use the wrong flags, and also we
// wouldn't be able to implement exendable ouput.) Note that this function is
// not used when the whole input is only 1 chunk long; that's a different
// codepath.
fn compress_subtree_wide(
input: &[u8],
key: &CVWords,
chunk_counter: u64,
flags: u8,
platform: Platform,
out: &mut [u8],
) -> usize {
// Note that the single chunk case does *not* bump the SIMD degree up to 2
// when it is 1. This allows Rayon the option of multi-threading even the
// 2-chunk case, which can help performance on smaller platforms.
if input.len() <= platform.simd_degree() * CHUNK_LEN {
return compress_chunks_parallel(input, key, chunk_counter, flags, platform, out);
}
// With more than simd_degree chunks, we need to recurse. Start by dividing
// the input into left and right subtrees. (Note that this is only optimal
// as long as the SIMD degree is a power of 2. If we ever get a SIMD degree
// of 3 or something, we'll need a more complicated strategy.)
debug_assert_eq!(platform.simd_degree().count_ones(), 1, "power of 2");
let (left, right) = input.split_at(left_len(input.len()));
let right_chunk_counter = chunk_counter + (left.len() / CHUNK_LEN) as u64;
// Make space for the child outputs. Here we use MAX_SIMD_DEGREE_OR_2 to
// account for the special case of returning 2 outputs when the SIMD degree
// is 1.
let mut cv_array = [0; 2 * MAX_SIMD_DEGREE_OR_2 * OUT_LEN];
let degree = if left.len() == CHUNK_LEN {
// The "simd_degree=1 and we're at the leaf nodes" case.
debug_assert_eq!(platform.simd_degree(), 1);
1
} else {
cmp::max(platform.simd_degree(), 2)
};
let (left_out, right_out) = cv_array.split_at_mut(degree * OUT_LEN);
// Recurse! This uses multiple threads if the "rayon" feature is enabled.
let (left_n, right_n) = join(
|| compress_subtree_wide(left, key, chunk_counter, flags, platform, left_out),
|| compress_subtree_wide(right, key, right_chunk_counter, flags, platform, right_out),
);
// The special case again. If simd_degree=1, then we'll have left_n=1 and
// right_n=1. Rather than compressing them into a single output, return
// them directly, to make sure we always have at least two outputs.
debug_assert_eq!(left_n, degree);
debug_assert!(right_n >= 1 && right_n <= left_n);
if left_n == 1 {
out[..2 * OUT_LEN].copy_from_slice(&cv_array[..2 * OUT_LEN]);
return 2;
}
// Otherwise, do one layer of parent node compression.
let num_children = left_n + right_n;
compress_parents_parallel(
&cv_array[..num_children * OUT_LEN],
key,
flags,
platform,
out,
)
}
// Hash a subtree with compress_subtree_wide(), and then condense the resulting
// list of chaining values down to a single parent node. Don't compress that
// last parent node, however. Instead, return its message bytes (the
// concatenated chaining values of its children). This is necessary when the
// first call to update() supplies a complete subtree, because the topmost
// parent node of that subtree could end up being the root.
//
// As with compress_subtree_wide(), this function is not used on inputs of 1
// chunk or less. That's a different codepath.
fn compress_subtree_to_parent_node(
input: &[u8],
key: &CVWords,
chunk_counter: u64,
flags: u8,
platform: Platform,
) -> [u8; BLOCK_LEN] {
debug_assert!(input.len() > CHUNK_LEN);
let mut cv_array = [0; 2 * MAX_SIMD_DEGREE_OR_2 * OUT_LEN];
let mut num_cvs =
compress_subtree_wide(input, &key, chunk_counter, flags, platform, &mut cv_array);
debug_assert!(num_cvs >= 2);
// If MAX_SIMD_DEGREE is greater than 2 and there's enough input,
// compress_subtree_wide() returns more than 2 chaining values. Condense
// them into 2 by forming parent nodes repeatedly.
let mut out_array = [0; MAX_SIMD_DEGREE_OR_2 * OUT_LEN / 2];
while num_cvs > 2 {
let cv_slice = &cv_array[..num_cvs * OUT_LEN];
num_cvs = compress_parents_parallel(cv_slice, key, flags, platform, &mut out_array);
cv_array[..num_cvs * OUT_LEN].copy_from_slice(&out_array[..num_cvs * OUT_LEN]);
}
*array_ref!(cv_array, 0, 2 * OUT_LEN)
}
// Hash a complete input all at once. Unlike compress_subtree_wide() and
// compress_subtree_to_parent_node(), this function handles the 1 chunk case.
fn hash_all_at_once(input: &[u8], key: &CVWords, flags: u8) -> Output {
let platform = Platform::detect();
// If the whole subtree is one chunk, hash it directly with a ChunkState.
if input.len() <= CHUNK_LEN {
return ChunkState::new(key, 0, flags, platform)
.update(input)
.output();
}
// Otherwise construct an Output object from the parent node returned by
// compress_subtree_to_parent_node().
Output {
input_chaining_value: *key,
block: compress_subtree_to_parent_node(input, key, 0, flags, platform),
block_len: BLOCK_LEN as u8,
counter: 0,
flags: flags | PARENT,
platform,
}
}
/// The default hash function.
///
/// For an incremental version that accepts multiple writes, see [`Hasher`].
///
/// [`Hasher`]: struct.Hasher.html
pub fn hash(input: &[u8]) -> Hash {
hash_all_at_once(input, IV, 0).root_hash()
}
/// The keyed hash function.
///
/// This is suitable for use as a message authentication code, for
/// example to replace an HMAC instance.
/// In that use case, the constant-time equality checking provided by
/// [`Hash`](struct.Hash.html) is almost always a security requirement, and
/// callers need to be careful not to compare MACs as raw bytes.
pub fn keyed_hash(key: &[u8; KEY_LEN], input: &[u8]) -> Hash {
let key_words = platform::words_from_le_bytes_32(key);
hash_all_at_once(input, &key_words, KEYED_HASH).root_hash()
}
/// The key derivation function.
///
/// Given cryptographic key material of any length and a context string of any
/// length, this function outputs a derived subkey of any length. **The context
/// string should be hardcoded, globally unique, and application-specific.** A
/// good default format for such strings is `"[application] [commit timestamp]
/// [purpose]"`, e.g., `"example.com 2019-12-25 16:18:03 session tokens v1"`.
///
/// Key derivation is important when you want to use the same key in multiple
/// algorithms or use cases. Using the same key with different cryptographic
/// algorithms is generally forbidden, and deriving a separate subkey for each
/// use case protects you from bad interactions. Derived keys also mitigate the
/// damage from one part of your application accidentally leaking its key.
///
/// As a rare exception to that general rule, however, it is possible to use
/// `derive_key` itself with key material that you are already using with
/// another algorithm. You might need to do this if you're adding features to
/// an existing application, which does not yet use key derivation internally.
/// However, you still must not share key material with algorithms that forbid
/// key reuse entirely, like a one-time pad.
///
/// Note that BLAKE3 is not a password hash, and **`derive_key` should never be
/// used with passwords.** Instead, use a dedicated password hash like
/// [Argon2]. Password hashes are entirely different from generic hash
/// functions, with opposite design requirements.
///
/// [`Hasher::new_derive_key`]: struct.Hasher.html#method.new_derive_key
/// [`Hasher::finalize_xof`]: struct.Hasher.html#method.finalize_xof
/// [Argon2]: https://en.wikipedia.org/wiki/Argon2
pub fn derive_key(context: &str, key_material: &[u8], output: &mut [u8]) {
let context_key = hash_all_at_once(context.as_bytes(), IV, DERIVE_KEY_CONTEXT).root_hash();
let context_key_words = platform::words_from_le_bytes_32(context_key.as_bytes());
let inner_output = hash_all_at_once(key_material, &context_key_words, DERIVE_KEY_MATERIAL);
OutputReader::new(inner_output).fill(output);
}
fn parent_node_output(
left_child: &CVBytes,
right_child: &CVBytes,
key: &CVWords,
flags: u8,
platform: Platform,
) -> Output {
let mut block = [0; BLOCK_LEN];
block[..32].copy_from_slice(left_child);
block[32..].copy_from_slice(right_child);
Output {
input_chaining_value: *key,
block,
block_len: BLOCK_LEN as u8,
counter: 0,
flags: flags | PARENT,
platform,
}
}
/// An incremental hash state that can accept any number of writes.
#[derive(Clone)]
pub struct Hasher {
key: CVWords,
chunk_state: ChunkState,
cv_stack: ArrayVec<[CVBytes; MAX_DEPTH]>,
}
impl Hasher {
fn new_internal(key: &CVWords, flags: u8) -> Self {
Self {
key: *key,
chunk_state: ChunkState::new(key, 0, flags, Platform::detect()),
cv_stack: ArrayVec::new(),
}
}
/// Construct a new `Hasher` for the regular hash function.
pub fn new() -> Self {
Self::new_internal(IV, 0)
}
/// Construct a new `Hasher` for the keyed hash function. See
/// [`keyed_hash`].
///
/// [`keyed_hash`]: fn.keyed_hash.html
pub fn new_keyed(key: &[u8; KEY_LEN]) -> Self {
let key_words = platform::words_from_le_bytes_32(key);
Self::new_internal(&key_words, KEYED_HASH)
}
/// Construct a new `Hasher` for the key derivation function. See
/// [`derive_key`]. The context string should be hardcoded, globally
/// unique, and application-specific.
///
/// [`derive_key`]: fn.derive_key.html
pub fn new_derive_key(context: &str) -> Self {
let context_key = hash_all_at_once(context.as_bytes(), IV, DERIVE_KEY_CONTEXT).root_hash();
let context_key_words = platform::words_from_le_bytes_32(context_key.as_bytes());
Self::new_internal(&context_key_words, DERIVE_KEY_MATERIAL)
}
// See comment in push_cv.
fn merge_cv_stack(&mut self, total_len: u64) {
let post_merge_stack_len = total_len.count_ones() as usize;
while self.cv_stack.len() > post_merge_stack_len {
let right_child = self.cv_stack.pop().unwrap();
let left_child = self.cv_stack.pop().unwrap();
let parent_output = parent_node_output(
&left_child,
&right_child,
&self.key,
self.chunk_state.flags,
self.chunk_state.platform,
);
self.cv_stack.push(parent_output.chaining_value());
}
}
fn push_cv(&mut self, new_cv: &CVBytes, chunk_counter: u64) {
// In reference_impl.rs, we merge the new CV with existing CVs from the
// stack before pushing it. We can do that because we know more input
// is coming, so we know none of the merges are root.
//
// This setting is different. We want to feed as much input as possible
// to compress_subtree_wide(), without setting aside anything in the
// chunk_state. If the user gives us 64 KiB, we want to parallelize
// over all 64 KiB at once as a single subtree, rather than hashing 32
// KiB followed by 16 KiB followed by...etc.
//
// But we have to worry about the possibility that no more input comes
// in the future. That 64 KiB might be bring the total to e.g. 128 KiB.
// We shouldn't merge that whole 128 KiB tree yet, because if no more
// input comes in the future, then we'll have merged the root node. We
// need that node for extendable output, not to mention setting the
// ROOT flag properly.
//
// To deal with this, we merge the CV stack lazily. We do a merge of
// what's in there *just* before adding a new CV, and we don't do any
// merging with the new CV itself.
//
// We still use the "count the 1 bits" algorithm, adjusted slightly for
// this setting, using the new chunk's counter numer (the previous
// total number of chunks) rather than new total number of chunks. That
// algorithm is explained in detail in the spec.
self.merge_cv_stack(chunk_counter);
self.cv_stack.push(*new_cv);
}
/// Add input bytes to the hash state. You can call this any number of
/// times.
///
/// Note that the degree of SIMD and multi-threading parallelism that
/// `Hasher` can use is limited by the size of this input buffer. The 8 KiB
/// buffer currently used by [`std::io::copy`] is enough to leverage AVX2,
/// for example, but not enough to leverage AVX-512. If multi-threading is
/// enabled (the `rayon` feature), the optimal input buffer size will vary
/// considerably across different CPUs, and it may be several mebibytes.
///
/// [`std::io::copy`]: https://doc.rust-lang.org/std/io/fn.copy.html
pub fn update(&mut self, mut input: &[u8]) -> &mut Self {
// If we have some partial chunk bytes in the internal chunk_state, we
// need to finish that chunk first.
if self.chunk_state.len() > 0 {
let want = CHUNK_LEN - self.chunk_state.len();
let take = cmp::min(want, input.len());
self.chunk_state.update(&input[..take]);
input = &input[take..];
if !input.is_empty() {
// We've filled the current chunk, and there's more input
// coming, so we know it's not the root and we can finalize it.
// Then we'll proceed to hashing whole chunks below.
debug_assert_eq!(self.chunk_state.len(), CHUNK_LEN);
let chunk_cv = self.chunk_state.output().chaining_value();
self.push_cv(&chunk_cv, self.chunk_state.chunk_counter);
self.chunk_state = ChunkState::new(
&self.key,
self.chunk_state.chunk_counter + 1,
self.chunk_state.flags,
self.chunk_state.platform,
);
} else {
return self;
}
}
// Now the chunk_state is clear, and we have more input. If there's
// more than a single chunk (so, definitely not the root chunk), hash
// the largest whole subtree we can, with the full benefits of SIMD and
// multi-threading parallelism. Two restrictions:
// - The subtree has to be a power-of-2 number of chunks. Only subtrees
// along the right edge can be incomplete, and we don't know where
// the right edge is going to be until we get to finalize().
// - The subtree must evenly divide the total number of chunks up until
// this point (if total is not 0). If the current incomplete subtree
// is only waiting for 1 more chunk, we can't hash a subtree of 4
// chunks. We have to complete the current subtree first.
// Because we might need to break up the input to form powers of 2, or
// to evenly divide what we already have, this part runs in a loop.
while input.len() > CHUNK_LEN {
debug_assert_eq!(self.chunk_state.len(), 0, "no partial chunk data");
debug_assert_eq!(CHUNK_LEN.count_ones(), 1, "power of 2 chunk len");
let mut subtree_len = largest_power_of_two_leq(input.len());
let count_so_far = self.chunk_state.chunk_counter * CHUNK_LEN as u64;
// Shrink the subtree_len until it evenly divides the count so far.
// We know it's a power of 2, so we can use a bitmask rather than
// the more expensive modulus operation. Note that if the caller
// consistently passes power-of-2 inputs of the same size (as is
// hopefully typical), we'll always skip over this loop.
while (subtree_len - 1) as u64 & count_so_far != 0 {
subtree_len /= 2;
}
// The shrunken subtree_len might now be 1 chunk long. If so, hash
// that one chunk by itself. Otherwise, compress the subtree into a
// pair of CVs.
let subtree_chunks = (subtree_len / CHUNK_LEN) as u64;
if subtree_len <= CHUNK_LEN {
debug_assert_eq!(subtree_len, CHUNK_LEN);
self.push_cv(
&ChunkState::new(
&self.key,
self.chunk_state.chunk_counter,
self.chunk_state.flags,
self.chunk_state.platform,
)
.update(&input[..subtree_len])
.output()
.chaining_value(),
self.chunk_state.chunk_counter,
);
} else {
// This is the high-performance happy path, though getting here
// depends on the caller giving us a long enough input.
let cv_pair = compress_subtree_to_parent_node(
&input[..subtree_len],
&self.key,
self.chunk_state.chunk_counter,
self.chunk_state.flags,
self.chunk_state.platform,
);
let left_cv = array_ref!(cv_pair, 0, 32);
let right_cv = array_ref!(cv_pair, 32, 32);
// Push the two CVs we received into the CV stack in order. Because
// the stack merges lazily, this guarantees we aren't merging the
// root.
self.push_cv(left_cv, self.chunk_state.chunk_counter);
self.push_cv(
right_cv,
self.chunk_state.chunk_counter + (subtree_chunks / 2),
);
}
self.chunk_state.chunk_counter += subtree_chunks;
input = &input[subtree_len..];
}
// What remains is 1 chunk or less. Add it to the chunk state.
debug_assert!(input.len() <= CHUNK_LEN);
if !input.is_empty() {
self.chunk_state.update(input);
// Having added some input to the chunk_state, we know what's in
// the CV stack won't become the root node, and we can do an extra
// merge. This simplifies finalize().
self.merge_cv_stack(self.chunk_state.chunk_counter);
}
self
}
fn final_output(&self) -> Output {
// If the current chunk is the only chunk, that makes it the root node
// also. Convert it directly into an Output. Otherwise, we need to
// merge subtrees below.
if self.cv_stack.is_empty() {
debug_assert_eq!(self.chunk_state.chunk_counter, 0);
return self.chunk_state.output();
}
// If there are any bytes in the ChunkState, finalize that chunk and
// merge its CV with everything in the CV stack. In that case, the work
// we did at the end of update() above guarantees that the stack
// doesn't contain any unmerged subtrees that need to be merged first.
// (This is important, because if there were two chunk hashes sitting
// on top of the stack, they would need to merge with each other, and
// merging a new chunk hash into them would be incorrect.)
//
// If there are no bytes in the ChunkState, we'll merge what's already
// in the stack. In this case it's fine if there are unmerged chunks on
// top, because we'll merge them with each other. Note that the case of
// the empty chunk is taken care of above.
let mut output: Output;
let mut num_cvs_remaining = self.cv_stack.len();
if self.chunk_state.len() > 0 {
debug_assert_eq!(
self.cv_stack.len(),
self.chunk_state.chunk_counter.count_ones() as usize,
"cv stack does not need a merge"
);
output = self.chunk_state.output();
} else {
debug_assert!(self.cv_stack.len() >= 2);
output = parent_node_output(
&self.cv_stack[num_cvs_remaining - 2],
&self.cv_stack[num_cvs_remaining - 1],
&self.key,
self.chunk_state.flags,
self.chunk_state.platform,
);
num_cvs_remaining -= 2;
}
while num_cvs_remaining > 0 {
output = parent_node_output(
&self.cv_stack[num_cvs_remaining - 1],
&output.chaining_value(),
&self.key,
self.chunk_state.flags,
self.chunk_state.platform,
);
num_cvs_remaining -= 1;
}
output
}
/// Finalize the hash state and return the [`Hash`](struct.Hash.html) of
/// the input.
///
/// This method is idempotent. Calling it twice will give the same result.
/// You can also add more input and finalize again.
pub fn finalize(&self) -> Hash {
self.final_output().root_hash()
}
/// Finalize the hash state and return an [`OutputReader`], which can
/// supply any number of output bytes.
///
/// This method is idempotent. Calling it twice will give the same result.
/// You can also add more input and finalize again.
///
/// [`OutputReader`]: struct.OutputReader.html
pub fn finalize_xof(&self) -> OutputReader {
OutputReader::new(self.final_output())
}
}
// Don't derive(Debug), because the state may be secret.
impl fmt::Debug for Hasher {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(
f,
"Hasher {{ flags: {:?}, platform: {:?} }}",
self.chunk_state.flags, self.chunk_state.platform
)
}
}
#[cfg(feature = "std")]
impl std::io::Write for Hasher {
/// This is equivalent to [`update`](#method.update).
fn write(&mut self, input: &[u8]) -> std::io::Result<usize> {
self.update(input);
Ok(input.len())
}
fn flush(&mut self) -> std::io::Result<()> {
Ok(())
}
}
/// An incremental reader for extended output, returned by
/// [`Hasher::finalize_xof`](struct.Hasher.html#method.finalize_xof).
#[derive(Clone)]
pub struct OutputReader {
inner: Output,
position_within_block: u8,
}
impl OutputReader {
fn new(inner: Output) -> Self {
Self {
inner,
position_within_block: 0,
}
}
/// Fill a buffer with output bytes and advance the position of the
/// `OutputReader`. This is equivalent to [`Read::read`], except that it
/// doesn't return a `Result`. Both methods always fill the entire buffer.
///
/// Note that `OutputReader` doesn't buffer output bytes internally, so
/// calling `fill` repeatedly with a short-length or odd-length slice will
/// end up performing the same compression multiple times. If you're
/// reading output in a loop, prefer a slice length that's a multiple of
/// 64.
///
/// The maximum output size of BLAKE3 is 2<sup>64</sup>-1 bytes. If you try
/// to extract more than that, for example by seeking near the end and
/// reading further, the behavior is unspecified.
///
/// [`Read::read`]: #method.read
pub fn fill(&mut self, mut buf: &mut [u8]) {
while !buf.is_empty() {
let block: [u8; BLOCK_LEN] = self.inner.root_output_block();
let output_bytes = &block[self.position_within_block as usize..];
let take = cmp::min(buf.len(), output_bytes.len());
buf[..take].copy_from_slice(&output_bytes[..take]);
buf = &mut buf[take..];
self.position_within_block += take as u8;
if self.position_within_block == BLOCK_LEN as u8 {
self.inner.counter += 1;
self.position_within_block = 0;
}
}
}
/// Return the current read position in the output stream. The position of
/// a new `OutputReader` starts at 0, and each call to [`fill`] or
/// [`Read::read`] moves the position forward by the number of bytes read.
///
/// [`fill`]: #method.fill
/// [`Read::read`]: #method.read
pub fn position(&self) -> u64 {
self.inner.counter * BLOCK_LEN as u64 + self.position_within_block as u64
}
/// Seek to a new read position in the output stream. This is equivalent to
/// calling [`Seek::seek`] with [`SeekFrom::Start`], except that it doesn't
/// return a `Result`.
///
/// [`Seek::seek`]: #method.seek
/// [`SeekFrom::Start`]: https://doc.rust-lang.org/std/io/enum.SeekFrom.html
pub fn set_position(&mut self, position: u64) {
self.position_within_block = (position % BLOCK_LEN as u64) as u8;
self.inner.counter = position / BLOCK_LEN as u64;
}
}
// Don't derive(Debug), because the state may be secret.
impl fmt::Debug for OutputReader {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "OutputReader {{ position: {} }}", self.position())
}
}
#[cfg(feature = "std")]
impl std::io::Read for OutputReader {
fn read(&mut self, buf: &mut [u8]) -> std::io::Result<usize> {
self.fill(buf);
Ok(buf.len())
}
}
#[cfg(feature = "std")]
impl std::io::Seek for OutputReader {
fn seek(&mut self, pos: std::io::SeekFrom) -> std::io::Result<u64> {
let max_position = u64::max_value() as i128;
let target_position: i128 = match pos {
std::io::SeekFrom::Start(x) => x as i128,
std::io::SeekFrom::Current(x) => self.position() as i128 + x as i128,
std::io::SeekFrom::End(_) => {
return Err(std::io::Error::new(
std::io::ErrorKind::InvalidInput,
"seek from end not supported",
));
}
};
if target_position < 0 {
return Err(std::io::Error::new(
std::io::ErrorKind::InvalidInput,
"seek before start",
));
}
self.set_position(cmp::min(target_position, max_position) as u64);
Ok(self.position())
}
}