1
0
Fork 0
mirror of https://github.com/BLAKE3-team/BLAKE3 synced 2024-04-26 15:55:01 +02:00
BLAKE3/c/blake3_neon.c
divinity76 58bea0bcbb
optimize neon loadu_128/storeu_128 (#384)
vld1q_u8 and vst1q_u8 has no alignment requirements.

This improves performance on Oracle Cloud's VM.Standard.A1.Flex by 1.15% on a 16*1024 input, from 13920 nanoseconds down to 13800 nanoseconds (approx)
2024-03-12 03:21:51 -04:00

367 lines
14 KiB
C

#include "blake3_impl.h"
#include <arm_neon.h>
#ifdef __ARM_BIG_ENDIAN
#error "This implementation only supports little-endian ARM."
// It might be that all we need for big-endian support here is to get the loads
// and stores right, but step zero would be finding a way to test it in CI.
#endif
INLINE uint32x4_t loadu_128(const uint8_t src[16]) {
// vld1q_u32 has alignment requirements. Don't use it.
return vreinterpretq_u32_u8(vld1q_u8(src));
}
INLINE void storeu_128(uint32x4_t src, uint8_t dest[16]) {
// vst1q_u32 has alignment requirements. Don't use it.
vst1q_u8(dest, vreinterpretq_u8_u32(src));
}
INLINE uint32x4_t add_128(uint32x4_t a, uint32x4_t b) {
return vaddq_u32(a, b);
}
INLINE uint32x4_t xor_128(uint32x4_t a, uint32x4_t b) {
return veorq_u32(a, b);
}
INLINE uint32x4_t set1_128(uint32_t x) { return vld1q_dup_u32(&x); }
INLINE uint32x4_t set4(uint32_t a, uint32_t b, uint32_t c, uint32_t d) {
uint32_t array[4] = {a, b, c, d};
return vld1q_u32(array);
}
INLINE uint32x4_t rot16_128(uint32x4_t x) {
// The straightfoward implementation would be two shifts and an or, but that's
// slower on microarchitectures we've tested. See
// https://github.com/BLAKE3-team/BLAKE3/pull/319.
// return vorrq_u32(vshrq_n_u32(x, 16), vshlq_n_u32(x, 32 - 16));
return vreinterpretq_u32_u16(vrev32q_u16(vreinterpretq_u16_u32(x)));
}
INLINE uint32x4_t rot12_128(uint32x4_t x) {
// See comment in rot16_128.
// return vorrq_u32(vshrq_n_u32(x, 12), vshlq_n_u32(x, 32 - 12));
return vsriq_n_u32(vshlq_n_u32(x, 32-12), x, 12);
}
INLINE uint32x4_t rot8_128(uint32x4_t x) {
// See comment in rot16_128.
// return vorrq_u32(vshrq_n_u32(x, 8), vshlq_n_u32(x, 32 - 8));
#if defined(__clang__)
return vreinterpretq_u32_u8(__builtin_shufflevector(vreinterpretq_u8_u32(x), vreinterpretq_u8_u32(x), 1,2,3,0,5,6,7,4,9,10,11,8,13,14,15,12));
#elif __GNUC__ * 10000 + __GNUC_MINOR__ * 100 >=40700
static const uint8x16_t r8 = {1,2,3,0,5,6,7,4,9,10,11,8,13,14,15,12};
return vreinterpretq_u32_u8(__builtin_shuffle(vreinterpretq_u8_u32(x), vreinterpretq_u8_u32(x), r8));
#else
return vsriq_n_u32(vshlq_n_u32(x, 32-8), x, 8);
#endif
}
INLINE uint32x4_t rot7_128(uint32x4_t x) {
// See comment in rot16_128.
// return vorrq_u32(vshrq_n_u32(x, 7), vshlq_n_u32(x, 32 - 7));
return vsriq_n_u32(vshlq_n_u32(x, 32-7), x, 7);
}
// TODO: compress_neon
// TODO: hash2_neon
/*
* ----------------------------------------------------------------------------
* hash4_neon
* ----------------------------------------------------------------------------
*/
INLINE void round_fn4(uint32x4_t v[16], uint32x4_t m[16], size_t r) {
v[0] = add_128(v[0], m[(size_t)MSG_SCHEDULE[r][0]]);
v[1] = add_128(v[1], m[(size_t)MSG_SCHEDULE[r][2]]);
v[2] = add_128(v[2], m[(size_t)MSG_SCHEDULE[r][4]]);
v[3] = add_128(v[3], m[(size_t)MSG_SCHEDULE[r][6]]);
v[0] = add_128(v[0], v[4]);
v[1] = add_128(v[1], v[5]);
v[2] = add_128(v[2], v[6]);
v[3] = add_128(v[3], v[7]);
v[12] = xor_128(v[12], v[0]);
v[13] = xor_128(v[13], v[1]);
v[14] = xor_128(v[14], v[2]);
v[15] = xor_128(v[15], v[3]);
v[12] = rot16_128(v[12]);
v[13] = rot16_128(v[13]);
v[14] = rot16_128(v[14]);
v[15] = rot16_128(v[15]);
v[8] = add_128(v[8], v[12]);
v[9] = add_128(v[9], v[13]);
v[10] = add_128(v[10], v[14]);
v[11] = add_128(v[11], v[15]);
v[4] = xor_128(v[4], v[8]);
v[5] = xor_128(v[5], v[9]);
v[6] = xor_128(v[6], v[10]);
v[7] = xor_128(v[7], v[11]);
v[4] = rot12_128(v[4]);
v[5] = rot12_128(v[5]);
v[6] = rot12_128(v[6]);
v[7] = rot12_128(v[7]);
v[0] = add_128(v[0], m[(size_t)MSG_SCHEDULE[r][1]]);
v[1] = add_128(v[1], m[(size_t)MSG_SCHEDULE[r][3]]);
v[2] = add_128(v[2], m[(size_t)MSG_SCHEDULE[r][5]]);
v[3] = add_128(v[3], m[(size_t)MSG_SCHEDULE[r][7]]);
v[0] = add_128(v[0], v[4]);
v[1] = add_128(v[1], v[5]);
v[2] = add_128(v[2], v[6]);
v[3] = add_128(v[3], v[7]);
v[12] = xor_128(v[12], v[0]);
v[13] = xor_128(v[13], v[1]);
v[14] = xor_128(v[14], v[2]);
v[15] = xor_128(v[15], v[3]);
v[12] = rot8_128(v[12]);
v[13] = rot8_128(v[13]);
v[14] = rot8_128(v[14]);
v[15] = rot8_128(v[15]);
v[8] = add_128(v[8], v[12]);
v[9] = add_128(v[9], v[13]);
v[10] = add_128(v[10], v[14]);
v[11] = add_128(v[11], v[15]);
v[4] = xor_128(v[4], v[8]);
v[5] = xor_128(v[5], v[9]);
v[6] = xor_128(v[6], v[10]);
v[7] = xor_128(v[7], v[11]);
v[4] = rot7_128(v[4]);
v[5] = rot7_128(v[5]);
v[6] = rot7_128(v[6]);
v[7] = rot7_128(v[7]);
v[0] = add_128(v[0], m[(size_t)MSG_SCHEDULE[r][8]]);
v[1] = add_128(v[1], m[(size_t)MSG_SCHEDULE[r][10]]);
v[2] = add_128(v[2], m[(size_t)MSG_SCHEDULE[r][12]]);
v[3] = add_128(v[3], m[(size_t)MSG_SCHEDULE[r][14]]);
v[0] = add_128(v[0], v[5]);
v[1] = add_128(v[1], v[6]);
v[2] = add_128(v[2], v[7]);
v[3] = add_128(v[3], v[4]);
v[15] = xor_128(v[15], v[0]);
v[12] = xor_128(v[12], v[1]);
v[13] = xor_128(v[13], v[2]);
v[14] = xor_128(v[14], v[3]);
v[15] = rot16_128(v[15]);
v[12] = rot16_128(v[12]);
v[13] = rot16_128(v[13]);
v[14] = rot16_128(v[14]);
v[10] = add_128(v[10], v[15]);
v[11] = add_128(v[11], v[12]);
v[8] = add_128(v[8], v[13]);
v[9] = add_128(v[9], v[14]);
v[5] = xor_128(v[5], v[10]);
v[6] = xor_128(v[6], v[11]);
v[7] = xor_128(v[7], v[8]);
v[4] = xor_128(v[4], v[9]);
v[5] = rot12_128(v[5]);
v[6] = rot12_128(v[6]);
v[7] = rot12_128(v[7]);
v[4] = rot12_128(v[4]);
v[0] = add_128(v[0], m[(size_t)MSG_SCHEDULE[r][9]]);
v[1] = add_128(v[1], m[(size_t)MSG_SCHEDULE[r][11]]);
v[2] = add_128(v[2], m[(size_t)MSG_SCHEDULE[r][13]]);
v[3] = add_128(v[3], m[(size_t)MSG_SCHEDULE[r][15]]);
v[0] = add_128(v[0], v[5]);
v[1] = add_128(v[1], v[6]);
v[2] = add_128(v[2], v[7]);
v[3] = add_128(v[3], v[4]);
v[15] = xor_128(v[15], v[0]);
v[12] = xor_128(v[12], v[1]);
v[13] = xor_128(v[13], v[2]);
v[14] = xor_128(v[14], v[3]);
v[15] = rot8_128(v[15]);
v[12] = rot8_128(v[12]);
v[13] = rot8_128(v[13]);
v[14] = rot8_128(v[14]);
v[10] = add_128(v[10], v[15]);
v[11] = add_128(v[11], v[12]);
v[8] = add_128(v[8], v[13]);
v[9] = add_128(v[9], v[14]);
v[5] = xor_128(v[5], v[10]);
v[6] = xor_128(v[6], v[11]);
v[7] = xor_128(v[7], v[8]);
v[4] = xor_128(v[4], v[9]);
v[5] = rot7_128(v[5]);
v[6] = rot7_128(v[6]);
v[7] = rot7_128(v[7]);
v[4] = rot7_128(v[4]);
}
INLINE void transpose_vecs_128(uint32x4_t vecs[4]) {
// Individually transpose the four 2x2 sub-matrices in each corner.
uint32x4x2_t rows01 = vtrnq_u32(vecs[0], vecs[1]);
uint32x4x2_t rows23 = vtrnq_u32(vecs[2], vecs[3]);
// Swap the top-right and bottom-left 2x2s (which just got transposed).
vecs[0] =
vcombine_u32(vget_low_u32(rows01.val[0]), vget_low_u32(rows23.val[0]));
vecs[1] =
vcombine_u32(vget_low_u32(rows01.val[1]), vget_low_u32(rows23.val[1]));
vecs[2] =
vcombine_u32(vget_high_u32(rows01.val[0]), vget_high_u32(rows23.val[0]));
vecs[3] =
vcombine_u32(vget_high_u32(rows01.val[1]), vget_high_u32(rows23.val[1]));
}
INLINE void transpose_msg_vecs4(const uint8_t *const *inputs,
size_t block_offset, uint32x4_t out[16]) {
out[0] = loadu_128(&inputs[0][block_offset + 0 * sizeof(uint32x4_t)]);
out[1] = loadu_128(&inputs[1][block_offset + 0 * sizeof(uint32x4_t)]);
out[2] = loadu_128(&inputs[2][block_offset + 0 * sizeof(uint32x4_t)]);
out[3] = loadu_128(&inputs[3][block_offset + 0 * sizeof(uint32x4_t)]);
out[4] = loadu_128(&inputs[0][block_offset + 1 * sizeof(uint32x4_t)]);
out[5] = loadu_128(&inputs[1][block_offset + 1 * sizeof(uint32x4_t)]);
out[6] = loadu_128(&inputs[2][block_offset + 1 * sizeof(uint32x4_t)]);
out[7] = loadu_128(&inputs[3][block_offset + 1 * sizeof(uint32x4_t)]);
out[8] = loadu_128(&inputs[0][block_offset + 2 * sizeof(uint32x4_t)]);
out[9] = loadu_128(&inputs[1][block_offset + 2 * sizeof(uint32x4_t)]);
out[10] = loadu_128(&inputs[2][block_offset + 2 * sizeof(uint32x4_t)]);
out[11] = loadu_128(&inputs[3][block_offset + 2 * sizeof(uint32x4_t)]);
out[12] = loadu_128(&inputs[0][block_offset + 3 * sizeof(uint32x4_t)]);
out[13] = loadu_128(&inputs[1][block_offset + 3 * sizeof(uint32x4_t)]);
out[14] = loadu_128(&inputs[2][block_offset + 3 * sizeof(uint32x4_t)]);
out[15] = loadu_128(&inputs[3][block_offset + 3 * sizeof(uint32x4_t)]);
transpose_vecs_128(&out[0]);
transpose_vecs_128(&out[4]);
transpose_vecs_128(&out[8]);
transpose_vecs_128(&out[12]);
}
INLINE void load_counters4(uint64_t counter, bool increment_counter,
uint32x4_t *out_low, uint32x4_t *out_high) {
uint64_t mask = (increment_counter ? ~0 : 0);
*out_low = set4(
counter_low(counter + (mask & 0)), counter_low(counter + (mask & 1)),
counter_low(counter + (mask & 2)), counter_low(counter + (mask & 3)));
*out_high = set4(
counter_high(counter + (mask & 0)), counter_high(counter + (mask & 1)),
counter_high(counter + (mask & 2)), counter_high(counter + (mask & 3)));
}
void blake3_hash4_neon(const uint8_t *const *inputs, size_t blocks,
const uint32_t key[8], uint64_t counter,
bool increment_counter, uint8_t flags,
uint8_t flags_start, uint8_t flags_end, uint8_t *out) {
uint32x4_t h_vecs[8] = {
set1_128(key[0]), set1_128(key[1]), set1_128(key[2]), set1_128(key[3]),
set1_128(key[4]), set1_128(key[5]), set1_128(key[6]), set1_128(key[7]),
};
uint32x4_t counter_low_vec, counter_high_vec;
load_counters4(counter, increment_counter, &counter_low_vec,
&counter_high_vec);
uint8_t block_flags = flags | flags_start;
for (size_t block = 0; block < blocks; block++) {
if (block + 1 == blocks) {
block_flags |= flags_end;
}
uint32x4_t block_len_vec = set1_128(BLAKE3_BLOCK_LEN);
uint32x4_t block_flags_vec = set1_128(block_flags);
uint32x4_t msg_vecs[16];
transpose_msg_vecs4(inputs, block * BLAKE3_BLOCK_LEN, msg_vecs);
uint32x4_t v[16] = {
h_vecs[0], h_vecs[1], h_vecs[2], h_vecs[3],
h_vecs[4], h_vecs[5], h_vecs[6], h_vecs[7],
set1_128(IV[0]), set1_128(IV[1]), set1_128(IV[2]), set1_128(IV[3]),
counter_low_vec, counter_high_vec, block_len_vec, block_flags_vec,
};
round_fn4(v, msg_vecs, 0);
round_fn4(v, msg_vecs, 1);
round_fn4(v, msg_vecs, 2);
round_fn4(v, msg_vecs, 3);
round_fn4(v, msg_vecs, 4);
round_fn4(v, msg_vecs, 5);
round_fn4(v, msg_vecs, 6);
h_vecs[0] = xor_128(v[0], v[8]);
h_vecs[1] = xor_128(v[1], v[9]);
h_vecs[2] = xor_128(v[2], v[10]);
h_vecs[3] = xor_128(v[3], v[11]);
h_vecs[4] = xor_128(v[4], v[12]);
h_vecs[5] = xor_128(v[5], v[13]);
h_vecs[6] = xor_128(v[6], v[14]);
h_vecs[7] = xor_128(v[7], v[15]);
block_flags = flags;
}
transpose_vecs_128(&h_vecs[0]);
transpose_vecs_128(&h_vecs[4]);
// The first four vecs now contain the first half of each output, and the
// second four vecs contain the second half of each output.
storeu_128(h_vecs[0], &out[0 * sizeof(uint32x4_t)]);
storeu_128(h_vecs[4], &out[1 * sizeof(uint32x4_t)]);
storeu_128(h_vecs[1], &out[2 * sizeof(uint32x4_t)]);
storeu_128(h_vecs[5], &out[3 * sizeof(uint32x4_t)]);
storeu_128(h_vecs[2], &out[4 * sizeof(uint32x4_t)]);
storeu_128(h_vecs[6], &out[5 * sizeof(uint32x4_t)]);
storeu_128(h_vecs[3], &out[6 * sizeof(uint32x4_t)]);
storeu_128(h_vecs[7], &out[7 * sizeof(uint32x4_t)]);
}
/*
* ----------------------------------------------------------------------------
* hash_many_neon
* ----------------------------------------------------------------------------
*/
void blake3_compress_in_place_portable(uint32_t cv[8],
const uint8_t block[BLAKE3_BLOCK_LEN],
uint8_t block_len, uint64_t counter,
uint8_t flags);
INLINE void hash_one_neon(const uint8_t *input, size_t blocks,
const uint32_t key[8], uint64_t counter,
uint8_t flags, uint8_t flags_start, uint8_t flags_end,
uint8_t out[BLAKE3_OUT_LEN]) {
uint32_t cv[8];
memcpy(cv, key, BLAKE3_KEY_LEN);
uint8_t block_flags = flags | flags_start;
while (blocks > 0) {
if (blocks == 1) {
block_flags |= flags_end;
}
// TODO: Implement compress_neon. However note that according to
// https://github.com/BLAKE2/BLAKE2/commit/7965d3e6e1b4193438b8d3a656787587d2579227,
// compress_neon might not be any faster than compress_portable.
blake3_compress_in_place_portable(cv, input, BLAKE3_BLOCK_LEN, counter,
block_flags);
input = &input[BLAKE3_BLOCK_LEN];
blocks -= 1;
block_flags = flags;
}
memcpy(out, cv, BLAKE3_OUT_LEN);
}
void blake3_hash_many_neon(const uint8_t *const *inputs, size_t num_inputs,
size_t blocks, const uint32_t key[8],
uint64_t counter, bool increment_counter,
uint8_t flags, uint8_t flags_start,
uint8_t flags_end, uint8_t *out) {
while (num_inputs >= 4) {
blake3_hash4_neon(inputs, blocks, key, counter, increment_counter, flags,
flags_start, flags_end, out);
if (increment_counter) {
counter += 4;
}
inputs += 4;
num_inputs -= 4;
out = &out[4 * BLAKE3_OUT_LEN];
}
while (num_inputs > 0) {
hash_one_neon(inputs[0], blocks, key, counter, flags, flags_start,
flags_end, out);
if (increment_counter) {
counter += 1;
}
inputs += 1;
num_inputs -= 1;
out = &out[BLAKE3_OUT_LEN];
}
}