1
0
Fork 0
mirror of https://github.com/BLAKE3-team/BLAKE3 synced 2024-04-16 21:33:54 +02:00

add the reference implementation

This commit is contained in:
Jack O'Connor 2019-12-02 17:03:07 -05:00
parent 4d0d2ccd99
commit 2030966062
3 changed files with 339 additions and 0 deletions

View File

@ -0,0 +1,8 @@
[package]
name = "reference_impl"
version = "0.0.0"
edition = "2018"
[lib]
name = "reference_impl"
path = "reference_impl.rs"

2
reference_impl/README.md Normal file
View File

@ -0,0 +1,2 @@
This implementation is a single file with no dependencies. It's designed
to be short and simple, and it is not optimized for performance.

View File

@ -0,0 +1,329 @@
use core::cmp::min;
use core::convert::TryInto;
const OUT_LEN: usize = 32;
const KEY_LEN: usize = 32;
const BLOCK_LEN: usize = 64;
const CHUNK_LEN: usize = 2048;
const ROUNDS: usize = 7;
const CHUNK_START: u32 = 1 << 0;
const CHUNK_END: u32 = 1 << 1;
const PARENT: u32 = 1 << 2;
const ROOT: u32 = 1 << 3;
const KEYED_HASH: u32 = 1 << 4;
const DERIVE_KEY: u32 = 1 << 5;
const IV: [u32; 8] = [
0x6A09E667, 0xBB67AE85, 0x3C6EF372, 0xA54FF53A, 0x510E527F, 0x9B05688C, 0x1F83D9AB, 0x5BE0CD19,
];
const MSG_SCHEDULE: [[usize; 16]; ROUNDS] = [
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15],
[14, 10, 4, 8, 9, 15, 13, 6, 1, 12, 0, 2, 11, 7, 5, 3],
[11, 8, 12, 0, 5, 2, 15, 13, 10, 14, 3, 6, 7, 1, 9, 4],
[7, 9, 3, 1, 13, 12, 11, 14, 2, 6, 5, 10, 4, 0, 15, 8],
[9, 0, 5, 7, 2, 4, 10, 15, 14, 1, 11, 12, 6, 8, 3, 13],
[2, 12, 6, 10, 0, 11, 8, 3, 4, 13, 7, 5, 15, 14, 1, 9],
[12, 5, 1, 15, 14, 13, 4, 10, 0, 7, 6, 3, 9, 2, 8, 11],
];
// The mixing function, G, which mixes either a column or a diagonal.
fn g(state: &mut [u32; 16], a: usize, b: usize, c: usize, d: usize, mx: u32, my: u32) {
state[a] = state[a].wrapping_add(state[b]).wrapping_add(mx);
state[d] = (state[d] ^ state[a]).rotate_right(16);
state[c] = state[c].wrapping_add(state[d]);
state[b] = (state[b] ^ state[c]).rotate_right(12);
state[a] = state[a].wrapping_add(state[b]).wrapping_add(my);
state[d] = (state[d] ^ state[a]).rotate_right(8);
state[c] = state[c].wrapping_add(state[d]);
state[b] = (state[b] ^ state[c]).rotate_right(7);
}
fn round(state: &mut [u32; 16], m: &[u32; 16], schedule: &[usize; 16]) {
// Mix the columns.
g(state, 0, 4, 8, 12, m[schedule[0]], m[schedule[1]]);
g(state, 1, 5, 9, 13, m[schedule[2]], m[schedule[3]]);
g(state, 2, 6, 10, 14, m[schedule[4]], m[schedule[5]]);
g(state, 3, 7, 11, 15, m[schedule[6]], m[schedule[7]]);
// Mix the diagonals.
g(state, 0, 5, 10, 15, m[schedule[8]], m[schedule[9]]);
g(state, 1, 6, 11, 12, m[schedule[10]], m[schedule[11]]);
g(state, 2, 7, 8, 13, m[schedule[12]], m[schedule[13]]);
g(state, 3, 4, 9, 14, m[schedule[14]], m[schedule[15]]);
}
fn compress(
chaining_value: &[u32; 8],
block_words: &[u32; 16],
offset: u64,
block_len: u32,
flags: u32,
) -> [u32; 16] {
let mut state = [
chaining_value[0],
chaining_value[1],
chaining_value[2],
chaining_value[3],
chaining_value[4],
chaining_value[5],
chaining_value[6],
chaining_value[7],
IV[0],
IV[1],
IV[2],
IV[3],
offset as u32,
(offset >> 32) as u32,
block_len,
flags,
];
for r in 0..ROUNDS {
round(&mut state, &block_words, &MSG_SCHEDULE[r]);
}
for i in 0..8 {
state[i] ^= state[i + 8];
state[i + 8] ^= chaining_value[i];
}
state
}
fn first_8_words(compression_output: [u32; 16]) -> [u32; 8] {
compression_output[0..8].try_into().unwrap()
}
fn words_from_litte_endian_bytes(bytes: &[u8], words: &mut [u32]) {
for (bytes_block, word) in bytes.chunks_exact(4).zip(words.iter_mut()) {
*word = u32::from_le_bytes(bytes_block.try_into().unwrap());
}
}
// Each chunk or parent node can produce either an 8-word chaining value or, by
// setting the ROOT flag, any number of final output bytes. The Output struct
// captures the state just prior to choosing between those two possibilities.
struct Output {
input_chaining_value: [u32; 8],
block_words: [u32; 16],
offset: u64,
block_len: u32,
flags: u32,
}
impl Output {
fn chaining_value(&self) -> [u32; 8] {
first_8_words(compress(
&self.input_chaining_value,
&self.block_words,
self.offset,
self.block_len,
self.flags,
))
}
fn root_output_bytes(&self, out_slice: &mut [u8]) {
let mut offset = 0;
for out_block in out_slice.chunks_mut(2 * OUT_LEN) {
let words = compress(
&self.input_chaining_value,
&self.block_words,
offset,
self.block_len,
self.flags | ROOT,
);
// The output length might not be a multiple of 4.
for (word, out_word) in words.iter().zip(out_block.chunks_mut(4)) {
out_word.copy_from_slice(&word.to_le_bytes()[..out_word.len()]);
}
offset += 2 * OUT_LEN as u64;
}
}
}
struct ChunkState {
chaining_value: [u32; 8],
offset: u64,
block: [u8; BLOCK_LEN],
block_len: u8,
blocks_compressed: u8,
flags: u32,
}
impl ChunkState {
fn new(key: &[u32; 8], offset: u64, flags: u32) -> Self {
Self {
chaining_value: *key,
offset,
block: [0; BLOCK_LEN],
block_len: 0,
blocks_compressed: 0,
flags,
}
}
fn len(&self) -> usize {
BLOCK_LEN * self.blocks_compressed as usize + self.block_len as usize
}
fn start_flag(&self) -> u32 {
if self.blocks_compressed == 0 {
CHUNK_START
} else {
0
}
}
fn update(&mut self, mut input: &[u8]) {
while !input.is_empty() {
if self.block_len as usize == BLOCK_LEN {
let mut block_words = [0; 16];
words_from_litte_endian_bytes(&self.block, &mut block_words);
self.chaining_value = first_8_words(compress(
&self.chaining_value,
&block_words,
self.offset,
BLOCK_LEN as u32,
self.flags | self.start_flag(),
));
self.blocks_compressed += 1;
self.block = [0; BLOCK_LEN];
self.block_len = 0;
}
let want = BLOCK_LEN - self.block_len as usize;
let take = min(want, input.len());
self.block[self.block_len as usize..][..take].copy_from_slice(&input[..take]);
self.block_len += take as u8;
input = &input[take..];
}
}
fn output(&self) -> Output {
let mut block_words = [0; 16];
words_from_litte_endian_bytes(&self.block, &mut block_words);
Output {
input_chaining_value: self.chaining_value,
block_words,
block_len: self.block_len as u32,
offset: self.offset,
flags: self.flags | self.start_flag() | CHUNK_END,
}
}
}
fn parent_output(
left_child_cv: &[u32; 8],
right_child_cv: &[u32; 8],
key: &[u32; 8],
flags: u32,
) -> Output {
let mut block_words = [0; 16];
block_words[..8].copy_from_slice(left_child_cv);
block_words[8..].copy_from_slice(right_child_cv);
Output {
input_chaining_value: *key,
block_words,
offset: 0, // Always 0 for parent nodes.
block_len: BLOCK_LEN as u32, // Always BLOCK_LEN (64) for parent nodes.
flags: PARENT | flags,
}
}
/// An incremental hasher that can accept any number of writes.
pub struct Hasher {
chunk_state: ChunkState,
key: [u32; 8],
subtree_stack: [[u32; 8]; 53], // Space for 53 subtree chaining values:
subtree_stack_len: u8, // 2^53 * CHUNK_LEN = 2^64
}
impl Hasher {
fn new_internal(key: &[u32; 8], flags: u32) -> Self {
Self {
chunk_state: ChunkState::new(key, 0, flags),
key: *key,
subtree_stack: [[0; 8]; 53],
subtree_stack_len: 0,
}
}
/// Construct a new `Hasher` for the default **hash** mode.
pub fn new() -> Self {
Self::new_internal(&IV, 0)
}
/// Construct a new `Hasher` for the **keyed_hash** mode.
pub fn new_keyed(key: &[u8; KEY_LEN]) -> Self {
let mut key_words = [0; 8];
words_from_litte_endian_bytes(key, &mut key_words);
Self::new_internal(&key_words, KEYED_HASH)
}
/// Construct a new `Hasher` for the **derive_key** mode.
pub fn new_derive_key(key: &[u8; KEY_LEN]) -> Self {
let mut key_words = [0; 8];
words_from_litte_endian_bytes(key, &mut key_words);
Self::new_internal(&key_words, DERIVE_KEY)
}
fn push_stack(&mut self, cv: &[u32; 8]) {
self.subtree_stack[self.subtree_stack_len as usize] = *cv;
self.subtree_stack_len += 1;
}
fn pop_stack(&mut self) -> [u32; 8] {
self.subtree_stack_len -= 1;
self.subtree_stack[self.subtree_stack_len as usize]
}
fn push_chunk_chaining_value(&mut self, mut cv: [u32; 8], total_bytes: u64) {
// The new chunk chaining value might complete some subtrees along the
// right edge of the growing tree. For each completed subtree, pop its
// left child CV off the stack and compress a new parent CV. After as
// many parent compressions as possible, push the new CV onto the
// stack. The final length of the stack will be the count of 1 bits in
// the total number of chunks or (equivalently) input bytes so far.
let final_stack_len = total_bytes.count_ones() as u8;
while self.subtree_stack_len >= final_stack_len {
cv = parent_output(&self.pop_stack(), &cv, &self.key, self.chunk_state.flags)
.chaining_value();
}
self.push_stack(&cv);
}
/// Add input to the hash state. This can be called any number of times.
pub fn update(&mut self, mut input: &[u8]) {
while !input.is_empty() {
if self.chunk_state.len() == CHUNK_LEN {
let chunk_cv = self.chunk_state.output().chaining_value();
let new_chunk_offset = self.chunk_state.offset + CHUNK_LEN as u64;
self.push_chunk_chaining_value(chunk_cv, new_chunk_offset);
self.chunk_state =
ChunkState::new(&self.key, new_chunk_offset, self.chunk_state.flags);
}
let want = CHUNK_LEN - self.chunk_state.len();
let take = min(want, input.len());
self.chunk_state.update(&input[..take]);
input = &input[take..];
}
}
/// Finalize the hash and write any number of output bytes.
pub fn finalize(&self, out_slice: &mut [u8]) {
// Starting with the Output from the current chunk, compute all the
// parent chaining values along the right edge of the tree, until we
// have the root Output.
let mut output = self.chunk_state.output();
let mut parent_nodes_remaining = self.subtree_stack_len as usize;
while parent_nodes_remaining > 0 {
parent_nodes_remaining -= 1;
output = parent_output(
&self.subtree_stack[parent_nodes_remaining],
&output.chaining_value(),
&self.key,
self.chunk_state.flags,
);
}
output.root_output_bytes(out_slice);
}
}