1
0
Fork 0
mirror of https://github.com/BLAKE3-team/BLAKE3 synced 2024-04-18 23:33:50 +02:00
BLAKE3/src/rust_sse41.rs
Joel Rosdahl 2dd4e57f68 Fix typos
2023-05-23 14:39:27 -07:00

767 lines
24 KiB
Rust

#[cfg(target_arch = "x86")]
use core::arch::x86::*;
#[cfg(target_arch = "x86_64")]
use core::arch::x86_64::*;
use crate::{
counter_high, counter_low, CVBytes, CVWords, IncrementCounter, BLOCK_LEN, IV, MSG_SCHEDULE,
OUT_LEN,
};
use arrayref::{array_mut_ref, array_ref, mut_array_refs};
pub const DEGREE: usize = 4;
#[inline(always)]
unsafe fn loadu(src: *const u8) -> __m128i {
// This is an unaligned load, so the pointer cast is allowed.
_mm_loadu_si128(src as *const __m128i)
}
#[inline(always)]
unsafe fn storeu(src: __m128i, dest: *mut u8) {
// This is an unaligned store, so the pointer cast is allowed.
_mm_storeu_si128(dest as *mut __m128i, src)
}
#[inline(always)]
unsafe fn add(a: __m128i, b: __m128i) -> __m128i {
_mm_add_epi32(a, b)
}
#[inline(always)]
unsafe fn xor(a: __m128i, b: __m128i) -> __m128i {
_mm_xor_si128(a, b)
}
#[inline(always)]
unsafe fn set1(x: u32) -> __m128i {
_mm_set1_epi32(x as i32)
}
#[inline(always)]
unsafe fn set4(a: u32, b: u32, c: u32, d: u32) -> __m128i {
_mm_setr_epi32(a as i32, b as i32, c as i32, d as i32)
}
// These rotations are the "simple/shifts version". For the
// "complicated/shuffles version", see
// https://github.com/sneves/blake2-avx2/blob/b3723921f668df09ece52dcd225a36d4a4eea1d9/blake2s-common.h#L63-L66.
// For a discussion of the tradeoffs, see
// https://github.com/sneves/blake2-avx2/pull/5. Due to an LLVM bug
// (https://bugs.llvm.org/show_bug.cgi?id=44379), this version performs better
// on recent x86 chips.
#[inline(always)]
unsafe fn rot16(a: __m128i) -> __m128i {
_mm_or_si128(_mm_srli_epi32(a, 16), _mm_slli_epi32(a, 32 - 16))
}
#[inline(always)]
unsafe fn rot12(a: __m128i) -> __m128i {
_mm_or_si128(_mm_srli_epi32(a, 12), _mm_slli_epi32(a, 32 - 12))
}
#[inline(always)]
unsafe fn rot8(a: __m128i) -> __m128i {
_mm_or_si128(_mm_srli_epi32(a, 8), _mm_slli_epi32(a, 32 - 8))
}
#[inline(always)]
unsafe fn rot7(a: __m128i) -> __m128i {
_mm_or_si128(_mm_srli_epi32(a, 7), _mm_slli_epi32(a, 32 - 7))
}
#[inline(always)]
unsafe fn g1(
row0: &mut __m128i,
row1: &mut __m128i,
row2: &mut __m128i,
row3: &mut __m128i,
m: __m128i,
) {
*row0 = add(add(*row0, m), *row1);
*row3 = xor(*row3, *row0);
*row3 = rot16(*row3);
*row2 = add(*row2, *row3);
*row1 = xor(*row1, *row2);
*row1 = rot12(*row1);
}
#[inline(always)]
unsafe fn g2(
row0: &mut __m128i,
row1: &mut __m128i,
row2: &mut __m128i,
row3: &mut __m128i,
m: __m128i,
) {
*row0 = add(add(*row0, m), *row1);
*row3 = xor(*row3, *row0);
*row3 = rot8(*row3);
*row2 = add(*row2, *row3);
*row1 = xor(*row1, *row2);
*row1 = rot7(*row1);
}
// Adapted from https://github.com/rust-lang-nursery/stdsimd/pull/479.
macro_rules! _MM_SHUFFLE {
($z:expr, $y:expr, $x:expr, $w:expr) => {
($z << 6) | ($y << 4) | ($x << 2) | $w
};
}
macro_rules! shuffle2 {
($a:expr, $b:expr, $c:expr) => {
_mm_castps_si128(_mm_shuffle_ps(
_mm_castsi128_ps($a),
_mm_castsi128_ps($b),
$c,
))
};
}
// Note the optimization here of leaving row1 as the unrotated row, rather than
// row0. All the message loads below are adjusted to compensate for this. See
// discussion at https://github.com/sneves/blake2-avx2/pull/4
#[inline(always)]
unsafe fn diagonalize(row0: &mut __m128i, row2: &mut __m128i, row3: &mut __m128i) {
*row0 = _mm_shuffle_epi32(*row0, _MM_SHUFFLE!(2, 1, 0, 3));
*row3 = _mm_shuffle_epi32(*row3, _MM_SHUFFLE!(1, 0, 3, 2));
*row2 = _mm_shuffle_epi32(*row2, _MM_SHUFFLE!(0, 3, 2, 1));
}
#[inline(always)]
unsafe fn undiagonalize(row0: &mut __m128i, row2: &mut __m128i, row3: &mut __m128i) {
*row0 = _mm_shuffle_epi32(*row0, _MM_SHUFFLE!(0, 3, 2, 1));
*row3 = _mm_shuffle_epi32(*row3, _MM_SHUFFLE!(1, 0, 3, 2));
*row2 = _mm_shuffle_epi32(*row2, _MM_SHUFFLE!(2, 1, 0, 3));
}
#[inline(always)]
unsafe fn compress_pre(
cv: &CVWords,
block: &[u8; BLOCK_LEN],
block_len: u8,
counter: u64,
flags: u8,
) -> [__m128i; 4] {
let row0 = &mut loadu(cv.as_ptr().add(0) as *const u8);
let row1 = &mut loadu(cv.as_ptr().add(4) as *const u8);
let row2 = &mut set4(IV[0], IV[1], IV[2], IV[3]);
let row3 = &mut set4(
counter_low(counter),
counter_high(counter),
block_len as u32,
flags as u32,
);
let mut m0 = loadu(block.as_ptr().add(0 * 4 * DEGREE));
let mut m1 = loadu(block.as_ptr().add(1 * 4 * DEGREE));
let mut m2 = loadu(block.as_ptr().add(2 * 4 * DEGREE));
let mut m3 = loadu(block.as_ptr().add(3 * 4 * DEGREE));
let mut t0;
let mut t1;
let mut t2;
let mut t3;
let mut tt;
// Round 1. The first round permutes the message words from the original
// input order, into the groups that get mixed in parallel.
t0 = shuffle2!(m0, m1, _MM_SHUFFLE!(2, 0, 2, 0)); // 6 4 2 0
g1(row0, row1, row2, row3, t0);
t1 = shuffle2!(m0, m1, _MM_SHUFFLE!(3, 1, 3, 1)); // 7 5 3 1
g2(row0, row1, row2, row3, t1);
diagonalize(row0, row2, row3);
t2 = shuffle2!(m2, m3, _MM_SHUFFLE!(2, 0, 2, 0)); // 14 12 10 8
t2 = _mm_shuffle_epi32(t2, _MM_SHUFFLE!(2, 1, 0, 3)); // 12 10 8 14
g1(row0, row1, row2, row3, t2);
t3 = shuffle2!(m2, m3, _MM_SHUFFLE!(3, 1, 3, 1)); // 15 13 11 9
t3 = _mm_shuffle_epi32(t3, _MM_SHUFFLE!(2, 1, 0, 3)); // 13 11 9 15
g2(row0, row1, row2, row3, t3);
undiagonalize(row0, row2, row3);
m0 = t0;
m1 = t1;
m2 = t2;
m3 = t3;
// Round 2. This round and all following rounds apply a fixed permutation
// to the message words from the round before.
t0 = shuffle2!(m0, m1, _MM_SHUFFLE!(3, 1, 1, 2));
t0 = _mm_shuffle_epi32(t0, _MM_SHUFFLE!(0, 3, 2, 1));
g1(row0, row1, row2, row3, t0);
t1 = shuffle2!(m2, m3, _MM_SHUFFLE!(3, 3, 2, 2));
tt = _mm_shuffle_epi32(m0, _MM_SHUFFLE!(0, 0, 3, 3));
t1 = _mm_blend_epi16(tt, t1, 0xCC);
g2(row0, row1, row2, row3, t1);
diagonalize(row0, row2, row3);
t2 = _mm_unpacklo_epi64(m3, m1);
tt = _mm_blend_epi16(t2, m2, 0xC0);
t2 = _mm_shuffle_epi32(tt, _MM_SHUFFLE!(1, 3, 2, 0));
g1(row0, row1, row2, row3, t2);
t3 = _mm_unpackhi_epi32(m1, m3);
tt = _mm_unpacklo_epi32(m2, t3);
t3 = _mm_shuffle_epi32(tt, _MM_SHUFFLE!(0, 1, 3, 2));
g2(row0, row1, row2, row3, t3);
undiagonalize(row0, row2, row3);
m0 = t0;
m1 = t1;
m2 = t2;
m3 = t3;
// Round 3
t0 = shuffle2!(m0, m1, _MM_SHUFFLE!(3, 1, 1, 2));
t0 = _mm_shuffle_epi32(t0, _MM_SHUFFLE!(0, 3, 2, 1));
g1(row0, row1, row2, row3, t0);
t1 = shuffle2!(m2, m3, _MM_SHUFFLE!(3, 3, 2, 2));
tt = _mm_shuffle_epi32(m0, _MM_SHUFFLE!(0, 0, 3, 3));
t1 = _mm_blend_epi16(tt, t1, 0xCC);
g2(row0, row1, row2, row3, t1);
diagonalize(row0, row2, row3);
t2 = _mm_unpacklo_epi64(m3, m1);
tt = _mm_blend_epi16(t2, m2, 0xC0);
t2 = _mm_shuffle_epi32(tt, _MM_SHUFFLE!(1, 3, 2, 0));
g1(row0, row1, row2, row3, t2);
t3 = _mm_unpackhi_epi32(m1, m3);
tt = _mm_unpacklo_epi32(m2, t3);
t3 = _mm_shuffle_epi32(tt, _MM_SHUFFLE!(0, 1, 3, 2));
g2(row0, row1, row2, row3, t3);
undiagonalize(row0, row2, row3);
m0 = t0;
m1 = t1;
m2 = t2;
m3 = t3;
// Round 4
t0 = shuffle2!(m0, m1, _MM_SHUFFLE!(3, 1, 1, 2));
t0 = _mm_shuffle_epi32(t0, _MM_SHUFFLE!(0, 3, 2, 1));
g1(row0, row1, row2, row3, t0);
t1 = shuffle2!(m2, m3, _MM_SHUFFLE!(3, 3, 2, 2));
tt = _mm_shuffle_epi32(m0, _MM_SHUFFLE!(0, 0, 3, 3));
t1 = _mm_blend_epi16(tt, t1, 0xCC);
g2(row0, row1, row2, row3, t1);
diagonalize(row0, row2, row3);
t2 = _mm_unpacklo_epi64(m3, m1);
tt = _mm_blend_epi16(t2, m2, 0xC0);
t2 = _mm_shuffle_epi32(tt, _MM_SHUFFLE!(1, 3, 2, 0));
g1(row0, row1, row2, row3, t2);
t3 = _mm_unpackhi_epi32(m1, m3);
tt = _mm_unpacklo_epi32(m2, t3);
t3 = _mm_shuffle_epi32(tt, _MM_SHUFFLE!(0, 1, 3, 2));
g2(row0, row1, row2, row3, t3);
undiagonalize(row0, row2, row3);
m0 = t0;
m1 = t1;
m2 = t2;
m3 = t3;
// Round 5
t0 = shuffle2!(m0, m1, _MM_SHUFFLE!(3, 1, 1, 2));
t0 = _mm_shuffle_epi32(t0, _MM_SHUFFLE!(0, 3, 2, 1));
g1(row0, row1, row2, row3, t0);
t1 = shuffle2!(m2, m3, _MM_SHUFFLE!(3, 3, 2, 2));
tt = _mm_shuffle_epi32(m0, _MM_SHUFFLE!(0, 0, 3, 3));
t1 = _mm_blend_epi16(tt, t1, 0xCC);
g2(row0, row1, row2, row3, t1);
diagonalize(row0, row2, row3);
t2 = _mm_unpacklo_epi64(m3, m1);
tt = _mm_blend_epi16(t2, m2, 0xC0);
t2 = _mm_shuffle_epi32(tt, _MM_SHUFFLE!(1, 3, 2, 0));
g1(row0, row1, row2, row3, t2);
t3 = _mm_unpackhi_epi32(m1, m3);
tt = _mm_unpacklo_epi32(m2, t3);
t3 = _mm_shuffle_epi32(tt, _MM_SHUFFLE!(0, 1, 3, 2));
g2(row0, row1, row2, row3, t3);
undiagonalize(row0, row2, row3);
m0 = t0;
m1 = t1;
m2 = t2;
m3 = t3;
// Round 6
t0 = shuffle2!(m0, m1, _MM_SHUFFLE!(3, 1, 1, 2));
t0 = _mm_shuffle_epi32(t0, _MM_SHUFFLE!(0, 3, 2, 1));
g1(row0, row1, row2, row3, t0);
t1 = shuffle2!(m2, m3, _MM_SHUFFLE!(3, 3, 2, 2));
tt = _mm_shuffle_epi32(m0, _MM_SHUFFLE!(0, 0, 3, 3));
t1 = _mm_blend_epi16(tt, t1, 0xCC);
g2(row0, row1, row2, row3, t1);
diagonalize(row0, row2, row3);
t2 = _mm_unpacklo_epi64(m3, m1);
tt = _mm_blend_epi16(t2, m2, 0xC0);
t2 = _mm_shuffle_epi32(tt, _MM_SHUFFLE!(1, 3, 2, 0));
g1(row0, row1, row2, row3, t2);
t3 = _mm_unpackhi_epi32(m1, m3);
tt = _mm_unpacklo_epi32(m2, t3);
t3 = _mm_shuffle_epi32(tt, _MM_SHUFFLE!(0, 1, 3, 2));
g2(row0, row1, row2, row3, t3);
undiagonalize(row0, row2, row3);
m0 = t0;
m1 = t1;
m2 = t2;
m3 = t3;
// Round 7
t0 = shuffle2!(m0, m1, _MM_SHUFFLE!(3, 1, 1, 2));
t0 = _mm_shuffle_epi32(t0, _MM_SHUFFLE!(0, 3, 2, 1));
g1(row0, row1, row2, row3, t0);
t1 = shuffle2!(m2, m3, _MM_SHUFFLE!(3, 3, 2, 2));
tt = _mm_shuffle_epi32(m0, _MM_SHUFFLE!(0, 0, 3, 3));
t1 = _mm_blend_epi16(tt, t1, 0xCC);
g2(row0, row1, row2, row3, t1);
diagonalize(row0, row2, row3);
t2 = _mm_unpacklo_epi64(m3, m1);
tt = _mm_blend_epi16(t2, m2, 0xC0);
t2 = _mm_shuffle_epi32(tt, _MM_SHUFFLE!(1, 3, 2, 0));
g1(row0, row1, row2, row3, t2);
t3 = _mm_unpackhi_epi32(m1, m3);
tt = _mm_unpacklo_epi32(m2, t3);
t3 = _mm_shuffle_epi32(tt, _MM_SHUFFLE!(0, 1, 3, 2));
g2(row0, row1, row2, row3, t3);
undiagonalize(row0, row2, row3);
[*row0, *row1, *row2, *row3]
}
#[target_feature(enable = "sse4.1")]
pub unsafe fn compress_in_place(
cv: &mut CVWords,
block: &[u8; BLOCK_LEN],
block_len: u8,
counter: u64,
flags: u8,
) {
let [row0, row1, row2, row3] = compress_pre(cv, block, block_len, counter, flags);
storeu(xor(row0, row2), cv.as_mut_ptr().add(0) as *mut u8);
storeu(xor(row1, row3), cv.as_mut_ptr().add(4) as *mut u8);
}
#[target_feature(enable = "sse4.1")]
pub unsafe fn compress_xof(
cv: &CVWords,
block: &[u8; BLOCK_LEN],
block_len: u8,
counter: u64,
flags: u8,
) -> [u8; 64] {
let [mut row0, mut row1, mut row2, mut row3] =
compress_pre(cv, block, block_len, counter, flags);
row0 = xor(row0, row2);
row1 = xor(row1, row3);
row2 = xor(row2, loadu(cv.as_ptr().add(0) as *const u8));
row3 = xor(row3, loadu(cv.as_ptr().add(4) as *const u8));
core::mem::transmute([row0, row1, row2, row3])
}
#[inline(always)]
unsafe fn round(v: &mut [__m128i; 16], m: &[__m128i; 16], r: usize) {
v[0] = add(v[0], m[MSG_SCHEDULE[r][0] as usize]);
v[1] = add(v[1], m[MSG_SCHEDULE[r][2] as usize]);
v[2] = add(v[2], m[MSG_SCHEDULE[r][4] as usize]);
v[3] = add(v[3], m[MSG_SCHEDULE[r][6] as usize]);
v[0] = add(v[0], v[4]);
v[1] = add(v[1], v[5]);
v[2] = add(v[2], v[6]);
v[3] = add(v[3], v[7]);
v[12] = xor(v[12], v[0]);
v[13] = xor(v[13], v[1]);
v[14] = xor(v[14], v[2]);
v[15] = xor(v[15], v[3]);
v[12] = rot16(v[12]);
v[13] = rot16(v[13]);
v[14] = rot16(v[14]);
v[15] = rot16(v[15]);
v[8] = add(v[8], v[12]);
v[9] = add(v[9], v[13]);
v[10] = add(v[10], v[14]);
v[11] = add(v[11], v[15]);
v[4] = xor(v[4], v[8]);
v[5] = xor(v[5], v[9]);
v[6] = xor(v[6], v[10]);
v[7] = xor(v[7], v[11]);
v[4] = rot12(v[4]);
v[5] = rot12(v[5]);
v[6] = rot12(v[6]);
v[7] = rot12(v[7]);
v[0] = add(v[0], m[MSG_SCHEDULE[r][1] as usize]);
v[1] = add(v[1], m[MSG_SCHEDULE[r][3] as usize]);
v[2] = add(v[2], m[MSG_SCHEDULE[r][5] as usize]);
v[3] = add(v[3], m[MSG_SCHEDULE[r][7] as usize]);
v[0] = add(v[0], v[4]);
v[1] = add(v[1], v[5]);
v[2] = add(v[2], v[6]);
v[3] = add(v[3], v[7]);
v[12] = xor(v[12], v[0]);
v[13] = xor(v[13], v[1]);
v[14] = xor(v[14], v[2]);
v[15] = xor(v[15], v[3]);
v[12] = rot8(v[12]);
v[13] = rot8(v[13]);
v[14] = rot8(v[14]);
v[15] = rot8(v[15]);
v[8] = add(v[8], v[12]);
v[9] = add(v[9], v[13]);
v[10] = add(v[10], v[14]);
v[11] = add(v[11], v[15]);
v[4] = xor(v[4], v[8]);
v[5] = xor(v[5], v[9]);
v[6] = xor(v[6], v[10]);
v[7] = xor(v[7], v[11]);
v[4] = rot7(v[4]);
v[5] = rot7(v[5]);
v[6] = rot7(v[6]);
v[7] = rot7(v[7]);
v[0] = add(v[0], m[MSG_SCHEDULE[r][8] as usize]);
v[1] = add(v[1], m[MSG_SCHEDULE[r][10] as usize]);
v[2] = add(v[2], m[MSG_SCHEDULE[r][12] as usize]);
v[3] = add(v[3], m[MSG_SCHEDULE[r][14] as usize]);
v[0] = add(v[0], v[5]);
v[1] = add(v[1], v[6]);
v[2] = add(v[2], v[7]);
v[3] = add(v[3], v[4]);
v[15] = xor(v[15], v[0]);
v[12] = xor(v[12], v[1]);
v[13] = xor(v[13], v[2]);
v[14] = xor(v[14], v[3]);
v[15] = rot16(v[15]);
v[12] = rot16(v[12]);
v[13] = rot16(v[13]);
v[14] = rot16(v[14]);
v[10] = add(v[10], v[15]);
v[11] = add(v[11], v[12]);
v[8] = add(v[8], v[13]);
v[9] = add(v[9], v[14]);
v[5] = xor(v[5], v[10]);
v[6] = xor(v[6], v[11]);
v[7] = xor(v[7], v[8]);
v[4] = xor(v[4], v[9]);
v[5] = rot12(v[5]);
v[6] = rot12(v[6]);
v[7] = rot12(v[7]);
v[4] = rot12(v[4]);
v[0] = add(v[0], m[MSG_SCHEDULE[r][9] as usize]);
v[1] = add(v[1], m[MSG_SCHEDULE[r][11] as usize]);
v[2] = add(v[2], m[MSG_SCHEDULE[r][13] as usize]);
v[3] = add(v[3], m[MSG_SCHEDULE[r][15] as usize]);
v[0] = add(v[0], v[5]);
v[1] = add(v[1], v[6]);
v[2] = add(v[2], v[7]);
v[3] = add(v[3], v[4]);
v[15] = xor(v[15], v[0]);
v[12] = xor(v[12], v[1]);
v[13] = xor(v[13], v[2]);
v[14] = xor(v[14], v[3]);
v[15] = rot8(v[15]);
v[12] = rot8(v[12]);
v[13] = rot8(v[13]);
v[14] = rot8(v[14]);
v[10] = add(v[10], v[15]);
v[11] = add(v[11], v[12]);
v[8] = add(v[8], v[13]);
v[9] = add(v[9], v[14]);
v[5] = xor(v[5], v[10]);
v[6] = xor(v[6], v[11]);
v[7] = xor(v[7], v[8]);
v[4] = xor(v[4], v[9]);
v[5] = rot7(v[5]);
v[6] = rot7(v[6]);
v[7] = rot7(v[7]);
v[4] = rot7(v[4]);
}
#[inline(always)]
unsafe fn transpose_vecs(vecs: &mut [__m128i; DEGREE]) {
// Interleave 32-bit lanes. The low unpack is lanes 00/11 and the high is
// 22/33. Note that this doesn't split the vector into two lanes, as the
// AVX2 counterparts do.
let ab_01 = _mm_unpacklo_epi32(vecs[0], vecs[1]);
let ab_23 = _mm_unpackhi_epi32(vecs[0], vecs[1]);
let cd_01 = _mm_unpacklo_epi32(vecs[2], vecs[3]);
let cd_23 = _mm_unpackhi_epi32(vecs[2], vecs[3]);
// Interleave 64-bit lanes.
let abcd_0 = _mm_unpacklo_epi64(ab_01, cd_01);
let abcd_1 = _mm_unpackhi_epi64(ab_01, cd_01);
let abcd_2 = _mm_unpacklo_epi64(ab_23, cd_23);
let abcd_3 = _mm_unpackhi_epi64(ab_23, cd_23);
vecs[0] = abcd_0;
vecs[1] = abcd_1;
vecs[2] = abcd_2;
vecs[3] = abcd_3;
}
#[inline(always)]
unsafe fn transpose_msg_vecs(inputs: &[*const u8; DEGREE], block_offset: usize) -> [__m128i; 16] {
let mut vecs = [
loadu(inputs[0].add(block_offset + 0 * 4 * DEGREE)),
loadu(inputs[1].add(block_offset + 0 * 4 * DEGREE)),
loadu(inputs[2].add(block_offset + 0 * 4 * DEGREE)),
loadu(inputs[3].add(block_offset + 0 * 4 * DEGREE)),
loadu(inputs[0].add(block_offset + 1 * 4 * DEGREE)),
loadu(inputs[1].add(block_offset + 1 * 4 * DEGREE)),
loadu(inputs[2].add(block_offset + 1 * 4 * DEGREE)),
loadu(inputs[3].add(block_offset + 1 * 4 * DEGREE)),
loadu(inputs[0].add(block_offset + 2 * 4 * DEGREE)),
loadu(inputs[1].add(block_offset + 2 * 4 * DEGREE)),
loadu(inputs[2].add(block_offset + 2 * 4 * DEGREE)),
loadu(inputs[3].add(block_offset + 2 * 4 * DEGREE)),
loadu(inputs[0].add(block_offset + 3 * 4 * DEGREE)),
loadu(inputs[1].add(block_offset + 3 * 4 * DEGREE)),
loadu(inputs[2].add(block_offset + 3 * 4 * DEGREE)),
loadu(inputs[3].add(block_offset + 3 * 4 * DEGREE)),
];
for i in 0..DEGREE {
_mm_prefetch(inputs[i].add(block_offset + 256) as *const i8, _MM_HINT_T0);
}
let squares = mut_array_refs!(&mut vecs, DEGREE, DEGREE, DEGREE, DEGREE);
transpose_vecs(squares.0);
transpose_vecs(squares.1);
transpose_vecs(squares.2);
transpose_vecs(squares.3);
vecs
}
#[inline(always)]
unsafe fn load_counters(counter: u64, increment_counter: IncrementCounter) -> (__m128i, __m128i) {
let mask = if increment_counter.yes() { !0 } else { 0 };
(
set4(
counter_low(counter + (mask & 0)),
counter_low(counter + (mask & 1)),
counter_low(counter + (mask & 2)),
counter_low(counter + (mask & 3)),
),
set4(
counter_high(counter + (mask & 0)),
counter_high(counter + (mask & 1)),
counter_high(counter + (mask & 2)),
counter_high(counter + (mask & 3)),
),
)
}
#[target_feature(enable = "sse4.1")]
pub unsafe fn hash4(
inputs: &[*const u8; DEGREE],
blocks: usize,
key: &CVWords,
counter: u64,
increment_counter: IncrementCounter,
flags: u8,
flags_start: u8,
flags_end: u8,
out: &mut [u8; DEGREE * OUT_LEN],
) {
let mut h_vecs = [
set1(key[0]),
set1(key[1]),
set1(key[2]),
set1(key[3]),
set1(key[4]),
set1(key[5]),
set1(key[6]),
set1(key[7]),
];
let (counter_low_vec, counter_high_vec) = load_counters(counter, increment_counter);
let mut block_flags = flags | flags_start;
for block in 0..blocks {
if block + 1 == blocks {
block_flags |= flags_end;
}
let block_len_vec = set1(BLOCK_LEN as u32); // full blocks only
let block_flags_vec = set1(block_flags as u32);
let msg_vecs = transpose_msg_vecs(inputs, block * BLOCK_LEN);
// The transposed compression function. Note that inlining this
// manually here improves compile times by a lot, compared to factoring
// it out into its own function and making it #[inline(always)]. Just
// guessing, it might have something to do with loop unrolling.
let mut v = [
h_vecs[0],
h_vecs[1],
h_vecs[2],
h_vecs[3],
h_vecs[4],
h_vecs[5],
h_vecs[6],
h_vecs[7],
set1(IV[0]),
set1(IV[1]),
set1(IV[2]),
set1(IV[3]),
counter_low_vec,
counter_high_vec,
block_len_vec,
block_flags_vec,
];
round(&mut v, &msg_vecs, 0);
round(&mut v, &msg_vecs, 1);
round(&mut v, &msg_vecs, 2);
round(&mut v, &msg_vecs, 3);
round(&mut v, &msg_vecs, 4);
round(&mut v, &msg_vecs, 5);
round(&mut v, &msg_vecs, 6);
h_vecs[0] = xor(v[0], v[8]);
h_vecs[1] = xor(v[1], v[9]);
h_vecs[2] = xor(v[2], v[10]);
h_vecs[3] = xor(v[3], v[11]);
h_vecs[4] = xor(v[4], v[12]);
h_vecs[5] = xor(v[5], v[13]);
h_vecs[6] = xor(v[6], v[14]);
h_vecs[7] = xor(v[7], v[15]);
block_flags = flags;
}
let squares = mut_array_refs!(&mut h_vecs, DEGREE, DEGREE);
transpose_vecs(squares.0);
transpose_vecs(squares.1);
// The first four vecs now contain the first half of each output, and the
// second four vecs contain the second half of each output.
storeu(h_vecs[0], out.as_mut_ptr().add(0 * 4 * DEGREE));
storeu(h_vecs[4], out.as_mut_ptr().add(1 * 4 * DEGREE));
storeu(h_vecs[1], out.as_mut_ptr().add(2 * 4 * DEGREE));
storeu(h_vecs[5], out.as_mut_ptr().add(3 * 4 * DEGREE));
storeu(h_vecs[2], out.as_mut_ptr().add(4 * 4 * DEGREE));
storeu(h_vecs[6], out.as_mut_ptr().add(5 * 4 * DEGREE));
storeu(h_vecs[3], out.as_mut_ptr().add(6 * 4 * DEGREE));
storeu(h_vecs[7], out.as_mut_ptr().add(7 * 4 * DEGREE));
}
#[target_feature(enable = "sse4.1")]
unsafe fn hash1<const N: usize>(
input: &[u8; N],
key: &CVWords,
counter: u64,
flags: u8,
flags_start: u8,
flags_end: u8,
out: &mut CVBytes,
) {
debug_assert_eq!(N % BLOCK_LEN, 0, "uneven blocks");
let mut cv = *key;
let mut block_flags = flags | flags_start;
let mut slice = &input[..];
while slice.len() >= BLOCK_LEN {
if slice.len() == BLOCK_LEN {
block_flags |= flags_end;
}
compress_in_place(
&mut cv,
array_ref!(slice, 0, BLOCK_LEN),
BLOCK_LEN as u8,
counter,
block_flags,
);
block_flags = flags;
slice = &slice[BLOCK_LEN..];
}
*out = core::mem::transmute(cv); // x86 is little-endian
}
#[target_feature(enable = "sse4.1")]
pub unsafe fn hash_many<const N: usize>(
mut inputs: &[&[u8; N]],
key: &CVWords,
mut counter: u64,
increment_counter: IncrementCounter,
flags: u8,
flags_start: u8,
flags_end: u8,
mut out: &mut [u8],
) {
debug_assert!(out.len() >= inputs.len() * OUT_LEN, "out too short");
while inputs.len() >= DEGREE && out.len() >= DEGREE * OUT_LEN {
// Safe because the layout of arrays is guaranteed, and because the
// `blocks` count is determined statically from the argument type.
let input_ptrs: &[*const u8; DEGREE] = &*(inputs.as_ptr() as *const [*const u8; DEGREE]);
let blocks = N / BLOCK_LEN;
hash4(
input_ptrs,
blocks,
key,
counter,
increment_counter,
flags,
flags_start,
flags_end,
array_mut_ref!(out, 0, DEGREE * OUT_LEN),
);
if increment_counter.yes() {
counter += DEGREE as u64;
}
inputs = &inputs[DEGREE..];
out = &mut out[DEGREE * OUT_LEN..];
}
for (&input, output) in inputs.iter().zip(out.chunks_exact_mut(OUT_LEN)) {
hash1(
input,
key,
counter,
flags,
flags_start,
flags_end,
array_mut_ref!(output, 0, OUT_LEN),
);
if increment_counter.yes() {
counter += 1;
}
}
}
#[cfg(test)]
mod test {
use super::*;
#[test]
fn test_transpose() {
if !crate::platform::sse41_detected() {
return;
}
#[target_feature(enable = "sse4.1")]
unsafe fn transpose_wrapper(vecs: &mut [__m128i; DEGREE]) {
transpose_vecs(vecs);
}
let mut matrix = [[0 as u32; DEGREE]; DEGREE];
for i in 0..DEGREE {
for j in 0..DEGREE {
matrix[i][j] = (i * DEGREE + j) as u32;
}
}
unsafe {
let mut vecs: [__m128i; DEGREE] = core::mem::transmute(matrix);
transpose_wrapper(&mut vecs);
matrix = core::mem::transmute(vecs);
}
for i in 0..DEGREE {
for j in 0..DEGREE {
// Reversed indexes from above.
assert_eq!(matrix[j][i], (i * DEGREE + j) as u32);
}
}
}
#[test]
fn test_compress() {
if !crate::platform::sse41_detected() {
return;
}
crate::test::test_compress_fn(compress_in_place, compress_xof);
}
#[test]
fn test_hash_many() {
if !crate::platform::sse41_detected() {
return;
}
crate::test::test_hash_many_fn(hash_many, hash_many);
}
}