1
0
Fork 0
mirror of https://github.com/BLAKE3-team/BLAKE3 synced 2024-05-28 01:16:02 +02:00

vendor C code from BLAKE3-c

Copied from:
b800162961
This commit is contained in:
Jack O'Connor 2019-12-07 22:26:50 -05:00
parent 0cb4f6dd2c
commit d0a6e9ecb2
5 changed files with 1821 additions and 0 deletions

36
src/c/blake3.h Normal file
View File

@ -0,0 +1,36 @@
#pragma once
#include <stdint.h>
#define BLAKE3_KEY_LEN 32
#define BLAKE3_OUT_LEN 32
#define BLAKE3_BLOCK_LEN 64
#define BLAKE3_CHUNK_LEN 2048
#define BLAKE3_MAX_DEPTH 53
#define BLAKE3_MAX_SIMD_DEGREE 16
typedef struct {
uint8_t cv[32];
uint8_t key[BLAKE3_KEY_LEN];
uint64_t offset;
uint16_t count;
uint8_t buf[BLAKE3_BLOCK_LEN];
uint8_t buf_len;
uint8_t flags;
} blake3_chunk_state;
typedef struct {
blake3_chunk_state chunk;
uint8_t subtree_hashes_len;
uint8_t subtree_hashes[BLAKE3_MAX_DEPTH * BLAKE3_OUT_LEN];
} blake3_hasher;
void blake3_hasher_init(blake3_hasher *self);
void blake3_hasher_init_keyed(blake3_hasher *self,
const uint8_t key[BLAKE3_KEY_LEN]);
void blake3_hasher_init_derive_key(blake3_hasher *self,
const uint8_t key[BLAKE3_KEY_LEN]);
void blake3_hasher_update(blake3_hasher *self, const void *input,
size_t input_len);
void blake3_hasher_finalize(const blake3_hasher *self,
uint8_t out[BLAKE3_OUT_LEN]);

1168
src/c/blake3_avx512.c Normal file
View File

@ -0,0 +1,1168 @@
#include "blake3_impl.h"
#include <immintrin.h>
INLINE __m128i loadu_128(const uint8_t src[16]) {
return _mm_loadu_si128((const __m128i *)src);
}
INLINE __m256i loadu_256(const uint8_t src[32]) {
return _mm256_loadu_si256((const __m256i *)src);
}
INLINE __m512i loadu_512(const uint8_t src[64]) {
return _mm512_loadu_si512((const __m512i *)src);
}
INLINE void storeu_128(__m128i src, uint8_t dest[16]) {
_mm_storeu_si128((__m128i *)dest, src);
}
INLINE void storeu_256(__m256i src, uint8_t dest[16]) {
_mm256_storeu_si256((__m256i *)dest, src);
}
INLINE __m128i add_128(__m128i a, __m128i b) { return _mm_add_epi32(a, b); }
INLINE __m256i add_256(__m256i a, __m256i b) { return _mm256_add_epi32(a, b); }
INLINE __m512i add_512(__m512i a, __m512i b) { return _mm512_add_epi32(a, b); }
INLINE __m128i xor_128(__m128i a, __m128i b) { return _mm_xor_si128(a, b); }
INLINE __m256i xor_256(__m256i a, __m256i b) { return _mm256_xor_si256(a, b); }
INLINE __m512i xor_512(__m512i a, __m512i b) { return _mm512_xor_si512(a, b); }
INLINE __m128i set1_128(uint32_t x) { return _mm_set1_epi32((int32_t)x); }
INLINE __m256i set1_256(uint32_t x) { return _mm256_set1_epi32((int32_t)x); }
INLINE __m512i set1_512(uint32_t x) { return _mm512_set1_epi32((int32_t)x); }
INLINE __m128i set4(uint32_t a, uint32_t b, uint32_t c, uint32_t d) {
return _mm_setr_epi32((int32_t)a, (int32_t)b, (int32_t)c, (int32_t)d);
}
INLINE __m128i rot16_128(__m128i x) { return _mm_ror_epi32(x, 16); }
INLINE __m256i rot16_256(__m256i x) { return _mm256_ror_epi32(x, 16); }
INLINE __m512i rot16_512(__m512i x) { return _mm512_ror_epi32(x, 16); }
INLINE __m128i rot12_128(__m128i x) { return _mm_ror_epi32(x, 12); }
INLINE __m256i rot12_256(__m256i x) { return _mm256_ror_epi32(x, 12); }
INLINE __m512i rot12_512(__m512i x) { return _mm512_ror_epi32(x, 12); }
INLINE __m128i rot8_128(__m128i x) { return _mm_ror_epi32(x, 8); }
INLINE __m256i rot8_256(__m256i x) { return _mm256_ror_epi32(x, 8); }
INLINE __m512i rot8_512(__m512i x) { return _mm512_ror_epi32(x, 8); }
INLINE __m128i rot7_128(__m128i x) { return _mm_ror_epi32(x, 7); }
INLINE __m256i rot7_256(__m256i x) { return _mm256_ror_epi32(x, 7); }
INLINE __m512i rot7_512(__m512i x) { return _mm512_ror_epi32(x, 7); }
/*
* ----------------------------------------------------------------------------
* compress_avx512
* ----------------------------------------------------------------------------
*/
INLINE void g1(__m128i *row1, __m128i *row2, __m128i *row3, __m128i *row4,
__m128i m) {
*row1 = add_128(add_128(*row1, m), *row2);
*row4 = xor_128(*row4, *row1);
*row4 = rot16_128(*row4);
*row3 = add_128(*row3, *row4);
*row2 = xor_128(*row2, *row3);
*row2 = rot12_128(*row2);
}
INLINE void g2(__m128i *row1, __m128i *row2, __m128i *row3, __m128i *row4,
__m128i m) {
*row1 = add_128(add_128(*row1, m), *row2);
*row4 = xor_128(*row4, *row1);
*row4 = rot8_128(*row4);
*row3 = add_128(*row3, *row4);
*row2 = xor_128(*row2, *row3);
*row2 = rot7_128(*row2);
}
// Note the optimization here of leaving row2 as the unrotated row, rather than
// row1. All the message loads below are adjusted to compensate for this. See
// discussion at https://github.com/sneves/blake2-avx2/pull/4
INLINE void diagonalize(__m128i *row1, __m128i *row3, __m128i *row4) {
*row1 = _mm_shuffle_epi32(*row1, _MM_SHUFFLE(2, 1, 0, 3));
*row4 = _mm_shuffle_epi32(*row4, _MM_SHUFFLE(1, 0, 3, 2));
*row3 = _mm_shuffle_epi32(*row3, _MM_SHUFFLE(0, 3, 2, 1));
}
INLINE void undiagonalize(__m128i *row1, __m128i *row3, __m128i *row4) {
*row1 = _mm_shuffle_epi32(*row1, _MM_SHUFFLE(0, 3, 2, 1));
*row4 = _mm_shuffle_epi32(*row4, _MM_SHUFFLE(1, 0, 3, 2));
*row3 = _mm_shuffle_epi32(*row3, _MM_SHUFFLE(2, 1, 0, 3));
}
void blake3_compress_avx512(const uint8_t cv[8],
const uint8_t block[BLAKE3_BLOCK_LEN],
uint8_t block_len, uint64_t offset, uint8_t flags,
uint8_t out[64]) {
__m128i row1 = loadu_128(&cv[0]);
__m128i row2 = loadu_128(&cv[16]);
__m128i row3 = set4(IV[0], IV[1], IV[2], IV[3]);
__m128i row4 = set4(offset_low(offset), offset_high(offset),
(uint32_t)block_len, (uint32_t)flags);
__m128i m0 = loadu_128(&block[sizeof(__m128i) * 0]);
__m128i m1 = loadu_128(&block[sizeof(__m128i) * 1]);
__m128i m2 = loadu_128(&block[sizeof(__m128i) * 2]);
__m128i m3 = loadu_128(&block[sizeof(__m128i) * 3]);
__m128i buf, t0, t1, t2;
// round 1
buf = _mm_castps_si128(_mm_shuffle_ps(
_mm_castsi128_ps(m0), _mm_castsi128_ps(m1), _MM_SHUFFLE(2, 0, 2, 0)));
g1(&row1, &row2, &row3, &row4, buf);
buf = _mm_castps_si128(_mm_shuffle_ps(
_mm_castsi128_ps(m0), _mm_castsi128_ps(m1), _MM_SHUFFLE(3, 1, 3, 1)));
g2(&row1, &row2, &row3, &row4, buf);
diagonalize(&row1, &row3, &row4);
t0 = _mm_shuffle_epi32(m2, _MM_SHUFFLE(3, 2, 0, 1));
t1 = _mm_shuffle_epi32(m3, _MM_SHUFFLE(0, 1, 3, 2));
buf = _mm_blend_epi16(t0, t1, 0xC3);
g1(&row1, &row2, &row3, &row4, buf);
t0 = _mm_blend_epi16(t0, t1, 0x3C);
buf = _mm_shuffle_epi32(t0, _MM_SHUFFLE(2, 3, 0, 1));
g2(&row1, &row2, &row3, &row4, buf);
undiagonalize(&row1, &row3, &row4);
// round 2
t0 = _mm_blend_epi16(m1, m2, 0x0C);
t1 = _mm_slli_si128(m3, 4);
t2 = _mm_blend_epi16(t0, t1, 0xF0);
buf = _mm_shuffle_epi32(t2, _MM_SHUFFLE(2, 1, 0, 3));
g1(&row1, &row2, &row3, &row4, buf);
t0 = _mm_shuffle_epi32(m2, _MM_SHUFFLE(0, 0, 2, 0));
t1 = _mm_blend_epi16(m1, m3, 0xC0);
t2 = _mm_blend_epi16(t0, t1, 0xF0);
buf = _mm_shuffle_epi32(t2, _MM_SHUFFLE(2, 3, 0, 1));
g2(&row1, &row2, &row3, &row4, buf);
diagonalize(&row1, &row3, &row4);
t0 = _mm_slli_si128(m1, 4);
t1 = _mm_blend_epi16(m2, t0, 0x30);
t2 = _mm_blend_epi16(m0, t1, 0xF0);
buf = _mm_shuffle_epi32(t2, _MM_SHUFFLE(3, 0, 1, 2));
g1(&row1, &row2, &row3, &row4, buf);
t0 = _mm_unpackhi_epi32(m0, m1);
t1 = _mm_slli_si128(m3, 4);
t2 = _mm_blend_epi16(t0, t1, 0x0C);
buf = _mm_shuffle_epi32(t2, _MM_SHUFFLE(3, 0, 1, 2));
g2(&row1, &row2, &row3, &row4, buf);
undiagonalize(&row1, &row3, &row4);
// round 3
t0 = _mm_unpackhi_epi32(m2, m3);
t1 = _mm_blend_epi16(m3, m1, 0x0C);
t2 = _mm_blend_epi16(t0, t1, 0x0F);
buf = _mm_shuffle_epi32(t2, _MM_SHUFFLE(3, 1, 0, 2));
g1(&row1, &row2, &row3, &row4, buf);
t0 = _mm_unpacklo_epi32(m2, m0);
t1 = _mm_blend_epi16(t0, m0, 0xF0);
t2 = _mm_slli_si128(m3, 8);
buf = _mm_blend_epi16(t1, t2, 0xC0);
g2(&row1, &row2, &row3, &row4, buf);
diagonalize(&row1, &row3, &row4);
t0 = _mm_blend_epi16(m0, m2, 0x3C);
t1 = _mm_srli_si128(m1, 12);
t2 = _mm_blend_epi16(t0, t1, 0x03);
buf = _mm_shuffle_epi32(t2, _MM_SHUFFLE(0, 3, 2, 1));
g1(&row1, &row2, &row3, &row4, buf);
t0 = _mm_slli_si128(m3, 4);
t1 = _mm_blend_epi16(m0, m1, 0x33);
t2 = _mm_blend_epi16(t1, t0, 0xC0);
buf = _mm_shuffle_epi32(t2, _MM_SHUFFLE(1, 2, 3, 0));
g2(&row1, &row2, &row3, &row4, buf);
undiagonalize(&row1, &row3, &row4);
// round 4
t0 = _mm_unpackhi_epi32(m0, m1);
t1 = _mm_unpackhi_epi32(t0, m2);
t2 = _mm_blend_epi16(t1, m3, 0x0C);
buf = _mm_shuffle_epi32(t2, _MM_SHUFFLE(3, 1, 0, 2));
g1(&row1, &row2, &row3, &row4, buf);
t0 = _mm_slli_si128(m2, 8);
t1 = _mm_blend_epi16(m3, m0, 0x0C);
t2 = _mm_blend_epi16(t1, t0, 0xC0);
buf = _mm_shuffle_epi32(t2, _MM_SHUFFLE(2, 0, 1, 3));
g2(&row1, &row2, &row3, &row4, buf);
diagonalize(&row1, &row3, &row4);
t0 = _mm_blend_epi16(m0, m1, 0x0F);
t1 = _mm_blend_epi16(t0, m3, 0xC0);
buf = _mm_shuffle_epi32(t1, _MM_SHUFFLE(0, 1, 2, 3));
g1(&row1, &row2, &row3, &row4, buf);
t0 = _mm_alignr_epi8(m0, m1, 4);
buf = _mm_blend_epi16(t0, m2, 0x33);
g2(&row1, &row2, &row3, &row4, buf);
undiagonalize(&row1, &row3, &row4);
// round 5
t0 = _mm_unpacklo_epi64(m1, m2);
t1 = _mm_unpackhi_epi64(m0, m2);
t2 = _mm_blend_epi16(t0, t1, 0x33);
buf = _mm_shuffle_epi32(t2, _MM_SHUFFLE(2, 0, 1, 3));
g1(&row1, &row2, &row3, &row4, buf);
t0 = _mm_unpackhi_epi64(m1, m3);
t1 = _mm_unpacklo_epi64(m0, m1);
buf = _mm_blend_epi16(t0, t1, 0x33);
g2(&row1, &row2, &row3, &row4, buf);
diagonalize(&row1, &row3, &row4);
t0 = _mm_unpackhi_epi64(m3, m1);
t1 = _mm_unpackhi_epi64(m2, m0);
t2 = _mm_blend_epi16(t1, t0, 0x33);
buf = _mm_shuffle_epi32(t2, _MM_SHUFFLE(2, 1, 0, 3));
g1(&row1, &row2, &row3, &row4, buf);
t0 = _mm_blend_epi16(m0, m2, 0x03);
t1 = _mm_slli_si128(t0, 8);
t2 = _mm_blend_epi16(t1, m3, 0x0F);
buf = _mm_shuffle_epi32(t2, _MM_SHUFFLE(2, 0, 3, 1));
g2(&row1, &row2, &row3, &row4, buf);
undiagonalize(&row1, &row3, &row4);
// round 6
t0 = _mm_unpackhi_epi32(m0, m1);
t1 = _mm_unpacklo_epi32(m0, m2);
buf = _mm_unpacklo_epi64(t0, t1);
g1(&row1, &row2, &row3, &row4, buf);
t0 = _mm_srli_si128(m2, 4);
t1 = _mm_blend_epi16(m0, m3, 0x03);
buf = _mm_blend_epi16(t1, t0, 0x3C);
g2(&row1, &row2, &row3, &row4, buf);
diagonalize(&row1, &row3, &row4);
t0 = _mm_blend_epi16(m1, m0, 0x0C);
t1 = _mm_srli_si128(m3, 4);
t2 = _mm_blend_epi16(t0, t1, 0x30);
buf = _mm_shuffle_epi32(t2, _MM_SHUFFLE(2, 3, 0, 1));
g1(&row1, &row2, &row3, &row4, buf);
t0 = _mm_unpacklo_epi64(m2, m1);
t1 = _mm_shuffle_epi32(m3, _MM_SHUFFLE(2, 0, 1, 0));
t2 = _mm_srli_si128(t0, 4);
buf = _mm_blend_epi16(t1, t2, 0x33);
g2(&row1, &row2, &row3, &row4, buf);
undiagonalize(&row1, &row3, &row4);
// round 7
t0 = _mm_slli_si128(m1, 12);
t1 = _mm_blend_epi16(m0, m3, 0x33);
buf = _mm_blend_epi16(t1, t0, 0xC0);
g1(&row1, &row2, &row3, &row4, buf);
t0 = _mm_blend_epi16(m3, m2, 0x30);
t1 = _mm_srli_si128(m1, 4);
t2 = _mm_blend_epi16(t0, t1, 0x03);
buf = _mm_shuffle_epi32(t2, _MM_SHUFFLE(2, 1, 3, 0));
g2(&row1, &row2, &row3, &row4, buf);
diagonalize(&row1, &row3, &row4);
t0 = _mm_unpacklo_epi64(m0, m2);
t1 = _mm_srli_si128(m1, 4);
buf =
_mm_shuffle_epi32(_mm_blend_epi16(t0, t1, 0x0C), _MM_SHUFFLE(3, 1, 0, 2));
g1(&row1, &row2, &row3, &row4, buf);
t0 = _mm_unpackhi_epi32(m1, m2);
t1 = _mm_unpackhi_epi64(m0, t0);
buf = _mm_shuffle_epi32(t1, _MM_SHUFFLE(0, 1, 2, 3));
g2(&row1, &row2, &row3, &row4, buf);
undiagonalize(&row1, &row3, &row4);
storeu_128(xor_128(row1, row3), &out[0]);
storeu_128(xor_128(row2, row4), &out[16]);
storeu_128(xor_128(row3, loadu_128(&cv[0])), &out[32]);
storeu_128(xor_128(row4, loadu_128(&cv[16])), &out[48]);
}
/*
* ----------------------------------------------------------------------------
* hash4_avx512
* ----------------------------------------------------------------------------
*/
INLINE void round_fn4(__m128i v[16], __m128i m[16], size_t r) {
v[0] = add_128(v[0], m[(size_t)MSG_SCHEDULE[r][0]]);
v[1] = add_128(v[1], m[(size_t)MSG_SCHEDULE[r][2]]);
v[2] = add_128(v[2], m[(size_t)MSG_SCHEDULE[r][4]]);
v[3] = add_128(v[3], m[(size_t)MSG_SCHEDULE[r][6]]);
v[0] = add_128(v[0], v[4]);
v[1] = add_128(v[1], v[5]);
v[2] = add_128(v[2], v[6]);
v[3] = add_128(v[3], v[7]);
v[12] = xor_128(v[12], v[0]);
v[13] = xor_128(v[13], v[1]);
v[14] = xor_128(v[14], v[2]);
v[15] = xor_128(v[15], v[3]);
v[12] = rot16_128(v[12]);
v[13] = rot16_128(v[13]);
v[14] = rot16_128(v[14]);
v[15] = rot16_128(v[15]);
v[8] = add_128(v[8], v[12]);
v[9] = add_128(v[9], v[13]);
v[10] = add_128(v[10], v[14]);
v[11] = add_128(v[11], v[15]);
v[4] = xor_128(v[4], v[8]);
v[5] = xor_128(v[5], v[9]);
v[6] = xor_128(v[6], v[10]);
v[7] = xor_128(v[7], v[11]);
v[4] = rot12_128(v[4]);
v[5] = rot12_128(v[5]);
v[6] = rot12_128(v[6]);
v[7] = rot12_128(v[7]);
v[0] = add_128(v[0], m[(size_t)MSG_SCHEDULE[r][1]]);
v[1] = add_128(v[1], m[(size_t)MSG_SCHEDULE[r][3]]);
v[2] = add_128(v[2], m[(size_t)MSG_SCHEDULE[r][5]]);
v[3] = add_128(v[3], m[(size_t)MSG_SCHEDULE[r][7]]);
v[0] = add_128(v[0], v[4]);
v[1] = add_128(v[1], v[5]);
v[2] = add_128(v[2], v[6]);
v[3] = add_128(v[3], v[7]);
v[12] = xor_128(v[12], v[0]);
v[13] = xor_128(v[13], v[1]);
v[14] = xor_128(v[14], v[2]);
v[15] = xor_128(v[15], v[3]);
v[12] = rot8_128(v[12]);
v[13] = rot8_128(v[13]);
v[14] = rot8_128(v[14]);
v[15] = rot8_128(v[15]);
v[8] = add_128(v[8], v[12]);
v[9] = add_128(v[9], v[13]);
v[10] = add_128(v[10], v[14]);
v[11] = add_128(v[11], v[15]);
v[4] = xor_128(v[4], v[8]);
v[5] = xor_128(v[5], v[9]);
v[6] = xor_128(v[6], v[10]);
v[7] = xor_128(v[7], v[11]);
v[4] = rot7_128(v[4]);
v[5] = rot7_128(v[5]);
v[6] = rot7_128(v[6]);
v[7] = rot7_128(v[7]);
v[0] = add_128(v[0], m[(size_t)MSG_SCHEDULE[r][8]]);
v[1] = add_128(v[1], m[(size_t)MSG_SCHEDULE[r][10]]);
v[2] = add_128(v[2], m[(size_t)MSG_SCHEDULE[r][12]]);
v[3] = add_128(v[3], m[(size_t)MSG_SCHEDULE[r][14]]);
v[0] = add_128(v[0], v[5]);
v[1] = add_128(v[1], v[6]);
v[2] = add_128(v[2], v[7]);
v[3] = add_128(v[3], v[4]);
v[15] = xor_128(v[15], v[0]);
v[12] = xor_128(v[12], v[1]);
v[13] = xor_128(v[13], v[2]);
v[14] = xor_128(v[14], v[3]);
v[15] = rot16_128(v[15]);
v[12] = rot16_128(v[12]);
v[13] = rot16_128(v[13]);
v[14] = rot16_128(v[14]);
v[10] = add_128(v[10], v[15]);
v[11] = add_128(v[11], v[12]);
v[8] = add_128(v[8], v[13]);
v[9] = add_128(v[9], v[14]);
v[5] = xor_128(v[5], v[10]);
v[6] = xor_128(v[6], v[11]);
v[7] = xor_128(v[7], v[8]);
v[4] = xor_128(v[4], v[9]);
v[5] = rot12_128(v[5]);
v[6] = rot12_128(v[6]);
v[7] = rot12_128(v[7]);
v[4] = rot12_128(v[4]);
v[0] = add_128(v[0], m[(size_t)MSG_SCHEDULE[r][9]]);
v[1] = add_128(v[1], m[(size_t)MSG_SCHEDULE[r][11]]);
v[2] = add_128(v[2], m[(size_t)MSG_SCHEDULE[r][13]]);
v[3] = add_128(v[3], m[(size_t)MSG_SCHEDULE[r][15]]);
v[0] = add_128(v[0], v[5]);
v[1] = add_128(v[1], v[6]);
v[2] = add_128(v[2], v[7]);
v[3] = add_128(v[3], v[4]);
v[15] = xor_128(v[15], v[0]);
v[12] = xor_128(v[12], v[1]);
v[13] = xor_128(v[13], v[2]);
v[14] = xor_128(v[14], v[3]);
v[15] = rot8_128(v[15]);
v[12] = rot8_128(v[12]);
v[13] = rot8_128(v[13]);
v[14] = rot8_128(v[14]);
v[10] = add_128(v[10], v[15]);
v[11] = add_128(v[11], v[12]);
v[8] = add_128(v[8], v[13]);
v[9] = add_128(v[9], v[14]);
v[5] = xor_128(v[5], v[10]);
v[6] = xor_128(v[6], v[11]);
v[7] = xor_128(v[7], v[8]);
v[4] = xor_128(v[4], v[9]);
v[5] = rot7_128(v[5]);
v[6] = rot7_128(v[6]);
v[7] = rot7_128(v[7]);
v[4] = rot7_128(v[4]);
}
INLINE void transpose_vecs_128(__m128i vecs[4]) {
// Interleave 32-bit lates. The low unpack is lanes 00/11 and the high is
// 22/33. Note that this doesn't split the vector into two lanes, as the
// AVX2 counterparts do.
__m128i ab_01 = _mm_unpacklo_epi32(vecs[0], vecs[1]);
__m128i ab_23 = _mm_unpackhi_epi32(vecs[0], vecs[1]);
__m128i cd_01 = _mm_unpacklo_epi32(vecs[2], vecs[3]);
__m128i cd_23 = _mm_unpackhi_epi32(vecs[2], vecs[3]);
// Interleave 64-bit lanes.
__m128i abcd_0 = _mm_unpacklo_epi64(ab_01, cd_01);
__m128i abcd_1 = _mm_unpackhi_epi64(ab_01, cd_01);
__m128i abcd_2 = _mm_unpacklo_epi64(ab_23, cd_23);
__m128i abcd_3 = _mm_unpackhi_epi64(ab_23, cd_23);
vecs[0] = abcd_0;
vecs[1] = abcd_1;
vecs[2] = abcd_2;
vecs[3] = abcd_3;
}
INLINE void transpose_msg_vecs4(const uint8_t *const *inputs,
size_t block_offset, __m128i out[16]) {
out[0] = loadu_128(&inputs[0][block_offset + 0 * sizeof(__m128i)]);
out[1] = loadu_128(&inputs[1][block_offset + 0 * sizeof(__m128i)]);
out[2] = loadu_128(&inputs[2][block_offset + 0 * sizeof(__m128i)]);
out[3] = loadu_128(&inputs[3][block_offset + 0 * sizeof(__m128i)]);
out[4] = loadu_128(&inputs[0][block_offset + 1 * sizeof(__m128i)]);
out[5] = loadu_128(&inputs[1][block_offset + 1 * sizeof(__m128i)]);
out[6] = loadu_128(&inputs[2][block_offset + 1 * sizeof(__m128i)]);
out[7] = loadu_128(&inputs[3][block_offset + 1 * sizeof(__m128i)]);
out[8] = loadu_128(&inputs[0][block_offset + 2 * sizeof(__m128i)]);
out[9] = loadu_128(&inputs[1][block_offset + 2 * sizeof(__m128i)]);
out[10] = loadu_128(&inputs[2][block_offset + 2 * sizeof(__m128i)]);
out[11] = loadu_128(&inputs[3][block_offset + 2 * sizeof(__m128i)]);
out[12] = loadu_128(&inputs[0][block_offset + 3 * sizeof(__m128i)]);
out[13] = loadu_128(&inputs[1][block_offset + 3 * sizeof(__m128i)]);
out[14] = loadu_128(&inputs[2][block_offset + 3 * sizeof(__m128i)]);
out[15] = loadu_128(&inputs[3][block_offset + 3 * sizeof(__m128i)]);
transpose_vecs_128(&out[0]);
transpose_vecs_128(&out[4]);
transpose_vecs_128(&out[8]);
transpose_vecs_128(&out[12]);
}
INLINE void load_offsets4(uint64_t offset, const uint64_t deltas[4],
__m128i *out_lo, __m128i *out_hi) {
__m256i a = _mm256_add_epi64(_mm256_set1_epi64x((int64_t)offset),
_mm256_loadu_si256((const __m256i *)deltas));
*out_lo = _mm256_cvtepi64_epi32(a);
*out_hi = _mm256_cvtepi64_epi32(_mm256_srli_epi64(a, 32));
}
void blake3_hash4_avx512(const uint8_t *const *inputs, size_t blocks,
const uint8_t key[BLAKE3_KEY_LEN], uint64_t offset,
offset_deltas_t offset_deltas, uint8_t flags,
uint8_t flags_start, uint8_t flags_end, uint8_t *out) {
uint32_t key_words[8];
memcpy(key_words, key, BLAKE3_KEY_LEN); // x86 is little-endian
__m128i h_vecs[8] = {
set1_128(key_words[0]), set1_128(key_words[1]), set1_128(key_words[2]),
set1_128(key_words[3]), set1_128(key_words[4]), set1_128(key_words[5]),
set1_128(key_words[6]), set1_128(key_words[7]),
};
__m128i offset_low_vec, offset_high_vec;
load_offsets4(offset, offset_deltas, &offset_low_vec, &offset_high_vec);
uint8_t block_flags = flags | flags_start;
for (size_t block = 0; block < blocks; block++) {
if (block + 1 == blocks) {
block_flags |= flags_end;
}
__m128i block_len_vec = set1_128(BLAKE3_BLOCK_LEN);
__m128i block_flags_vec = set1_128(block_flags);
__m128i msg_vecs[16];
transpose_msg_vecs4(inputs, block * BLAKE3_BLOCK_LEN, msg_vecs);
__m128i v[16] = {
h_vecs[0], h_vecs[1], h_vecs[2], h_vecs[3],
h_vecs[4], h_vecs[5], h_vecs[6], h_vecs[7],
set1_128(IV[0]), set1_128(IV[1]), set1_128(IV[2]), set1_128(IV[3]),
offset_low_vec, offset_high_vec, block_len_vec, block_flags_vec,
};
round_fn4(v, msg_vecs, 0);
round_fn4(v, msg_vecs, 1);
round_fn4(v, msg_vecs, 2);
round_fn4(v, msg_vecs, 3);
round_fn4(v, msg_vecs, 4);
round_fn4(v, msg_vecs, 5);
round_fn4(v, msg_vecs, 6);
h_vecs[0] = xor_128(v[0], v[8]);
h_vecs[1] = xor_128(v[1], v[9]);
h_vecs[2] = xor_128(v[2], v[10]);
h_vecs[3] = xor_128(v[3], v[11]);
h_vecs[4] = xor_128(v[4], v[12]);
h_vecs[5] = xor_128(v[5], v[13]);
h_vecs[6] = xor_128(v[6], v[14]);
h_vecs[7] = xor_128(v[7], v[15]);
block_flags = flags;
}
transpose_vecs_128(&h_vecs[0]);
transpose_vecs_128(&h_vecs[4]);
// The first four vecs now contain the first half of each output, and the
// second four vecs contain the second half of each output.
storeu_128(h_vecs[0], &out[0 * sizeof(__m128i)]);
storeu_128(h_vecs[4], &out[1 * sizeof(__m128i)]);
storeu_128(h_vecs[1], &out[2 * sizeof(__m128i)]);
storeu_128(h_vecs[5], &out[3 * sizeof(__m128i)]);
storeu_128(h_vecs[2], &out[4 * sizeof(__m128i)]);
storeu_128(h_vecs[6], &out[5 * sizeof(__m128i)]);
storeu_128(h_vecs[3], &out[6 * sizeof(__m128i)]);
storeu_128(h_vecs[7], &out[7 * sizeof(__m128i)]);
}
/*
* ----------------------------------------------------------------------------
* hash8_avx512
* ----------------------------------------------------------------------------
*/
INLINE void round_fn8(__m256i v[16], __m256i m[16], size_t r) {
v[0] = add_256(v[0], m[(size_t)MSG_SCHEDULE[r][0]]);
v[1] = add_256(v[1], m[(size_t)MSG_SCHEDULE[r][2]]);
v[2] = add_256(v[2], m[(size_t)MSG_SCHEDULE[r][4]]);
v[3] = add_256(v[3], m[(size_t)MSG_SCHEDULE[r][6]]);
v[0] = add_256(v[0], v[4]);
v[1] = add_256(v[1], v[5]);
v[2] = add_256(v[2], v[6]);
v[3] = add_256(v[3], v[7]);
v[12] = xor_256(v[12], v[0]);
v[13] = xor_256(v[13], v[1]);
v[14] = xor_256(v[14], v[2]);
v[15] = xor_256(v[15], v[3]);
v[12] = rot16_256(v[12]);
v[13] = rot16_256(v[13]);
v[14] = rot16_256(v[14]);
v[15] = rot16_256(v[15]);
v[8] = add_256(v[8], v[12]);
v[9] = add_256(v[9], v[13]);
v[10] = add_256(v[10], v[14]);
v[11] = add_256(v[11], v[15]);
v[4] = xor_256(v[4], v[8]);
v[5] = xor_256(v[5], v[9]);
v[6] = xor_256(v[6], v[10]);
v[7] = xor_256(v[7], v[11]);
v[4] = rot12_256(v[4]);
v[5] = rot12_256(v[5]);
v[6] = rot12_256(v[6]);
v[7] = rot12_256(v[7]);
v[0] = add_256(v[0], m[(size_t)MSG_SCHEDULE[r][1]]);
v[1] = add_256(v[1], m[(size_t)MSG_SCHEDULE[r][3]]);
v[2] = add_256(v[2], m[(size_t)MSG_SCHEDULE[r][5]]);
v[3] = add_256(v[3], m[(size_t)MSG_SCHEDULE[r][7]]);
v[0] = add_256(v[0], v[4]);
v[1] = add_256(v[1], v[5]);
v[2] = add_256(v[2], v[6]);
v[3] = add_256(v[3], v[7]);
v[12] = xor_256(v[12], v[0]);
v[13] = xor_256(v[13], v[1]);
v[14] = xor_256(v[14], v[2]);
v[15] = xor_256(v[15], v[3]);
v[12] = rot8_256(v[12]);
v[13] = rot8_256(v[13]);
v[14] = rot8_256(v[14]);
v[15] = rot8_256(v[15]);
v[8] = add_256(v[8], v[12]);
v[9] = add_256(v[9], v[13]);
v[10] = add_256(v[10], v[14]);
v[11] = add_256(v[11], v[15]);
v[4] = xor_256(v[4], v[8]);
v[5] = xor_256(v[5], v[9]);
v[6] = xor_256(v[6], v[10]);
v[7] = xor_256(v[7], v[11]);
v[4] = rot7_256(v[4]);
v[5] = rot7_256(v[5]);
v[6] = rot7_256(v[6]);
v[7] = rot7_256(v[7]);
v[0] = add_256(v[0], m[(size_t)MSG_SCHEDULE[r][8]]);
v[1] = add_256(v[1], m[(size_t)MSG_SCHEDULE[r][10]]);
v[2] = add_256(v[2], m[(size_t)MSG_SCHEDULE[r][12]]);
v[3] = add_256(v[3], m[(size_t)MSG_SCHEDULE[r][14]]);
v[0] = add_256(v[0], v[5]);
v[1] = add_256(v[1], v[6]);
v[2] = add_256(v[2], v[7]);
v[3] = add_256(v[3], v[4]);
v[15] = xor_256(v[15], v[0]);
v[12] = xor_256(v[12], v[1]);
v[13] = xor_256(v[13], v[2]);
v[14] = xor_256(v[14], v[3]);
v[15] = rot16_256(v[15]);
v[12] = rot16_256(v[12]);
v[13] = rot16_256(v[13]);
v[14] = rot16_256(v[14]);
v[10] = add_256(v[10], v[15]);
v[11] = add_256(v[11], v[12]);
v[8] = add_256(v[8], v[13]);
v[9] = add_256(v[9], v[14]);
v[5] = xor_256(v[5], v[10]);
v[6] = xor_256(v[6], v[11]);
v[7] = xor_256(v[7], v[8]);
v[4] = xor_256(v[4], v[9]);
v[5] = rot12_256(v[5]);
v[6] = rot12_256(v[6]);
v[7] = rot12_256(v[7]);
v[4] = rot12_256(v[4]);
v[0] = add_256(v[0], m[(size_t)MSG_SCHEDULE[r][9]]);
v[1] = add_256(v[1], m[(size_t)MSG_SCHEDULE[r][11]]);
v[2] = add_256(v[2], m[(size_t)MSG_SCHEDULE[r][13]]);
v[3] = add_256(v[3], m[(size_t)MSG_SCHEDULE[r][15]]);
v[0] = add_256(v[0], v[5]);
v[1] = add_256(v[1], v[6]);
v[2] = add_256(v[2], v[7]);
v[3] = add_256(v[3], v[4]);
v[15] = xor_256(v[15], v[0]);
v[12] = xor_256(v[12], v[1]);
v[13] = xor_256(v[13], v[2]);
v[14] = xor_256(v[14], v[3]);
v[15] = rot8_256(v[15]);
v[12] = rot8_256(v[12]);
v[13] = rot8_256(v[13]);
v[14] = rot8_256(v[14]);
v[10] = add_256(v[10], v[15]);
v[11] = add_256(v[11], v[12]);
v[8] = add_256(v[8], v[13]);
v[9] = add_256(v[9], v[14]);
v[5] = xor_256(v[5], v[10]);
v[6] = xor_256(v[6], v[11]);
v[7] = xor_256(v[7], v[8]);
v[4] = xor_256(v[4], v[9]);
v[5] = rot7_256(v[5]);
v[6] = rot7_256(v[6]);
v[7] = rot7_256(v[7]);
v[4] = rot7_256(v[4]);
}
INLINE void transpose_vecs_256(__m256i vecs[8]) {
// Interleave 32-bit lanes. The low unpack is lanes 00/11/44/55, and the high
// is 22/33/66/77.
__m256i ab_0145 = _mm256_unpacklo_epi32(vecs[0], vecs[1]);
__m256i ab_2367 = _mm256_unpackhi_epi32(vecs[0], vecs[1]);
__m256i cd_0145 = _mm256_unpacklo_epi32(vecs[2], vecs[3]);
__m256i cd_2367 = _mm256_unpackhi_epi32(vecs[2], vecs[3]);
__m256i ef_0145 = _mm256_unpacklo_epi32(vecs[4], vecs[5]);
__m256i ef_2367 = _mm256_unpackhi_epi32(vecs[4], vecs[5]);
__m256i gh_0145 = _mm256_unpacklo_epi32(vecs[6], vecs[7]);
__m256i gh_2367 = _mm256_unpackhi_epi32(vecs[6], vecs[7]);
// Interleave 64-bit lates. The low unpack is lanes 00/22 and the high is
// 11/33.
__m256i abcd_04 = _mm256_unpacklo_epi64(ab_0145, cd_0145);
__m256i abcd_15 = _mm256_unpackhi_epi64(ab_0145, cd_0145);
__m256i abcd_26 = _mm256_unpacklo_epi64(ab_2367, cd_2367);
__m256i abcd_37 = _mm256_unpackhi_epi64(ab_2367, cd_2367);
__m256i efgh_04 = _mm256_unpacklo_epi64(ef_0145, gh_0145);
__m256i efgh_15 = _mm256_unpackhi_epi64(ef_0145, gh_0145);
__m256i efgh_26 = _mm256_unpacklo_epi64(ef_2367, gh_2367);
__m256i efgh_37 = _mm256_unpackhi_epi64(ef_2367, gh_2367);
// Interleave 128-bit lanes.
vecs[0] = _mm256_permute2x128_si256(abcd_04, efgh_04, 0x20);
vecs[1] = _mm256_permute2x128_si256(abcd_15, efgh_15, 0x20);
vecs[2] = _mm256_permute2x128_si256(abcd_26, efgh_26, 0x20);
vecs[3] = _mm256_permute2x128_si256(abcd_37, efgh_37, 0x20);
vecs[4] = _mm256_permute2x128_si256(abcd_04, efgh_04, 0x31);
vecs[5] = _mm256_permute2x128_si256(abcd_15, efgh_15, 0x31);
vecs[6] = _mm256_permute2x128_si256(abcd_26, efgh_26, 0x31);
vecs[7] = _mm256_permute2x128_si256(abcd_37, efgh_37, 0x31);
}
INLINE void transpose_msg_vecs8(const uint8_t *const *inputs,
size_t block_offset, __m256i out[16]) {
out[0] = loadu_256(&inputs[0][block_offset + 0 * sizeof(__m256i)]);
out[1] = loadu_256(&inputs[1][block_offset + 0 * sizeof(__m256i)]);
out[2] = loadu_256(&inputs[2][block_offset + 0 * sizeof(__m256i)]);
out[3] = loadu_256(&inputs[3][block_offset + 0 * sizeof(__m256i)]);
out[4] = loadu_256(&inputs[4][block_offset + 0 * sizeof(__m256i)]);
out[5] = loadu_256(&inputs[5][block_offset + 0 * sizeof(__m256i)]);
out[6] = loadu_256(&inputs[6][block_offset + 0 * sizeof(__m256i)]);
out[7] = loadu_256(&inputs[7][block_offset + 0 * sizeof(__m256i)]);
out[8] = loadu_256(&inputs[0][block_offset + 1 * sizeof(__m256i)]);
out[9] = loadu_256(&inputs[1][block_offset + 1 * sizeof(__m256i)]);
out[10] = loadu_256(&inputs[2][block_offset + 1 * sizeof(__m256i)]);
out[11] = loadu_256(&inputs[3][block_offset + 1 * sizeof(__m256i)]);
out[12] = loadu_256(&inputs[4][block_offset + 1 * sizeof(__m256i)]);
out[13] = loadu_256(&inputs[5][block_offset + 1 * sizeof(__m256i)]);
out[14] = loadu_256(&inputs[6][block_offset + 1 * sizeof(__m256i)]);
out[15] = loadu_256(&inputs[7][block_offset + 1 * sizeof(__m256i)]);
transpose_vecs_256(&out[0]);
transpose_vecs_256(&out[8]);
}
INLINE void load_offsets8(uint64_t offset, const uint64_t deltas[8],
__m256i *out_lo, __m256i *out_hi) {
__m512i a = _mm512_add_epi64(_mm512_set1_epi64((int64_t)offset),
_mm512_loadu_si512((const __m512i *)deltas));
*out_lo = _mm512_cvtepi64_epi32(a);
*out_hi = _mm512_cvtepi64_epi32(_mm512_srli_epi64(a, 32));
}
void blake3_hash8_avx512(const uint8_t *const *inputs, size_t blocks,
const uint8_t key[BLAKE3_KEY_LEN], uint64_t offset,
offset_deltas_t offset_deltas, uint8_t flags,
uint8_t flags_start, uint8_t flags_end, uint8_t *out) {
uint32_t key_words[8];
memcpy(key_words, key, BLAKE3_KEY_LEN); // x86 is little-endian
__m256i h_vecs[8] = {
set1_256(key_words[0]), set1_256(key_words[1]), set1_256(key_words[2]),
set1_256(key_words[3]), set1_256(key_words[4]), set1_256(key_words[5]),
set1_256(key_words[6]), set1_256(key_words[7]),
};
__m256i offset_low_vec, offset_high_vec;
load_offsets8(offset, offset_deltas, &offset_low_vec, &offset_high_vec);
uint8_t block_flags = flags | flags_start;
for (size_t block = 0; block < blocks; block++) {
if (block + 1 == blocks) {
block_flags |= flags_end;
}
__m256i block_len_vec = set1_256(BLAKE3_BLOCK_LEN);
__m256i block_flags_vec = set1_256(block_flags);
__m256i msg_vecs[16];
transpose_msg_vecs8(inputs, block * BLAKE3_BLOCK_LEN, msg_vecs);
__m256i v[16] = {
h_vecs[0], h_vecs[1], h_vecs[2], h_vecs[3],
h_vecs[4], h_vecs[5], h_vecs[6], h_vecs[7],
set1_256(IV[0]), set1_256(IV[1]), set1_256(IV[2]), set1_256(IV[3]),
offset_low_vec, offset_high_vec, block_len_vec, block_flags_vec,
};
round_fn8(v, msg_vecs, 0);
round_fn8(v, msg_vecs, 1);
round_fn8(v, msg_vecs, 2);
round_fn8(v, msg_vecs, 3);
round_fn8(v, msg_vecs, 4);
round_fn8(v, msg_vecs, 5);
round_fn8(v, msg_vecs, 6);
h_vecs[0] = xor_256(v[0], v[8]);
h_vecs[1] = xor_256(v[1], v[9]);
h_vecs[2] = xor_256(v[2], v[10]);
h_vecs[3] = xor_256(v[3], v[11]);
h_vecs[4] = xor_256(v[4], v[12]);
h_vecs[5] = xor_256(v[5], v[13]);
h_vecs[6] = xor_256(v[6], v[14]);
h_vecs[7] = xor_256(v[7], v[15]);
block_flags = flags;
}
transpose_vecs_256(h_vecs);
storeu_256(h_vecs[0], &out[0 * sizeof(__m256i)]);
storeu_256(h_vecs[1], &out[1 * sizeof(__m256i)]);
storeu_256(h_vecs[2], &out[2 * sizeof(__m256i)]);
storeu_256(h_vecs[3], &out[3 * sizeof(__m256i)]);
storeu_256(h_vecs[4], &out[4 * sizeof(__m256i)]);
storeu_256(h_vecs[5], &out[5 * sizeof(__m256i)]);
storeu_256(h_vecs[6], &out[6 * sizeof(__m256i)]);
storeu_256(h_vecs[7], &out[7 * sizeof(__m256i)]);
}
/*
* ----------------------------------------------------------------------------
* hash16_avx512
* ----------------------------------------------------------------------------
*/
INLINE void round_fn16(__m512i v[16], __m512i m[16], size_t r) {
v[0] = add_512(v[0], m[(size_t)MSG_SCHEDULE[r][0]]);
v[1] = add_512(v[1], m[(size_t)MSG_SCHEDULE[r][2]]);
v[2] = add_512(v[2], m[(size_t)MSG_SCHEDULE[r][4]]);
v[3] = add_512(v[3], m[(size_t)MSG_SCHEDULE[r][6]]);
v[0] = add_512(v[0], v[4]);
v[1] = add_512(v[1], v[5]);
v[2] = add_512(v[2], v[6]);
v[3] = add_512(v[3], v[7]);
v[12] = xor_512(v[12], v[0]);
v[13] = xor_512(v[13], v[1]);
v[14] = xor_512(v[14], v[2]);
v[15] = xor_512(v[15], v[3]);
v[12] = rot16_512(v[12]);
v[13] = rot16_512(v[13]);
v[14] = rot16_512(v[14]);
v[15] = rot16_512(v[15]);
v[8] = add_512(v[8], v[12]);
v[9] = add_512(v[9], v[13]);
v[10] = add_512(v[10], v[14]);
v[11] = add_512(v[11], v[15]);
v[4] = xor_512(v[4], v[8]);
v[5] = xor_512(v[5], v[9]);
v[6] = xor_512(v[6], v[10]);
v[7] = xor_512(v[7], v[11]);
v[4] = rot12_512(v[4]);
v[5] = rot12_512(v[5]);
v[6] = rot12_512(v[6]);
v[7] = rot12_512(v[7]);
v[0] = add_512(v[0], m[(size_t)MSG_SCHEDULE[r][1]]);
v[1] = add_512(v[1], m[(size_t)MSG_SCHEDULE[r][3]]);
v[2] = add_512(v[2], m[(size_t)MSG_SCHEDULE[r][5]]);
v[3] = add_512(v[3], m[(size_t)MSG_SCHEDULE[r][7]]);
v[0] = add_512(v[0], v[4]);
v[1] = add_512(v[1], v[5]);
v[2] = add_512(v[2], v[6]);
v[3] = add_512(v[3], v[7]);
v[12] = xor_512(v[12], v[0]);
v[13] = xor_512(v[13], v[1]);
v[14] = xor_512(v[14], v[2]);
v[15] = xor_512(v[15], v[3]);
v[12] = rot8_512(v[12]);
v[13] = rot8_512(v[13]);
v[14] = rot8_512(v[14]);
v[15] = rot8_512(v[15]);
v[8] = add_512(v[8], v[12]);
v[9] = add_512(v[9], v[13]);
v[10] = add_512(v[10], v[14]);
v[11] = add_512(v[11], v[15]);
v[4] = xor_512(v[4], v[8]);
v[5] = xor_512(v[5], v[9]);
v[6] = xor_512(v[6], v[10]);
v[7] = xor_512(v[7], v[11]);
v[4] = rot7_512(v[4]);
v[5] = rot7_512(v[5]);
v[6] = rot7_512(v[6]);
v[7] = rot7_512(v[7]);
v[0] = add_512(v[0], m[(size_t)MSG_SCHEDULE[r][8]]);
v[1] = add_512(v[1], m[(size_t)MSG_SCHEDULE[r][10]]);
v[2] = add_512(v[2], m[(size_t)MSG_SCHEDULE[r][12]]);
v[3] = add_512(v[3], m[(size_t)MSG_SCHEDULE[r][14]]);
v[0] = add_512(v[0], v[5]);
v[1] = add_512(v[1], v[6]);
v[2] = add_512(v[2], v[7]);
v[3] = add_512(v[3], v[4]);
v[15] = xor_512(v[15], v[0]);
v[12] = xor_512(v[12], v[1]);
v[13] = xor_512(v[13], v[2]);
v[14] = xor_512(v[14], v[3]);
v[15] = rot16_512(v[15]);
v[12] = rot16_512(v[12]);
v[13] = rot16_512(v[13]);
v[14] = rot16_512(v[14]);
v[10] = add_512(v[10], v[15]);
v[11] = add_512(v[11], v[12]);
v[8] = add_512(v[8], v[13]);
v[9] = add_512(v[9], v[14]);
v[5] = xor_512(v[5], v[10]);
v[6] = xor_512(v[6], v[11]);
v[7] = xor_512(v[7], v[8]);
v[4] = xor_512(v[4], v[9]);
v[5] = rot12_512(v[5]);
v[6] = rot12_512(v[6]);
v[7] = rot12_512(v[7]);
v[4] = rot12_512(v[4]);
v[0] = add_512(v[0], m[(size_t)MSG_SCHEDULE[r][9]]);
v[1] = add_512(v[1], m[(size_t)MSG_SCHEDULE[r][11]]);
v[2] = add_512(v[2], m[(size_t)MSG_SCHEDULE[r][13]]);
v[3] = add_512(v[3], m[(size_t)MSG_SCHEDULE[r][15]]);
v[0] = add_512(v[0], v[5]);
v[1] = add_512(v[1], v[6]);
v[2] = add_512(v[2], v[7]);
v[3] = add_512(v[3], v[4]);
v[15] = xor_512(v[15], v[0]);
v[12] = xor_512(v[12], v[1]);
v[13] = xor_512(v[13], v[2]);
v[14] = xor_512(v[14], v[3]);
v[15] = rot8_512(v[15]);
v[12] = rot8_512(v[12]);
v[13] = rot8_512(v[13]);
v[14] = rot8_512(v[14]);
v[10] = add_512(v[10], v[15]);
v[11] = add_512(v[11], v[12]);
v[8] = add_512(v[8], v[13]);
v[9] = add_512(v[9], v[14]);
v[5] = xor_512(v[5], v[10]);
v[6] = xor_512(v[6], v[11]);
v[7] = xor_512(v[7], v[8]);
v[4] = xor_512(v[4], v[9]);
v[5] = rot7_512(v[5]);
v[6] = rot7_512(v[6]);
v[7] = rot7_512(v[7]);
v[4] = rot7_512(v[4]);
}
// 0b10001000, or lanes a0/a2/b0/b2 in little-endian order
#define LO_IMM8 0x88
INLINE __m512i unpack_lo_128(__m512i a, __m512i b) {
return _mm512_shuffle_i32x4(a, b, LO_IMM8);
}
// 0b11011101, or lanes a1/a3/b1/b3 in little-endian order
#define HI_IMM8 0xdd
INLINE __m512i unpack_hi_128(__m512i a, __m512i b) {
return _mm512_shuffle_i32x4(a, b, HI_IMM8);
}
INLINE void transpose_vecs_512(__m512i vecs[16]) {
// Interleave 32-bit lanes. The _0 unpack is lanes
// 0/0/1/1/4/4/5/5/8/8/9/9/12/12/13/13, and the _2 unpack is lanes
// 2/2/3/3/6/6/7/7/10/10/11/11/14/14/15/15.
__m512i ab_0 = _mm512_unpacklo_epi32(vecs[0], vecs[1]);
__m512i ab_2 = _mm512_unpackhi_epi32(vecs[0], vecs[1]);
__m512i cd_0 = _mm512_unpacklo_epi32(vecs[2], vecs[3]);
__m512i cd_2 = _mm512_unpackhi_epi32(vecs[2], vecs[3]);
__m512i ef_0 = _mm512_unpacklo_epi32(vecs[4], vecs[5]);
__m512i ef_2 = _mm512_unpackhi_epi32(vecs[4], vecs[5]);
__m512i gh_0 = _mm512_unpacklo_epi32(vecs[6], vecs[7]);
__m512i gh_2 = _mm512_unpackhi_epi32(vecs[6], vecs[7]);
__m512i ij_0 = _mm512_unpacklo_epi32(vecs[8], vecs[9]);
__m512i ij_2 = _mm512_unpackhi_epi32(vecs[8], vecs[9]);
__m512i kl_0 = _mm512_unpacklo_epi32(vecs[10], vecs[11]);
__m512i kl_2 = _mm512_unpackhi_epi32(vecs[10], vecs[11]);
__m512i mn_0 = _mm512_unpacklo_epi32(vecs[12], vecs[13]);
__m512i mn_2 = _mm512_unpackhi_epi32(vecs[12], vecs[13]);
__m512i op_0 = _mm512_unpacklo_epi32(vecs[14], vecs[15]);
__m512i op_2 = _mm512_unpackhi_epi32(vecs[14], vecs[15]);
// Interleave 64-bit lates. The _0 unpack is lanes
// 0/0/0/0/4/4/4/4/8/8/8/8/12/12/12/12, the _1 unpack is lanes
// 1/1/1/1/5/5/5/5/9/9/9/9/13/13/13/13, the _2 unpack is lanes
// 2/2/2/2/6/6/6/6/10/10/10/10/14/14/14/14, and the _3 unpack is lanes
// 3/3/3/3/7/7/7/7/11/11/11/11/15/15/15/15.
__m512i abcd_0 = _mm512_unpacklo_epi64(ab_0, cd_0);
__m512i abcd_1 = _mm512_unpackhi_epi64(ab_0, cd_0);
__m512i abcd_2 = _mm512_unpacklo_epi64(ab_2, cd_2);
__m512i abcd_3 = _mm512_unpackhi_epi64(ab_2, cd_2);
__m512i efgh_0 = _mm512_unpacklo_epi64(ef_0, gh_0);
__m512i efgh_1 = _mm512_unpackhi_epi64(ef_0, gh_0);
__m512i efgh_2 = _mm512_unpacklo_epi64(ef_2, gh_2);
__m512i efgh_3 = _mm512_unpackhi_epi64(ef_2, gh_2);
__m512i ijkl_0 = _mm512_unpacklo_epi64(ij_0, kl_0);
__m512i ijkl_1 = _mm512_unpackhi_epi64(ij_0, kl_0);
__m512i ijkl_2 = _mm512_unpacklo_epi64(ij_2, kl_2);
__m512i ijkl_3 = _mm512_unpackhi_epi64(ij_2, kl_2);
__m512i mnop_0 = _mm512_unpacklo_epi64(mn_0, op_0);
__m512i mnop_1 = _mm512_unpackhi_epi64(mn_0, op_0);
__m512i mnop_2 = _mm512_unpacklo_epi64(mn_2, op_2);
__m512i mnop_3 = _mm512_unpackhi_epi64(mn_2, op_2);
// Interleave 128-bit lanes. The _0 unpack is
// 0/0/0/0/8/8/8/8/0/0/0/0/8/8/8/8, the _1 unpack is
// 1/1/1/1/9/9/9/9/1/1/1/1/9/9/9/9, and so on.
__m512i abcdefgh_0 = unpack_lo_128(abcd_0, efgh_0);
__m512i abcdefgh_1 = unpack_lo_128(abcd_1, efgh_1);
__m512i abcdefgh_2 = unpack_lo_128(abcd_2, efgh_2);
__m512i abcdefgh_3 = unpack_lo_128(abcd_3, efgh_3);
__m512i abcdefgh_4 = unpack_hi_128(abcd_0, efgh_0);
__m512i abcdefgh_5 = unpack_hi_128(abcd_1, efgh_1);
__m512i abcdefgh_6 = unpack_hi_128(abcd_2, efgh_2);
__m512i abcdefgh_7 = unpack_hi_128(abcd_3, efgh_3);
__m512i ijklmnop_0 = unpack_lo_128(ijkl_0, mnop_0);
__m512i ijklmnop_1 = unpack_lo_128(ijkl_1, mnop_1);
__m512i ijklmnop_2 = unpack_lo_128(ijkl_2, mnop_2);
__m512i ijklmnop_3 = unpack_lo_128(ijkl_3, mnop_3);
__m512i ijklmnop_4 = unpack_hi_128(ijkl_0, mnop_0);
__m512i ijklmnop_5 = unpack_hi_128(ijkl_1, mnop_1);
__m512i ijklmnop_6 = unpack_hi_128(ijkl_2, mnop_2);
__m512i ijklmnop_7 = unpack_hi_128(ijkl_3, mnop_3);
// Interleave 128-bit lanes again for the final outputs.
vecs[0] = unpack_lo_128(abcdefgh_0, ijklmnop_0);
vecs[1] = unpack_lo_128(abcdefgh_1, ijklmnop_1);
vecs[2] = unpack_lo_128(abcdefgh_2, ijklmnop_2);
vecs[3] = unpack_lo_128(abcdefgh_3, ijklmnop_3);
vecs[4] = unpack_lo_128(abcdefgh_4, ijklmnop_4);
vecs[5] = unpack_lo_128(abcdefgh_5, ijklmnop_5);
vecs[6] = unpack_lo_128(abcdefgh_6, ijklmnop_6);
vecs[7] = unpack_lo_128(abcdefgh_7, ijklmnop_7);
vecs[8] = unpack_hi_128(abcdefgh_0, ijklmnop_0);
vecs[9] = unpack_hi_128(abcdefgh_1, ijklmnop_1);
vecs[10] = unpack_hi_128(abcdefgh_2, ijklmnop_2);
vecs[11] = unpack_hi_128(abcdefgh_3, ijklmnop_3);
vecs[12] = unpack_hi_128(abcdefgh_4, ijklmnop_4);
vecs[13] = unpack_hi_128(abcdefgh_5, ijklmnop_5);
vecs[14] = unpack_hi_128(abcdefgh_6, ijklmnop_6);
vecs[15] = unpack_hi_128(abcdefgh_7, ijklmnop_7);
}
INLINE void transpose_msg_vecs16(const uint8_t *const *inputs,
size_t block_offset, __m512i out[16]) {
out[0] = loadu_512(&inputs[0][block_offset]);
out[1] = loadu_512(&inputs[1][block_offset]);
out[2] = loadu_512(&inputs[2][block_offset]);
out[3] = loadu_512(&inputs[3][block_offset]);
out[4] = loadu_512(&inputs[4][block_offset]);
out[5] = loadu_512(&inputs[5][block_offset]);
out[6] = loadu_512(&inputs[6][block_offset]);
out[7] = loadu_512(&inputs[7][block_offset]);
out[8] = loadu_512(&inputs[8][block_offset]);
out[9] = loadu_512(&inputs[9][block_offset]);
out[10] = loadu_512(&inputs[10][block_offset]);
out[11] = loadu_512(&inputs[11][block_offset]);
out[12] = loadu_512(&inputs[12][block_offset]);
out[13] = loadu_512(&inputs[13][block_offset]);
out[14] = loadu_512(&inputs[14][block_offset]);
out[15] = loadu_512(&inputs[15][block_offset]);
transpose_vecs_512(out);
}
INLINE void load_offsets16(uint64_t offset, const uint64_t deltas[16],
__m512i *out_lo, __m512i *out_hi) {
__m512i a = _mm512_add_epi64(_mm512_set1_epi64((int64_t)offset),
_mm512_loadu_si512((const __m512i *)&deltas[0]));
__m512i b = _mm512_add_epi64(_mm512_set1_epi64((int64_t)offset),
_mm512_loadu_si512((const __m512i *)&deltas[8]));
__m512i lo_indexes = _mm512_setr_epi32(0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20,
22, 24, 26, 28, 30);
__m512i hi_indexes = _mm512_setr_epi32(1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21,
23, 25, 27, 29, 31);
*out_lo = _mm512_permutex2var_epi32(a, lo_indexes, b);
*out_hi = _mm512_permutex2var_epi32(a, hi_indexes, b);
}
void blake3_hash16_avx512(const uint8_t *const *inputs, size_t blocks,
const uint8_t key[BLAKE3_KEY_LEN], uint64_t offset,
offset_deltas_t offset_deltas, uint8_t flags,
uint8_t flags_start, uint8_t flags_end,
uint8_t *out) {
uint32_t key_words[8];
memcpy(key_words, key, BLAKE3_KEY_LEN); // x86 is little-endian
__m512i h_vecs[8] = {
set1_512(key_words[0]), set1_512(key_words[1]), set1_512(key_words[2]),
set1_512(key_words[3]), set1_512(key_words[4]), set1_512(key_words[5]),
set1_512(key_words[6]), set1_512(key_words[7]),
};
__m512i offset_low_vec, offset_high_vec;
load_offsets16(offset, offset_deltas, &offset_low_vec, &offset_high_vec);
uint8_t block_flags = flags | flags_start;
for (size_t block = 0; block < blocks; block++) {
if (block + 1 == blocks) {
block_flags |= flags_end;
}
__m512i block_len_vec = set1_512(BLAKE3_BLOCK_LEN);
__m512i block_flags_vec = set1_512(block_flags);
__m512i msg_vecs[16];
transpose_msg_vecs16(inputs, block * BLAKE3_BLOCK_LEN, msg_vecs);
__m512i v[16] = {
h_vecs[0], h_vecs[1], h_vecs[2], h_vecs[3],
h_vecs[4], h_vecs[5], h_vecs[6], h_vecs[7],
set1_512(IV[0]), set1_512(IV[1]), set1_512(IV[2]), set1_512(IV[3]),
offset_low_vec, offset_high_vec, block_len_vec, block_flags_vec,
};
round_fn16(v, msg_vecs, 0);
round_fn16(v, msg_vecs, 1);
round_fn16(v, msg_vecs, 2);
round_fn16(v, msg_vecs, 3);
round_fn16(v, msg_vecs, 4);
round_fn16(v, msg_vecs, 5);
round_fn16(v, msg_vecs, 6);
h_vecs[0] = xor_512(v[0], v[8]);
h_vecs[1] = xor_512(v[1], v[9]);
h_vecs[2] = xor_512(v[2], v[10]);
h_vecs[3] = xor_512(v[3], v[11]);
h_vecs[4] = xor_512(v[4], v[12]);
h_vecs[5] = xor_512(v[5], v[13]);
h_vecs[6] = xor_512(v[6], v[14]);
h_vecs[7] = xor_512(v[7], v[15]);
block_flags = flags;
}
// transpose_vecs_512 operates on a 16x16 matrix of words, but we only have 8
// state vectors. Pad the matrix with zeros. After transposition, store the
// lower half of each vector.
__m512i padded[16] = {
h_vecs[0], h_vecs[1], h_vecs[2], h_vecs[3],
h_vecs[4], h_vecs[5], h_vecs[6], h_vecs[7],
set1_512(0), set1_512(0), set1_512(0), set1_512(0),
set1_512(0), set1_512(0), set1_512(0), set1_512(0),
};
transpose_vecs_512(padded);
storeu_256(_mm512_castsi512_si256(padded[0]), &out[0 * sizeof(__m256i)]);
storeu_256(_mm512_castsi512_si256(padded[1]), &out[1 * sizeof(__m256i)]);
storeu_256(_mm512_castsi512_si256(padded[2]), &out[2 * sizeof(__m256i)]);
storeu_256(_mm512_castsi512_si256(padded[3]), &out[3 * sizeof(__m256i)]);
storeu_256(_mm512_castsi512_si256(padded[4]), &out[4 * sizeof(__m256i)]);
storeu_256(_mm512_castsi512_si256(padded[5]), &out[5 * sizeof(__m256i)]);
storeu_256(_mm512_castsi512_si256(padded[6]), &out[6 * sizeof(__m256i)]);
storeu_256(_mm512_castsi512_si256(padded[7]), &out[7 * sizeof(__m256i)]);
storeu_256(_mm512_castsi512_si256(padded[8]), &out[8 * sizeof(__m256i)]);
storeu_256(_mm512_castsi512_si256(padded[9]), &out[9 * sizeof(__m256i)]);
storeu_256(_mm512_castsi512_si256(padded[10]), &out[10 * sizeof(__m256i)]);
storeu_256(_mm512_castsi512_si256(padded[11]), &out[11 * sizeof(__m256i)]);
storeu_256(_mm512_castsi512_si256(padded[12]), &out[12 * sizeof(__m256i)]);
storeu_256(_mm512_castsi512_si256(padded[13]), &out[13 * sizeof(__m256i)]);
storeu_256(_mm512_castsi512_si256(padded[14]), &out[14 * sizeof(__m256i)]);
storeu_256(_mm512_castsi512_si256(padded[15]), &out[15 * sizeof(__m256i)]);
}
/*
* ----------------------------------------------------------------------------
* hash_many_avx512
* ----------------------------------------------------------------------------
*/
INLINE void hash_one_avx512(const uint8_t *input, size_t blocks,
const uint8_t key[BLAKE3_KEY_LEN], uint64_t offset,
uint8_t flags, uint8_t flags_start,
uint8_t flags_end, uint8_t out[BLAKE3_OUT_LEN]) {
uint8_t cv[32];
memcpy(cv, key, BLAKE3_KEY_LEN);
uint8_t block_flags = flags | flags_start;
while (blocks > 0) {
if (blocks == 1) {
block_flags |= flags_end;
}
uint8_t out[64];
blake3_compress_avx512(cv, input, BLAKE3_BLOCK_LEN, offset, block_flags,
out);
memcpy(cv, out, 32);
input = &input[BLAKE3_BLOCK_LEN];
blocks -= 1;
block_flags = flags;
}
memcpy(out, cv, BLAKE3_OUT_LEN);
}
void blake3_hash_many_avx512(const uint8_t *const *inputs, size_t num_inputs,
size_t blocks, const uint8_t key[BLAKE3_KEY_LEN],
uint64_t offset, offset_deltas_t offset_deltas,
uint8_t flags, uint8_t flags_start,
uint8_t flags_end, uint8_t *out) {
while (num_inputs >= 16) {
blake3_hash16_avx512(inputs, blocks, key, offset, offset_deltas, flags,
flags_start, flags_end, out);
inputs += 16;
num_inputs -= 16;
offset += offset_deltas[16];
out = &out[16 * BLAKE3_OUT_LEN];
}
while (num_inputs >= 8) {
blake3_hash8_avx512(inputs, blocks, key, offset, offset_deltas, flags,
flags_start, flags_end, out);
inputs += 8;
num_inputs -= 8;
offset += offset_deltas[8];
out = &out[8 * BLAKE3_OUT_LEN];
}
while (num_inputs >= 4) {
blake3_hash4_avx512(inputs, blocks, key, offset, offset_deltas, flags,
flags_start, flags_end, out);
inputs += 4;
num_inputs -= 4;
offset += offset_deltas[4];
out = &out[4 * BLAKE3_OUT_LEN];
}
while (num_inputs > 0) {
hash_one_avx512(inputs[0], blocks, key, offset, flags, flags_start,
flags_end, out);
inputs += 1;
num_inputs -= 1;
offset += offset_deltas[1];
out = &out[BLAKE3_OUT_LEN];
}
}

121
src/c/blake3_impl.h Normal file
View File

@ -0,0 +1,121 @@
#pragma once
#include <assert.h>
#include <stdbool.h>
#include <stddef.h>
#include <stdint.h>
#include <string.h>
#if __POPCNT__
#include <nmmintrin.h>
#endif
#include "blake3.h"
// internal flags
#define CHUNK_START 1
#define CHUNK_END 2
#define PARENT 4
#define ROOT 8
#define KEYED_HASH 16
#define DERIVE_KEY 32
// This C implementation tries to support recent versions of GCC, Clang, and
// MSVC.
#if defined(_MSC_VER)
#define INLINE __forceinline static
#else
#define INLINE __attribute__((always_inline)) static inline
#endif
static const uint32_t IV[8] = {0x6A09E667UL, 0xBB67AE85UL, 0x3C6EF372UL,
0xA54FF53AUL, 0x510E527FUL, 0x9B05688CUL,
0x1F83D9ABUL, 0x5BE0CD19UL};
static const uint8_t IV_BYTES[32] = {
0x67, 0xe6, 0x09, 0x6a, 0x85, 0xae, 0x67, 0xbb, 0x72, 0xf3, 0x6e,
0x3c, 0x3a, 0xf5, 0x4f, 0xa5, 0x7f, 0x52, 0x0e, 0x51, 0x8c, 0x68,
0x05, 0x9b, 0xab, 0xd9, 0x83, 0x1f, 0x19, 0xcd, 0xe0, 0x5b,
};
static const uint8_t MSG_SCHEDULE[7][16] = {
{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15},
{14, 10, 4, 8, 9, 15, 13, 6, 1, 12, 0, 2, 11, 7, 5, 3},
{11, 8, 12, 0, 5, 2, 15, 13, 10, 14, 3, 6, 7, 1, 9, 4},
{7, 9, 3, 1, 13, 12, 11, 14, 2, 6, 5, 10, 4, 0, 15, 8},
{9, 0, 5, 7, 2, 4, 10, 15, 14, 1, 11, 12, 6, 8, 3, 13},
{2, 12, 6, 10, 0, 11, 8, 3, 4, 13, 7, 5, 15, 14, 1, 9},
{12, 5, 1, 15, 14, 13, 4, 10, 0, 7, 6, 3, 9, 2, 8, 11},
};
// 17 is 1 + the largest supported SIMD degree. Each hash_many() implementation
// can thus do `offset += offset_deltas[DEGREE]` at the end of each batch.
typedef const uint64_t offset_deltas_t[17];
static offset_deltas_t CHUNK_OFFSET_DELTAS = {
BLAKE3_CHUNK_LEN * 0, BLAKE3_CHUNK_LEN * 1, BLAKE3_CHUNK_LEN * 2,
BLAKE3_CHUNK_LEN * 3, BLAKE3_CHUNK_LEN * 4, BLAKE3_CHUNK_LEN * 5,
BLAKE3_CHUNK_LEN * 6, BLAKE3_CHUNK_LEN * 7, BLAKE3_CHUNK_LEN * 8,
BLAKE3_CHUNK_LEN * 9, BLAKE3_CHUNK_LEN * 10, BLAKE3_CHUNK_LEN * 11,
BLAKE3_CHUNK_LEN * 12, BLAKE3_CHUNK_LEN * 13, BLAKE3_CHUNK_LEN * 14,
BLAKE3_CHUNK_LEN * 15, BLAKE3_CHUNK_LEN * 16,
};
// Count the number of 1 bits.
INLINE uint8_t popcnt(uint64_t x) {
#if __POPCNT__
return (uint8_t)_mm_popcnt_u64(x);
#else
uint8_t count = 0;
while (x > 0) {
count += ((uint8_t)x) & 1;
x >>= 1;
}
return count;
#endif
}
INLINE uint32_t offset_low(uint64_t offset) { return (uint32_t)offset; }
INLINE uint32_t offset_high(uint64_t offset) {
return (uint32_t)(offset >> 32);
}
// Declarations for implementation-specific functions.
void blake3_compress_portable(const uint8_t cv[BLAKE3_OUT_LEN],
const uint8_t block[BLAKE3_BLOCK_LEN],
uint8_t block_len, uint64_t offset, uint8_t flags,
uint8_t out[64]);
void blake3_compress_sse41(const uint8_t cv[BLAKE3_OUT_LEN],
const uint8_t block[BLAKE3_BLOCK_LEN],
uint8_t block_len, uint64_t offset, uint8_t flags,
uint8_t out[64]);
void blake3_compress_avx512(const uint8_t cv[BLAKE3_OUT_LEN],
const uint8_t block[BLAKE3_BLOCK_LEN],
uint8_t block_len, uint64_t offset, uint8_t flags,
uint8_t out[64]);
void blake3_hash_many_portable(const uint8_t *const *inputs, size_t num_inputs,
size_t blocks, const uint8_t key[BLAKE3_KEY_LEN],
uint64_t offset, offset_deltas_t od,
uint8_t flags, uint8_t flags_start,
uint8_t flags_end, uint8_t *out);
void blake3_hash_many_sse41(const uint8_t *const *inputs, size_t num_inputs,
size_t blocks, const uint8_t key[BLAKE3_KEY_LEN],
uint64_t offset, offset_deltas_t od, uint8_t flags,
uint8_t flags_start, uint8_t flags_end,
uint8_t *out);
void blake3_hash_many_avx2(const uint8_t *const *inputs, size_t num_inputs,
size_t blocks, const uint8_t key[BLAKE3_KEY_LEN],
uint64_t offset, offset_deltas_t od, uint8_t flags,
uint8_t flags_start, uint8_t flags_end,
uint8_t *out);
void blake3_hash_many_avx512(const uint8_t *const *inputs, size_t num_inputs,
size_t blocks, const uint8_t key[BLAKE3_KEY_LEN],
uint64_t offset, offset_deltas_t od, uint8_t flags,
uint8_t flags_start, uint8_t flags_end,
uint8_t *out);
void blake3_hash_many_neon(const uint8_t *const *inputs, size_t num_inputs,
size_t blocks, const uint8_t key[BLAKE3_KEY_LEN],
uint64_t offset, offset_deltas_t od, uint8_t flags,
uint8_t flags_start, uint8_t flags_end,
uint8_t *out);

342
src/c/blake3_neon.c Normal file
View File

@ -0,0 +1,342 @@
#include "blake3_impl.h"
#include <arm_neon.h>
// TODO: This is probably incorrect for big-endian ARM. How should that work?
INLINE uint32x4_t loadu_128(const uint8_t src[16]) {
// vld1q_u32 has alignment requirements. Don't use it.
uint32x4_t x;
memcpy(&x, src, 16);
return x;
}
INLINE void storeu_128(uint32x4_t src, uint8_t dest[16]) {
// vst1q_u32 has alignment requirements. Don't use it.
memcpy(dest, &src, 16);
}
INLINE uint32x4_t add_128(uint32x4_t a, uint32x4_t b) {
return vaddq_u32(a, b);
}
INLINE uint32x4_t xor_128(uint32x4_t a, uint32x4_t b) {
return veorq_u32(a, b);
}
INLINE uint32x4_t set1_128(uint32_t x) { return vld1q_dup_u32(&x); }
INLINE uint32x4_t set4(uint32_t a, uint32_t b, uint32_t c, uint32_t d) {
uint32_t array[4] = {a, b, c, d};
return vld1q_u32(array);
}
INLINE uint32x4_t rot16_128(uint32x4_t x) {
return vorrq_u32(vshrq_n_u32(x, 16), vshlq_n_u32(x, 32 - 16));
}
INLINE uint32x4_t rot12_128(uint32x4_t x) {
return vorrq_u32(vshrq_n_u32(x, 12), vshlq_n_u32(x, 32 - 12));
}
INLINE uint32x4_t rot8_128(uint32x4_t x) {
return vorrq_u32(vshrq_n_u32(x, 8), vshlq_n_u32(x, 32 - 8));
}
INLINE uint32x4_t rot7_128(uint32x4_t x) {
return vorrq_u32(vshrq_n_u32(x, 7), vshlq_n_u32(x, 32 - 7));
}
// TODO: compress_neon
// TODO: hash2_neon
/*
* ----------------------------------------------------------------------------
* hash4_neon
* ----------------------------------------------------------------------------
*/
INLINE void round_fn4(uint32x4_t v[16], uint32x4_t m[16], size_t r) {
v[0] = add_128(v[0], m[(size_t)MSG_SCHEDULE[r][0]]);
v[1] = add_128(v[1], m[(size_t)MSG_SCHEDULE[r][2]]);
v[2] = add_128(v[2], m[(size_t)MSG_SCHEDULE[r][4]]);
v[3] = add_128(v[3], m[(size_t)MSG_SCHEDULE[r][6]]);
v[0] = add_128(v[0], v[4]);
v[1] = add_128(v[1], v[5]);
v[2] = add_128(v[2], v[6]);
v[3] = add_128(v[3], v[7]);
v[12] = xor_128(v[12], v[0]);
v[13] = xor_128(v[13], v[1]);
v[14] = xor_128(v[14], v[2]);
v[15] = xor_128(v[15], v[3]);
v[12] = rot16_128(v[12]);
v[13] = rot16_128(v[13]);
v[14] = rot16_128(v[14]);
v[15] = rot16_128(v[15]);
v[8] = add_128(v[8], v[12]);
v[9] = add_128(v[9], v[13]);
v[10] = add_128(v[10], v[14]);
v[11] = add_128(v[11], v[15]);
v[4] = xor_128(v[4], v[8]);
v[5] = xor_128(v[5], v[9]);
v[6] = xor_128(v[6], v[10]);
v[7] = xor_128(v[7], v[11]);
v[4] = rot12_128(v[4]);
v[5] = rot12_128(v[5]);
v[6] = rot12_128(v[6]);
v[7] = rot12_128(v[7]);
v[0] = add_128(v[0], m[(size_t)MSG_SCHEDULE[r][1]]);
v[1] = add_128(v[1], m[(size_t)MSG_SCHEDULE[r][3]]);
v[2] = add_128(v[2], m[(size_t)MSG_SCHEDULE[r][5]]);
v[3] = add_128(v[3], m[(size_t)MSG_SCHEDULE[r][7]]);
v[0] = add_128(v[0], v[4]);
v[1] = add_128(v[1], v[5]);
v[2] = add_128(v[2], v[6]);
v[3] = add_128(v[3], v[7]);
v[12] = xor_128(v[12], v[0]);
v[13] = xor_128(v[13], v[1]);
v[14] = xor_128(v[14], v[2]);
v[15] = xor_128(v[15], v[3]);
v[12] = rot8_128(v[12]);
v[13] = rot8_128(v[13]);
v[14] = rot8_128(v[14]);
v[15] = rot8_128(v[15]);
v[8] = add_128(v[8], v[12]);
v[9] = add_128(v[9], v[13]);
v[10] = add_128(v[10], v[14]);
v[11] = add_128(v[11], v[15]);
v[4] = xor_128(v[4], v[8]);
v[5] = xor_128(v[5], v[9]);
v[6] = xor_128(v[6], v[10]);
v[7] = xor_128(v[7], v[11]);
v[4] = rot7_128(v[4]);
v[5] = rot7_128(v[5]);
v[6] = rot7_128(v[6]);
v[7] = rot7_128(v[7]);
v[0] = add_128(v[0], m[(size_t)MSG_SCHEDULE[r][8]]);
v[1] = add_128(v[1], m[(size_t)MSG_SCHEDULE[r][10]]);
v[2] = add_128(v[2], m[(size_t)MSG_SCHEDULE[r][12]]);
v[3] = add_128(v[3], m[(size_t)MSG_SCHEDULE[r][14]]);
v[0] = add_128(v[0], v[5]);
v[1] = add_128(v[1], v[6]);
v[2] = add_128(v[2], v[7]);
v[3] = add_128(v[3], v[4]);
v[15] = xor_128(v[15], v[0]);
v[12] = xor_128(v[12], v[1]);
v[13] = xor_128(v[13], v[2]);
v[14] = xor_128(v[14], v[3]);
v[15] = rot16_128(v[15]);
v[12] = rot16_128(v[12]);
v[13] = rot16_128(v[13]);
v[14] = rot16_128(v[14]);
v[10] = add_128(v[10], v[15]);
v[11] = add_128(v[11], v[12]);
v[8] = add_128(v[8], v[13]);
v[9] = add_128(v[9], v[14]);
v[5] = xor_128(v[5], v[10]);
v[6] = xor_128(v[6], v[11]);
v[7] = xor_128(v[7], v[8]);
v[4] = xor_128(v[4], v[9]);
v[5] = rot12_128(v[5]);
v[6] = rot12_128(v[6]);
v[7] = rot12_128(v[7]);
v[4] = rot12_128(v[4]);
v[0] = add_128(v[0], m[(size_t)MSG_SCHEDULE[r][9]]);
v[1] = add_128(v[1], m[(size_t)MSG_SCHEDULE[r][11]]);
v[2] = add_128(v[2], m[(size_t)MSG_SCHEDULE[r][13]]);
v[3] = add_128(v[3], m[(size_t)MSG_SCHEDULE[r][15]]);
v[0] = add_128(v[0], v[5]);
v[1] = add_128(v[1], v[6]);
v[2] = add_128(v[2], v[7]);
v[3] = add_128(v[3], v[4]);
v[15] = xor_128(v[15], v[0]);
v[12] = xor_128(v[12], v[1]);
v[13] = xor_128(v[13], v[2]);
v[14] = xor_128(v[14], v[3]);
v[15] = rot8_128(v[15]);
v[12] = rot8_128(v[12]);
v[13] = rot8_128(v[13]);
v[14] = rot8_128(v[14]);
v[10] = add_128(v[10], v[15]);
v[11] = add_128(v[11], v[12]);
v[8] = add_128(v[8], v[13]);
v[9] = add_128(v[9], v[14]);
v[5] = xor_128(v[5], v[10]);
v[6] = xor_128(v[6], v[11]);
v[7] = xor_128(v[7], v[8]);
v[4] = xor_128(v[4], v[9]);
v[5] = rot7_128(v[5]);
v[6] = rot7_128(v[6]);
v[7] = rot7_128(v[7]);
v[4] = rot7_128(v[4]);
}
INLINE void transpose_vecs_128(uint32x4_t vecs[4]) {
// Individually transpose the four 2x2 sub-matrices in each corner.
uint32x4x2_t rows01 = vtrnq_u32(vecs[0], vecs[1]);
uint32x4x2_t rows23 = vtrnq_u32(vecs[2], vecs[3]);
// Swap the top-right and bottom-left 2x2s (which just got transposed).
vecs[0] =
vcombine_u32(vget_low_u32(rows01.val[0]), vget_low_u32(rows23.val[0]));
vecs[1] =
vcombine_u32(vget_low_u32(rows01.val[1]), vget_low_u32(rows23.val[1]));
vecs[2] =
vcombine_u32(vget_high_u32(rows01.val[0]), vget_high_u32(rows23.val[0]));
vecs[3] =
vcombine_u32(vget_high_u32(rows01.val[1]), vget_high_u32(rows23.val[1]));
}
INLINE void transpose_msg_vecs4(const uint8_t *const *inputs,
size_t block_offset, uint32x4_t out[16]) {
out[0] = loadu_128(&inputs[0][block_offset + 0 * sizeof(uint32x4_t)]);
out[1] = loadu_128(&inputs[1][block_offset + 0 * sizeof(uint32x4_t)]);
out[2] = loadu_128(&inputs[2][block_offset + 0 * sizeof(uint32x4_t)]);
out[3] = loadu_128(&inputs[3][block_offset + 0 * sizeof(uint32x4_t)]);
out[4] = loadu_128(&inputs[0][block_offset + 1 * sizeof(uint32x4_t)]);
out[5] = loadu_128(&inputs[1][block_offset + 1 * sizeof(uint32x4_t)]);
out[6] = loadu_128(&inputs[2][block_offset + 1 * sizeof(uint32x4_t)]);
out[7] = loadu_128(&inputs[3][block_offset + 1 * sizeof(uint32x4_t)]);
out[8] = loadu_128(&inputs[0][block_offset + 2 * sizeof(uint32x4_t)]);
out[9] = loadu_128(&inputs[1][block_offset + 2 * sizeof(uint32x4_t)]);
out[10] = loadu_128(&inputs[2][block_offset + 2 * sizeof(uint32x4_t)]);
out[11] = loadu_128(&inputs[3][block_offset + 2 * sizeof(uint32x4_t)]);
out[12] = loadu_128(&inputs[0][block_offset + 3 * sizeof(uint32x4_t)]);
out[13] = loadu_128(&inputs[1][block_offset + 3 * sizeof(uint32x4_t)]);
out[14] = loadu_128(&inputs[2][block_offset + 3 * sizeof(uint32x4_t)]);
out[15] = loadu_128(&inputs[3][block_offset + 3 * sizeof(uint32x4_t)]);
transpose_vecs_128(&out[0]);
transpose_vecs_128(&out[4]);
transpose_vecs_128(&out[8]);
transpose_vecs_128(&out[12]);
}
INLINE void load_offsets4(uint64_t offset, const uint64_t deltas[4],
uint32x4_t *out_lo, uint32x4_t *out_hi) {
*out_lo =
set4(offset_low(offset + deltas[0]), offset_low(offset + deltas[1]),
offset_low(offset + deltas[2]), offset_low(offset + deltas[3]));
*out_hi =
set4(offset_high(offset + deltas[0]), offset_high(offset + deltas[1]),
offset_high(offset + deltas[2]), offset_high(offset + deltas[3]));
}
void blake3_hash4_neon(const uint8_t *const *inputs, size_t blocks,
const uint8_t key[BLAKE3_KEY_LEN], uint64_t offset,
offset_deltas_t offset_deltas, uint8_t flags,
uint8_t flags_start, uint8_t flags_end, uint8_t *out) {
uint32_t key_words[8];
// TODO: This is assuming little-endian. Is there such a thing as NEON on
// big-endian?
memcpy(key_words, key, BLAKE3_KEY_LEN);
uint32x4_t h_vecs[8] = {
set1_128(key_words[0]), set1_128(key_words[1]), set1_128(key_words[2]),
set1_128(key_words[3]), set1_128(key_words[4]), set1_128(key_words[5]),
set1_128(key_words[6]), set1_128(key_words[7]),
};
uint32x4_t offset_low_vec, offset_high_vec;
load_offsets4(offset, offset_deltas, &offset_low_vec, &offset_high_vec);
uint8_t block_flags = flags | flags_start;
for (size_t block = 0; block < blocks; block++) {
if (block + 1 == blocks) {
block_flags |= flags_end;
}
uint32x4_t block_len_vec = set1_128(BLAKE3_BLOCK_LEN);
uint32x4_t block_flags_vec = set1_128(block_flags);
uint32x4_t msg_vecs[16];
transpose_msg_vecs4(inputs, block * BLAKE3_BLOCK_LEN, msg_vecs);
uint32x4_t v[16] = {
h_vecs[0], h_vecs[1], h_vecs[2], h_vecs[3],
h_vecs[4], h_vecs[5], h_vecs[6], h_vecs[7],
set1_128(IV[0]), set1_128(IV[1]), set1_128(IV[2]), set1_128(IV[3]),
offset_low_vec, offset_high_vec, block_len_vec, block_flags_vec,
};
round_fn4(v, msg_vecs, 0);
round_fn4(v, msg_vecs, 1);
round_fn4(v, msg_vecs, 2);
round_fn4(v, msg_vecs, 3);
round_fn4(v, msg_vecs, 4);
round_fn4(v, msg_vecs, 5);
round_fn4(v, msg_vecs, 6);
h_vecs[0] = xor_128(v[0], v[8]);
h_vecs[1] = xor_128(v[1], v[9]);
h_vecs[2] = xor_128(v[2], v[10]);
h_vecs[3] = xor_128(v[3], v[11]);
h_vecs[4] = xor_128(v[4], v[12]);
h_vecs[5] = xor_128(v[5], v[13]);
h_vecs[6] = xor_128(v[6], v[14]);
h_vecs[7] = xor_128(v[7], v[15]);
block_flags = flags;
}
transpose_vecs_128(&h_vecs[0]);
transpose_vecs_128(&h_vecs[4]);
// The first four vecs now contain the first half of each output, and the
// second four vecs contain the second half of each output.
storeu_128(h_vecs[0], &out[0 * sizeof(uint32x4_t)]);
storeu_128(h_vecs[4], &out[1 * sizeof(uint32x4_t)]);
storeu_128(h_vecs[1], &out[2 * sizeof(uint32x4_t)]);
storeu_128(h_vecs[5], &out[3 * sizeof(uint32x4_t)]);
storeu_128(h_vecs[2], &out[4 * sizeof(uint32x4_t)]);
storeu_128(h_vecs[6], &out[5 * sizeof(uint32x4_t)]);
storeu_128(h_vecs[3], &out[6 * sizeof(uint32x4_t)]);
storeu_128(h_vecs[7], &out[7 * sizeof(uint32x4_t)]);
}
/*
* ----------------------------------------------------------------------------
* hash_many_neon
* ----------------------------------------------------------------------------
*/
INLINE void hash_one_neon(const uint8_t *input, size_t blocks,
const uint8_t key[BLAKE3_KEY_LEN], uint64_t offset,
uint8_t flags, uint8_t flags_start, uint8_t flags_end,
uint8_t out[BLAKE3_OUT_LEN]) {
uint8_t cv[32];
memcpy(cv, key, BLAKE3_KEY_LEN);
uint8_t block_flags = flags | flags_start;
while (blocks > 0) {
if (blocks == 1) {
block_flags |= flags_end;
}
// TODO: Implement compress_neon. However note that according to
// https://github.com/BLAKE2/BLAKE2/commit/7965d3e6e1b4193438b8d3a656787587d2579227,
// compress_neon might not be any faster than compress_portable.
uint8_t out[64];
blake3_compress_portable(cv, input, BLAKE3_BLOCK_LEN, offset, block_flags,
out);
memcpy(cv, out, 32);
input = &input[BLAKE3_BLOCK_LEN];
blocks -= 1;
block_flags = flags;
}
memcpy(out, cv, BLAKE3_OUT_LEN);
}
void blake3_hash_many_neon(const uint8_t *const *inputs, size_t num_inputs,
size_t blocks, const uint8_t key[BLAKE3_KEY_LEN],
uint64_t offset, offset_deltas_t offset_deltas,
uint8_t flags, uint8_t flags_start,
uint8_t flags_end, uint8_t *out) {
while (num_inputs >= 4) {
blake3_hash4_neon(inputs, blocks, key, offset, offset_deltas, flags,
flags_start, flags_end, out);
inputs += 4;
num_inputs -= 4;
offset += offset_deltas[4];
out = &out[4 * BLAKE3_OUT_LEN];
}
while (num_inputs > 0) {
hash_one_neon(inputs[0], blocks, key, offset, flags, flags_start, flags_end,
out);
inputs += 1;
num_inputs -= 1;
offset += offset_deltas[1];
out = &out[BLAKE3_OUT_LEN];
}
}

154
src/c/blake3_portable.c Normal file
View File

@ -0,0 +1,154 @@
#include "blake3_impl.h"
#include <string.h>
INLINE uint32_t load32(const void *src) {
const uint8_t *p = (const uint8_t *)src;
return ((uint32_t)(p[0]) << 0) | ((uint32_t)(p[1]) << 8) |
((uint32_t)(p[2]) << 16) | ((uint32_t)(p[3]) << 24);
}
INLINE void store32(void *dst, uint32_t w) {
uint8_t *p = (uint8_t *)dst;
p[0] = (uint8_t)(w >> 0);
p[1] = (uint8_t)(w >> 8);
p[2] = (uint8_t)(w >> 16);
p[3] = (uint8_t)(w >> 24);
}
INLINE uint32_t rotr32(uint32_t w, uint32_t c) {
return (w >> c) | (w << (32 - c));
}
INLINE void g(uint32_t *state, size_t a, size_t b, size_t c, size_t d,
uint32_t x, uint32_t y) {
state[a] = state[a] + state[b] + x;
state[d] = rotr32(state[d] ^ state[a], 16);
state[c] = state[c] + state[d];
state[b] = rotr32(state[b] ^ state[c], 12);
state[a] = state[a] + state[b] + y;
state[d] = rotr32(state[d] ^ state[a], 8);
state[c] = state[c] + state[d];
state[b] = rotr32(state[b] ^ state[c], 7);
}
INLINE void round_fn(uint32_t *state, const uint32_t *msg, size_t round) {
// Select the message schedule based on the round.
const uint8_t *schedule = MSG_SCHEDULE[round];
// Mix the columns.
g(state, 0, 4, 8, 12, msg[schedule[0]], msg[schedule[1]]);
g(state, 1, 5, 9, 13, msg[schedule[2]], msg[schedule[3]]);
g(state, 2, 6, 10, 14, msg[schedule[4]], msg[schedule[5]]);
g(state, 3, 7, 11, 15, msg[schedule[6]], msg[schedule[7]]);
// Mix the rows.
g(state, 0, 5, 10, 15, msg[schedule[8]], msg[schedule[9]]);
g(state, 1, 6, 11, 12, msg[schedule[10]], msg[schedule[11]]);
g(state, 2, 7, 8, 13, msg[schedule[12]], msg[schedule[13]]);
g(state, 3, 4, 9, 14, msg[schedule[14]], msg[schedule[15]]);
}
void blake3_compress_portable(const uint8_t cv[BLAKE3_OUT_LEN],
const uint8_t block[BLAKE3_BLOCK_LEN],
uint8_t block_len, uint64_t offset, uint8_t flags,
uint8_t out[64]) {
uint32_t block_words[16];
block_words[0] = load32(block + 4 * 0);
block_words[1] = load32(block + 4 * 1);
block_words[2] = load32(block + 4 * 2);
block_words[3] = load32(block + 4 * 3);
block_words[4] = load32(block + 4 * 4);
block_words[5] = load32(block + 4 * 5);
block_words[6] = load32(block + 4 * 6);
block_words[7] = load32(block + 4 * 7);
block_words[8] = load32(block + 4 * 8);
block_words[9] = load32(block + 4 * 9);
block_words[10] = load32(block + 4 * 10);
block_words[11] = load32(block + 4 * 11);
block_words[12] = load32(block + 4 * 12);
block_words[13] = load32(block + 4 * 13);
block_words[14] = load32(block + 4 * 14);
block_words[15] = load32(block + 4 * 15);
uint32_t state[16] = {
load32(&cv[0 * 4]),
load32(&cv[1 * 4]),
load32(&cv[2 * 4]),
load32(&cv[3 * 4]),
load32(&cv[4 * 4]),
load32(&cv[5 * 4]),
load32(&cv[6 * 4]),
load32(&cv[7 * 4]),
IV[0],
IV[1],
IV[2],
IV[3],
offset_low(offset),
offset_high(offset),
(uint32_t)block_len,
(uint32_t)flags,
};
round_fn(&state[0], &block_words[0], 0);
round_fn(&state[0], &block_words[0], 1);
round_fn(&state[0], &block_words[0], 2);
round_fn(&state[0], &block_words[0], 3);
round_fn(&state[0], &block_words[0], 4);
round_fn(&state[0], &block_words[0], 5);
round_fn(&state[0], &block_words[0], 6);
store32(&out[0 * 4], state[0] ^ state[8]);
store32(&out[1 * 4], state[1] ^ state[9]);
store32(&out[2 * 4], state[2] ^ state[10]);
store32(&out[3 * 4], state[3] ^ state[11]);
store32(&out[4 * 4], state[4] ^ state[12]);
store32(&out[5 * 4], state[5] ^ state[13]);
store32(&out[6 * 4], state[6] ^ state[14]);
store32(&out[7 * 4], state[7] ^ state[15]);
store32(&out[8 * 4], state[8] ^ cv[0]);
store32(&out[9 * 4], state[9] ^ cv[1]);
store32(&out[10 * 4], state[10] ^ cv[2]);
store32(&out[11 * 4], state[11] ^ cv[3]);
store32(&out[12 * 4], state[12] ^ cv[4]);
store32(&out[13 * 4], state[13] ^ cv[5]);
store32(&out[14 * 4], state[14] ^ cv[6]);
store32(&out[15 * 4], state[15] ^ cv[7]);
}
INLINE void hash_one_portable(const uint8_t *input, size_t blocks,
const uint8_t key[BLAKE3_KEY_LEN],
uint64_t offset, uint8_t flags,
uint8_t flags_start, uint8_t flags_end,
uint8_t out[BLAKE3_OUT_LEN]) {
uint8_t cv[32];
memcpy(cv, key, 32);
uint8_t block_flags = flags | flags_start;
while (blocks > 0) {
if (blocks == 1) {
block_flags |= flags_end;
}
uint8_t out[64];
blake3_compress_portable(cv, input, BLAKE3_BLOCK_LEN, offset, block_flags,
out);
memcpy(cv, out, 32);
input = &input[BLAKE3_BLOCK_LEN];
blocks -= 1;
block_flags = flags;
}
memcpy(out, cv, 32);
}
void blake3_hash_many_portable(const uint8_t *const *inputs, size_t num_inputs,
size_t blocks, const uint8_t key[BLAKE3_KEY_LEN],
uint64_t offset, offset_deltas_t offset_deltas,
uint8_t flags, uint8_t flags_start,
uint8_t flags_end, uint8_t *out) {
while (num_inputs > 0) {
hash_one_portable(inputs[0], blocks, key, offset, flags, flags_start,
flags_end, out);
inputs += 1;
num_inputs -= 1;
offset += offset_deltas[1];
out = &out[BLAKE3_OUT_LEN];
}
}