1
0
Fork 0
mirror of https://github.com/BLAKE3-team/BLAKE3 synced 2024-05-11 22:06:06 +02:00
BLAKE3/src/wasm32_simd.rs
Ivan Boldyrev e2a495316a Make some function safe
Certain functions' unsafety comes from v128 loads and store.  If
argument types guarantee that these loads and stores are safe, function
is declared safe, and internal unsafe blocks are commented.
2023-09-21 20:24:04 +04:00

795 lines
24 KiB
Rust

/*
* This code is based on rust_sse2.rs of the same distribution, and is subject to further improvements.
* Some comments are left intact even if their applicability is questioned.
*
* Performance measurements with a primitive benchmark with ~16Kb of data:
*
* | M1 native | 11,610 ns |
* | M1 Wasm SIMD | 13,355 ns |
* | M1 Wasm | 22,037 ns |
* | x64 native | 6,713 ns |
* | x64 Wasm SIMD | 11,985 ns |
* | x64 Wasm | 25,978 ns |
*
* wasmtime v12.0.1 was used on both platforms.
*/
use core::arch::wasm32::*;
use crate::{
counter_high, counter_low, CVBytes, CVWords, IncrementCounter, BLOCK_LEN, IV, MSG_SCHEDULE,
OUT_LEN,
};
use arrayref::{array_mut_ref, array_ref, mut_array_refs};
pub const DEGREE: usize = 4;
#[inline(always)]
unsafe fn loadu(src: *const u8) -> v128 {
// This is an unaligned load, so the pointer cast is allowed.
v128_load(src as *const v128)
}
#[inline(always)]
unsafe fn storeu(src: v128, dest: *mut u8) {
// This is an unaligned store, so the pointer cast is allowed.
v128_store(dest as *mut v128, src)
}
#[inline(always)]
fn add(a: v128, b: v128) -> v128 {
i32x4_add(a, b)
}
#[inline(always)]
fn xor(a: v128, b: v128) -> v128 {
v128_xor(a, b)
}
#[inline(always)]
fn set1(x: u32) -> v128 {
i32x4_splat(x as i32)
}
#[inline(always)]
fn set4(a: u32, b: u32, c: u32, d: u32) -> v128 {
i32x4(a as i32, b as i32, c as i32, d as i32)
}
// These rotations are the "simple/shifts version". For the
// "complicated/shuffles version", see
// https://github.com/sneves/blake2-avx2/blob/b3723921f668df09ece52dcd225a36d4a4eea1d9/blake2s-common.h#L63-L66.
// For a discussion of the tradeoffs, see
// https://github.com/sneves/blake2-avx2/pull/5. Due to an LLVM bug
// (https://bugs.llvm.org/show_bug.cgi?id=44379), this version performs better
// on recent x86 chips.
#[inline(always)]
fn rot16(a: v128) -> v128 {
v128_or(u32x4_shr(a, 16), u32x4_shl(a, 32 - 16))
}
#[inline(always)]
fn rot12(a: v128) -> v128 {
v128_or(u32x4_shr(a, 12), u32x4_shl(a, 32 - 12))
}
#[inline(always)]
fn rot8(a: v128) -> v128 {
v128_or(u32x4_shr(a, 8), u32x4_shl(a, 32 - 8))
}
#[inline(always)]
fn rot7(a: v128) -> v128 {
v128_or(u32x4_shr(a, 7), u32x4_shl(a, 32 - 7))
}
#[inline(always)]
fn g1(row0: &mut v128, row1: &mut v128, row2: &mut v128, row3: &mut v128, m: v128) {
*row0 = add(add(*row0, m), *row1);
*row3 = xor(*row3, *row0);
*row3 = rot16(*row3);
*row2 = add(*row2, *row3);
*row1 = xor(*row1, *row2);
*row1 = rot12(*row1);
}
#[inline(always)]
fn g2(row0: &mut v128, row1: &mut v128, row2: &mut v128, row3: &mut v128, m: v128) {
*row0 = add(add(*row0, m), *row1);
*row3 = xor(*row3, *row0);
*row3 = rot8(*row3);
*row2 = add(*row2, *row3);
*row1 = xor(*row1, *row2);
*row1 = rot7(*row1);
}
// It could be a function, but artimetics in const generics is too limited yet.
macro_rules! shuffle {
($a: expr, $b: expr, $z:expr, $y:expr, $x:expr, $w:expr) => {
i32x4_shuffle::<{ $w }, { $x }, { $y + 4 }, { $z + 4 }>($a, $b)
};
}
#[inline(always)]
fn unpacklo_epi64(a: v128, b: v128) -> v128 {
i64x2_shuffle::<0, 2>(a, b)
}
#[inline(always)]
fn unpackhi_epi64(a: v128, b: v128) -> v128 {
i64x2_shuffle::<1, 3>(a, b)
}
#[inline(always)]
fn unpacklo_epi32(a: v128, b: v128) -> v128 {
i32x4_shuffle::<0, 4, 1, 5>(a, b)
}
#[inline(always)]
fn unpackhi_epi32(a: v128, b: v128) -> v128 {
i32x4_shuffle::<2, 6, 3, 7>(a, b)
}
#[inline(always)]
fn shuffle_epi32<const I3: usize, const I2: usize, const I1: usize, const I0: usize>(
a: v128,
) -> v128 {
// Please note that generic arguments in delcaration and imlementation are in
// different order.
// second arg is actually ignored.
i32x4_shuffle::<I0, I1, I2, I3>(a, a)
}
#[inline(always)]
fn blend_epi16(a: v128, b: v128, imm8: i32) -> v128 {
// imm8 is always constant; it allows to implement this function with
// i16x8_shuffle. However, it is marginally slower on x64.
let bits = i16x8(0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80);
let mut mask = i16x8_splat(imm8 as i16);
mask = v128_and(mask, bits);
mask = i16x8_eq(mask, bits);
// The swapped argument order is equivalent to mask negation.
v128_bitselect(b, a, mask)
}
// Note the optimization here of leaving row1 as the unrotated row, rather than
// row0. All the message loads below are adjusted to compensate for this. See
// discussion at https://github.com/sneves/blake2-avx2/pull/4
#[inline(always)]
fn diagonalize(row0: &mut v128, row2: &mut v128, row3: &mut v128) {
*row0 = shuffle_epi32::<2, 1, 0, 3>(*row0);
*row3 = shuffle_epi32::<1, 0, 3, 2>(*row3);
*row2 = shuffle_epi32::<0, 3, 2, 1>(*row2);
}
#[inline(always)]
fn undiagonalize(row0: &mut v128, row2: &mut v128, row3: &mut v128) {
*row0 = shuffle_epi32::<0, 3, 2, 1>(*row0);
*row3 = shuffle_epi32::<1, 0, 3, 2>(*row3);
*row2 = shuffle_epi32::<2, 1, 0, 3>(*row2);
}
#[inline(always)]
fn compress_pre(
cv: &CVWords,
block: &[u8; BLOCK_LEN],
block_len: u8,
counter: u64,
flags: u8,
) -> [v128; 4] {
// safe because CVWords is [u32; 8]
let row0 = &mut unsafe { loadu(cv.as_ptr().add(0) as *const u8) };
let row1 = &mut unsafe { loadu(cv.as_ptr().add(4) as *const u8) };
let row2 = &mut set4(IV[0], IV[1], IV[2], IV[3]);
let row3 = &mut set4(
counter_low(counter),
counter_high(counter),
block_len as u32,
flags as u32,
);
// safe because block is &[u8; 64]
let mut m0 = unsafe { loadu(block.as_ptr().add(0 * 4 * DEGREE)) };
let mut m1 = unsafe { loadu(block.as_ptr().add(1 * 4 * DEGREE)) };
let mut m2 = unsafe { loadu(block.as_ptr().add(2 * 4 * DEGREE)) };
let mut m3 = unsafe { loadu(block.as_ptr().add(3 * 4 * DEGREE)) };
let mut t0;
let mut t1;
let mut t2;
let mut t3;
let mut tt;
// Round 1. The first round permutes the message words from the original
// input order, into the groups that get mixed in parallel.
t0 = shuffle!(m0, m1, 2, 0, 2, 0); // 6 4 2 0
g1(row0, row1, row2, row3, t0);
t1 = shuffle!(m0, m1, 3, 1, 3, 1); // 7 5 3 1
g2(row0, row1, row2, row3, t1);
diagonalize(row0, row2, row3);
t2 = shuffle!(m2, m3, 2, 0, 2, 0); // 14 12 10 8
t2 = shuffle_epi32::<2, 1, 0, 3>(t2); // 12 10 8 14
g1(row0, row1, row2, row3, t2);
t3 = shuffle!(m2, m3, 3, 1, 3, 1); // 15 13 11 9
t3 = shuffle_epi32::<2, 1, 0, 3>(t3); // 13 11 9 15
g2(row0, row1, row2, row3, t3);
undiagonalize(row0, row2, row3);
m0 = t0;
m1 = t1;
m2 = t2;
m3 = t3;
// Round 2. This round and all following rounds apply a fixed permutation
// to the message words from the round before.
t0 = shuffle!(m0, m1, 3, 1, 1, 2);
t0 = shuffle_epi32::<0, 3, 2, 1>(t0);
g1(row0, row1, row2, row3, t0);
t1 = shuffle!(m2, m3, 3, 3, 2, 2);
tt = shuffle_epi32::<0, 0, 3, 3>(m0);
t1 = blend_epi16(tt, t1, 0xCC);
g2(row0, row1, row2, row3, t1);
diagonalize(row0, row2, row3);
t2 = unpacklo_epi64(m3, m1);
tt = blend_epi16(t2, m2, 0xC0);
t2 = shuffle_epi32::<1, 3, 2, 0>(tt);
g1(row0, row1, row2, row3, t2);
t3 = unpackhi_epi32(m1, m3);
tt = unpacklo_epi32(m2, t3);
t3 = shuffle_epi32::<0, 1, 3, 2>(tt);
g2(row0, row1, row2, row3, t3);
undiagonalize(row0, row2, row3);
m0 = t0;
m1 = t1;
m2 = t2;
m3 = t3;
// Round 3
t0 = shuffle!(m0, m1, 3, 1, 1, 2);
t0 = shuffle_epi32::<0, 3, 2, 1>(t0);
g1(row0, row1, row2, row3, t0);
t1 = shuffle!(m2, m3, 3, 3, 2, 2);
tt = shuffle_epi32::<0, 0, 3, 3>(m0);
t1 = blend_epi16(tt, t1, 0xCC);
g2(row0, row1, row2, row3, t1);
diagonalize(row0, row2, row3);
t2 = unpacklo_epi64(m3, m1);
tt = blend_epi16(t2, m2, 0xC0);
t2 = shuffle_epi32::<1, 3, 2, 0>(tt);
g1(row0, row1, row2, row3, t2);
t3 = unpackhi_epi32(m1, m3);
tt = unpacklo_epi32(m2, t3);
t3 = shuffle_epi32::<0, 1, 3, 2>(tt);
g2(row0, row1, row2, row3, t3);
undiagonalize(row0, row2, row3);
m0 = t0;
m1 = t1;
m2 = t2;
m3 = t3;
// Round 4
t0 = shuffle!(m0, m1, 3, 1, 1, 2);
t0 = shuffle_epi32::<0, 3, 2, 1>(t0);
g1(row0, row1, row2, row3, t0);
t1 = shuffle!(m2, m3, 3, 3, 2, 2);
tt = shuffle_epi32::<0, 0, 3, 3>(m0);
t1 = blend_epi16(tt, t1, 0xCC);
g2(row0, row1, row2, row3, t1);
diagonalize(row0, row2, row3);
t2 = unpacklo_epi64(m3, m1);
tt = blend_epi16(t2, m2, 0xC0);
t2 = shuffle_epi32::<1, 3, 2, 0>(tt);
g1(row0, row1, row2, row3, t2);
t3 = unpackhi_epi32(m1, m3);
tt = unpacklo_epi32(m2, t3);
t3 = shuffle_epi32::<0, 1, 3, 2>(tt);
g2(row0, row1, row2, row3, t3);
undiagonalize(row0, row2, row3);
m0 = t0;
m1 = t1;
m2 = t2;
m3 = t3;
// Round 5
t0 = shuffle!(m0, m1, 3, 1, 1, 2);
t0 = shuffle_epi32::<0, 3, 2, 1>(t0);
g1(row0, row1, row2, row3, t0);
t1 = shuffle!(m2, m3, 3, 3, 2, 2);
tt = shuffle_epi32::<0, 0, 3, 3>(m0);
t1 = blend_epi16(tt, t1, 0xCC);
g2(row0, row1, row2, row3, t1);
diagonalize(row0, row2, row3);
t2 = unpacklo_epi64(m3, m1);
tt = blend_epi16(t2, m2, 0xC0);
t2 = shuffle_epi32::<1, 3, 2, 0>(tt);
g1(row0, row1, row2, row3, t2);
t3 = unpackhi_epi32(m1, m3);
tt = unpacklo_epi32(m2, t3);
t3 = shuffle_epi32::<0, 1, 3, 2>(tt);
g2(row0, row1, row2, row3, t3);
undiagonalize(row0, row2, row3);
m0 = t0;
m1 = t1;
m2 = t2;
m3 = t3;
// Round 6
t0 = shuffle!(m0, m1, 3, 1, 1, 2);
t0 = shuffle_epi32::<0, 3, 2, 1>(t0);
g1(row0, row1, row2, row3, t0);
t1 = shuffle!(m2, m3, 3, 3, 2, 2);
tt = shuffle_epi32::<0, 0, 3, 3>(m0);
t1 = blend_epi16(tt, t1, 0xCC);
g2(row0, row1, row2, row3, t1);
diagonalize(row0, row2, row3);
t2 = unpacklo_epi64(m3, m1);
tt = blend_epi16(t2, m2, 0xC0);
t2 = shuffle_epi32::<1, 3, 2, 0>(tt);
g1(row0, row1, row2, row3, t2);
t3 = unpackhi_epi32(m1, m3);
tt = unpacklo_epi32(m2, t3);
t3 = shuffle_epi32::<0, 1, 3, 2>(tt);
g2(row0, row1, row2, row3, t3);
undiagonalize(row0, row2, row3);
m0 = t0;
m1 = t1;
m2 = t2;
m3 = t3;
// Round 7
t0 = shuffle!(m0, m1, 3, 1, 1, 2);
t0 = shuffle_epi32::<0, 3, 2, 1>(t0);
g1(row0, row1, row2, row3, t0);
t1 = shuffle!(m2, m3, 3, 3, 2, 2);
tt = shuffle_epi32::<0, 0, 3, 3>(m0);
t1 = blend_epi16(tt, t1, 0xCC);
g2(row0, row1, row2, row3, t1);
diagonalize(row0, row2, row3);
t2 = unpacklo_epi64(m3, m1);
tt = blend_epi16(t2, m2, 0xC0);
t2 = shuffle_epi32::<1, 3, 2, 0>(tt);
g1(row0, row1, row2, row3, t2);
t3 = unpackhi_epi32(m1, m3);
tt = unpacklo_epi32(m2, t3);
t3 = shuffle_epi32::<0, 1, 3, 2>(tt);
g2(row0, row1, row2, row3, t3);
undiagonalize(row0, row2, row3);
[*row0, *row1, *row2, *row3]
}
#[target_feature(enable = "simd128")]
pub fn compress_in_place(
cv: &mut CVWords,
block: &[u8; BLOCK_LEN],
block_len: u8,
counter: u64,
flags: u8,
) {
let [row0, row1, row2, row3] = compress_pre(cv, block, block_len, counter, flags);
// it stores in reversed order...
// safe because CVWords is [u32; 8]
unsafe {
storeu(xor(row0, row2), cv.as_mut_ptr().add(0) as *mut u8);
storeu(xor(row1, row3), cv.as_mut_ptr().add(4) as *mut u8);
}
}
#[target_feature(enable = "simd128")]
pub fn compress_xof(
cv: &CVWords,
block: &[u8; BLOCK_LEN],
block_len: u8,
counter: u64,
flags: u8,
) -> [u8; 64] {
let [mut row0, mut row1, mut row2, mut row3] =
compress_pre(cv, block, block_len, counter, flags);
row0 = xor(row0, row2);
row1 = xor(row1, row3);
// safe because CVWords is [u32; 8]
row2 = xor(row2, unsafe { loadu(cv.as_ptr().add(0) as *const u8) });
row3 = xor(row3, unsafe { loadu(cv.as_ptr().add(4) as *const u8) });
// It seems to be architecture dependent, but works.
// safe because sizes match, and every state of u8 is valid.
unsafe { core::mem::transmute([row0, row1, row2, row3]) }
}
#[inline(always)]
fn round(v: &mut [v128; 16], m: &[v128; 16], r: usize) {
v[0] = add(v[0], m[MSG_SCHEDULE[r][0] as usize]);
v[1] = add(v[1], m[MSG_SCHEDULE[r][2] as usize]);
v[2] = add(v[2], m[MSG_SCHEDULE[r][4] as usize]);
v[3] = add(v[3], m[MSG_SCHEDULE[r][6] as usize]);
v[0] = add(v[0], v[4]);
v[1] = add(v[1], v[5]);
v[2] = add(v[2], v[6]);
v[3] = add(v[3], v[7]);
v[12] = xor(v[12], v[0]);
v[13] = xor(v[13], v[1]);
v[14] = xor(v[14], v[2]);
v[15] = xor(v[15], v[3]);
v[12] = rot16(v[12]);
v[13] = rot16(v[13]);
v[14] = rot16(v[14]);
v[15] = rot16(v[15]);
v[8] = add(v[8], v[12]);
v[9] = add(v[9], v[13]);
v[10] = add(v[10], v[14]);
v[11] = add(v[11], v[15]);
v[4] = xor(v[4], v[8]);
v[5] = xor(v[5], v[9]);
v[6] = xor(v[6], v[10]);
v[7] = xor(v[7], v[11]);
v[4] = rot12(v[4]);
v[5] = rot12(v[5]);
v[6] = rot12(v[6]);
v[7] = rot12(v[7]);
v[0] = add(v[0], m[MSG_SCHEDULE[r][1] as usize]);
v[1] = add(v[1], m[MSG_SCHEDULE[r][3] as usize]);
v[2] = add(v[2], m[MSG_SCHEDULE[r][5] as usize]);
v[3] = add(v[3], m[MSG_SCHEDULE[r][7] as usize]);
v[0] = add(v[0], v[4]);
v[1] = add(v[1], v[5]);
v[2] = add(v[2], v[6]);
v[3] = add(v[3], v[7]);
v[12] = xor(v[12], v[0]);
v[13] = xor(v[13], v[1]);
v[14] = xor(v[14], v[2]);
v[15] = xor(v[15], v[3]);
v[12] = rot8(v[12]);
v[13] = rot8(v[13]);
v[14] = rot8(v[14]);
v[15] = rot8(v[15]);
v[8] = add(v[8], v[12]);
v[9] = add(v[9], v[13]);
v[10] = add(v[10], v[14]);
v[11] = add(v[11], v[15]);
v[4] = xor(v[4], v[8]);
v[5] = xor(v[5], v[9]);
v[6] = xor(v[6], v[10]);
v[7] = xor(v[7], v[11]);
v[4] = rot7(v[4]);
v[5] = rot7(v[5]);
v[6] = rot7(v[6]);
v[7] = rot7(v[7]);
v[0] = add(v[0], m[MSG_SCHEDULE[r][8] as usize]);
v[1] = add(v[1], m[MSG_SCHEDULE[r][10] as usize]);
v[2] = add(v[2], m[MSG_SCHEDULE[r][12] as usize]);
v[3] = add(v[3], m[MSG_SCHEDULE[r][14] as usize]);
v[0] = add(v[0], v[5]);
v[1] = add(v[1], v[6]);
v[2] = add(v[2], v[7]);
v[3] = add(v[3], v[4]);
v[15] = xor(v[15], v[0]);
v[12] = xor(v[12], v[1]);
v[13] = xor(v[13], v[2]);
v[14] = xor(v[14], v[3]);
v[15] = rot16(v[15]);
v[12] = rot16(v[12]);
v[13] = rot16(v[13]);
v[14] = rot16(v[14]);
v[10] = add(v[10], v[15]);
v[11] = add(v[11], v[12]);
v[8] = add(v[8], v[13]);
v[9] = add(v[9], v[14]);
v[5] = xor(v[5], v[10]);
v[6] = xor(v[6], v[11]);
v[7] = xor(v[7], v[8]);
v[4] = xor(v[4], v[9]);
v[5] = rot12(v[5]);
v[6] = rot12(v[6]);
v[7] = rot12(v[7]);
v[4] = rot12(v[4]);
v[0] = add(v[0], m[MSG_SCHEDULE[r][9] as usize]);
v[1] = add(v[1], m[MSG_SCHEDULE[r][11] as usize]);
v[2] = add(v[2], m[MSG_SCHEDULE[r][13] as usize]);
v[3] = add(v[3], m[MSG_SCHEDULE[r][15] as usize]);
v[0] = add(v[0], v[5]);
v[1] = add(v[1], v[6]);
v[2] = add(v[2], v[7]);
v[3] = add(v[3], v[4]);
v[15] = xor(v[15], v[0]);
v[12] = xor(v[12], v[1]);
v[13] = xor(v[13], v[2]);
v[14] = xor(v[14], v[3]);
v[15] = rot8(v[15]);
v[12] = rot8(v[12]);
v[13] = rot8(v[13]);
v[14] = rot8(v[14]);
v[10] = add(v[10], v[15]);
v[11] = add(v[11], v[12]);
v[8] = add(v[8], v[13]);
v[9] = add(v[9], v[14]);
v[5] = xor(v[5], v[10]);
v[6] = xor(v[6], v[11]);
v[7] = xor(v[7], v[8]);
v[4] = xor(v[4], v[9]);
v[5] = rot7(v[5]);
v[6] = rot7(v[6]);
v[7] = rot7(v[7]);
v[4] = rot7(v[4]);
}
#[inline(always)]
fn transpose_vecs(vecs: &mut [v128; DEGREE]) {
// Interleave 32-bit lanes. The low unpack is lanes 00/11 and the high is
// 22/33. Note that this doesn't split the vector into two lanes, as the
// AVX2 counterparts do.
let ab_01 = unpacklo_epi32(vecs[0], vecs[1]);
let ab_23 = unpackhi_epi32(vecs[0], vecs[1]);
let cd_01 = unpacklo_epi32(vecs[2], vecs[3]);
let cd_23 = unpackhi_epi32(vecs[2], vecs[3]);
// Interleave 64-bit lanes.
let abcd_0 = unpacklo_epi64(ab_01, cd_01);
let abcd_1 = unpackhi_epi64(ab_01, cd_01);
let abcd_2 = unpacklo_epi64(ab_23, cd_23);
let abcd_3 = unpackhi_epi64(ab_23, cd_23);
vecs[0] = abcd_0;
vecs[1] = abcd_1;
vecs[2] = abcd_2;
vecs[3] = abcd_3;
}
#[inline(always)]
unsafe fn transpose_msg_vecs(inputs: &[*const u8; DEGREE], block_offset: usize) -> [v128; 16] {
let mut vecs = [
loadu(inputs[0].add(block_offset + 0 * 4 * DEGREE)),
loadu(inputs[1].add(block_offset + 0 * 4 * DEGREE)),
loadu(inputs[2].add(block_offset + 0 * 4 * DEGREE)),
loadu(inputs[3].add(block_offset + 0 * 4 * DEGREE)),
loadu(inputs[0].add(block_offset + 1 * 4 * DEGREE)),
loadu(inputs[1].add(block_offset + 1 * 4 * DEGREE)),
loadu(inputs[2].add(block_offset + 1 * 4 * DEGREE)),
loadu(inputs[3].add(block_offset + 1 * 4 * DEGREE)),
loadu(inputs[0].add(block_offset + 2 * 4 * DEGREE)),
loadu(inputs[1].add(block_offset + 2 * 4 * DEGREE)),
loadu(inputs[2].add(block_offset + 2 * 4 * DEGREE)),
loadu(inputs[3].add(block_offset + 2 * 4 * DEGREE)),
loadu(inputs[0].add(block_offset + 3 * 4 * DEGREE)),
loadu(inputs[1].add(block_offset + 3 * 4 * DEGREE)),
loadu(inputs[2].add(block_offset + 3 * 4 * DEGREE)),
loadu(inputs[3].add(block_offset + 3 * 4 * DEGREE)),
];
let squares = mut_array_refs!(&mut vecs, DEGREE, DEGREE, DEGREE, DEGREE);
transpose_vecs(squares.0);
transpose_vecs(squares.1);
transpose_vecs(squares.2);
transpose_vecs(squares.3);
vecs
}
#[inline(always)]
fn load_counters(counter: u64, increment_counter: IncrementCounter) -> (v128, v128) {
let mask = if increment_counter.yes() { !0 } else { 0 };
(
set4(
counter_low(counter + (mask & 0)),
counter_low(counter + (mask & 1)),
counter_low(counter + (mask & 2)),
counter_low(counter + (mask & 3)),
),
set4(
counter_high(counter + (mask & 0)),
counter_high(counter + (mask & 1)),
counter_high(counter + (mask & 2)),
counter_high(counter + (mask & 3)),
),
)
}
#[target_feature(enable = "simd128")]
pub unsafe fn hash4(
inputs: &[*const u8; DEGREE],
blocks: usize,
key: &CVWords,
counter: u64,
increment_counter: IncrementCounter,
flags: u8,
flags_start: u8,
flags_end: u8,
out: &mut [u8; DEGREE * OUT_LEN],
) {
let mut h_vecs = [
set1(key[0]),
set1(key[1]),
set1(key[2]),
set1(key[3]),
set1(key[4]),
set1(key[5]),
set1(key[6]),
set1(key[7]),
];
let (counter_low_vec, counter_high_vec) = load_counters(counter, increment_counter);
let mut block_flags = flags | flags_start;
for block in 0..blocks {
if block + 1 == blocks {
block_flags |= flags_end;
}
let block_len_vec = set1(BLOCK_LEN as u32); // full blocks only
let block_flags_vec = set1(block_flags as u32);
let msg_vecs = transpose_msg_vecs(inputs, block * BLOCK_LEN);
// The transposed compression function. Note that inlining this
// manually here improves compile times by a lot, compared to factoring
// it out into its own function and making it #[inline(always)]. Just
// guessing, it might have something to do with loop unrolling.
let mut v = [
h_vecs[0],
h_vecs[1],
h_vecs[2],
h_vecs[3],
h_vecs[4],
h_vecs[5],
h_vecs[6],
h_vecs[7],
set1(IV[0]),
set1(IV[1]),
set1(IV[2]),
set1(IV[3]),
counter_low_vec,
counter_high_vec,
block_len_vec,
block_flags_vec,
];
round(&mut v, &msg_vecs, 0);
round(&mut v, &msg_vecs, 1);
round(&mut v, &msg_vecs, 2);
round(&mut v, &msg_vecs, 3);
round(&mut v, &msg_vecs, 4);
round(&mut v, &msg_vecs, 5);
round(&mut v, &msg_vecs, 6);
h_vecs[0] = xor(v[0], v[8]);
h_vecs[1] = xor(v[1], v[9]);
h_vecs[2] = xor(v[2], v[10]);
h_vecs[3] = xor(v[3], v[11]);
h_vecs[4] = xor(v[4], v[12]);
h_vecs[5] = xor(v[5], v[13]);
h_vecs[6] = xor(v[6], v[14]);
h_vecs[7] = xor(v[7], v[15]);
block_flags = flags;
}
let squares = mut_array_refs!(&mut h_vecs, DEGREE, DEGREE);
transpose_vecs(squares.0);
transpose_vecs(squares.1);
// The first four vecs now contain the first half of each output, and the
// second four vecs contain the second half of each output.
storeu(h_vecs[0], out.as_mut_ptr().add(0 * 4 * DEGREE));
storeu(h_vecs[4], out.as_mut_ptr().add(1 * 4 * DEGREE));
storeu(h_vecs[1], out.as_mut_ptr().add(2 * 4 * DEGREE));
storeu(h_vecs[5], out.as_mut_ptr().add(3 * 4 * DEGREE));
storeu(h_vecs[2], out.as_mut_ptr().add(4 * 4 * DEGREE));
storeu(h_vecs[6], out.as_mut_ptr().add(5 * 4 * DEGREE));
storeu(h_vecs[3], out.as_mut_ptr().add(6 * 4 * DEGREE));
storeu(h_vecs[7], out.as_mut_ptr().add(7 * 4 * DEGREE));
}
#[target_feature(enable = "simd128")]
unsafe fn hash1<const N: usize>(
input: &[u8; N],
key: &CVWords,
counter: u64,
flags: u8,
flags_start: u8,
flags_end: u8,
out: &mut CVBytes,
) {
debug_assert_eq!(N % BLOCK_LEN, 0, "uneven blocks");
let mut cv = *key;
let mut block_flags = flags | flags_start;
let mut slice = &input[..];
while slice.len() >= BLOCK_LEN {
if slice.len() == BLOCK_LEN {
block_flags |= flags_end;
}
compress_in_place(
&mut cv,
array_ref!(slice, 0, BLOCK_LEN),
BLOCK_LEN as u8,
counter,
block_flags,
);
block_flags = flags;
slice = &slice[BLOCK_LEN..];
}
*out = core::mem::transmute(cv);
}
#[target_feature(enable = "simd128")]
pub unsafe fn hash_many<const N: usize>(
mut inputs: &[&[u8; N]],
key: &CVWords,
mut counter: u64,
increment_counter: IncrementCounter,
flags: u8,
flags_start: u8,
flags_end: u8,
mut out: &mut [u8],
) {
debug_assert!(out.len() >= inputs.len() * OUT_LEN, "out too short");
while inputs.len() >= DEGREE && out.len() >= DEGREE * OUT_LEN {
// Safe because the layout of arrays is guaranteed, and because the
// `blocks` count is determined statically from the argument type.
let input_ptrs: &[*const u8; DEGREE] = &*(inputs.as_ptr() as *const [*const u8; DEGREE]);
let blocks = N / BLOCK_LEN;
hash4(
input_ptrs,
blocks,
key,
counter,
increment_counter,
flags,
flags_start,
flags_end,
array_mut_ref!(out, 0, DEGREE * OUT_LEN),
);
if increment_counter.yes() {
counter += DEGREE as u64;
}
inputs = &inputs[DEGREE..];
out = &mut out[DEGREE * OUT_LEN..];
}
for (&input, output) in inputs.iter().zip(out.chunks_exact_mut(OUT_LEN)) {
hash1(
input,
key,
counter,
flags,
flags_start,
flags_end,
array_mut_ref!(output, 0, OUT_LEN),
);
if increment_counter.yes() {
counter += 1;
}
}
}
#[cfg(test)]
mod test {
use super::*;
#[test]
fn test_transpose() {
#[target_feature(enable = "simd128")]
fn transpose_wrapper(vecs: &mut [v128; DEGREE]) {
transpose_vecs(vecs);
}
let mut matrix = [[0 as u32; DEGREE]; DEGREE];
for i in 0..DEGREE {
for j in 0..DEGREE {
matrix[i][j] = (i * DEGREE + j) as u32;
}
}
unsafe {
let mut vecs: [v128; DEGREE] = core::mem::transmute(matrix);
transpose_wrapper(&mut vecs);
matrix = core::mem::transmute(vecs);
}
for i in 0..DEGREE {
for j in 0..DEGREE {
// Reversed indexes from above.
assert_eq!(matrix[j][i], (i * DEGREE + j) as u32);
}
}
}
#[test]
fn test_compress() {
crate::test::test_compress_fn(compress_in_place, compress_xof);
}
#[test]
fn test_hash_many() {
crate::test::test_hash_many_fn(hash_many, hash_many);
}
}