// // The Zig compiler provides "builtin" functions. You've already // gotten used to seeing an @import() at the top of every // Ziglings exercise. // // We've also seen @intCast() in "016_for2.zig", "058_quiz7.zig"; // and @enumToInt() in "036_enums2.zig". // // Builtins are special because they are intrinsic to the Zig // language itself (as opposed to being provided in the standard // library). They are also special because they can provide // functionality that is only possible with help from the // compiler, such as type introspection (the ability to examine // type properties from within a program). // // Zig currently contains 101 builtin functions. We're certainly // not going to cover them all, but we can look at some // interesting ones. // // Before we begin, know that many builtin functions have // parameters marked as "comptime". It's probably fairly clear // what we mean when we say that these parameters need to be // "known at compile time." But rest assured we'll be doing the // "comptime" subject real justice soon. // const print = @import("std").debug.print; pub fn main() void { // The first builtin, alphabetically, is: // // @addWithOverflow(comptime T: type, a: T, b: T, result: *T) bool // * 'T' will be the type of the other parameters. // * 'a' and 'b' are numbers of the type T. // * 'result' is a pointer to space you're providing of type T. // * The return value is true if the addition resulted in a // value over or under the capacity of type T. // // Let's try it with a tiny 4-bit integer size to make it clear: const a: u4 = 0b1101; const b: u4 = 0b0101; var my_result: u4 = undefined; var overflowed: bool = undefined; overflowed = @addWithOverflow(u4, a, b, &my_result); // // The print() below will produce: "1101 + 0101 = 0010 (true)". // Let's make sense of this answer by counting up from 1101: // // Overflowed? // 1101 + 1 = 1110 No. // 1110 + 1 = 1111 No. // 1111 + 1 = 0000 Yes! (Real answer is 10000) // 0000 + 1 = 0001 No. // 0001 + 1 = 0010 No. // // Also, check out our fancy formatting! b:0>4 means, "print // as a binary number, zero-pad right-aligned four digits." print("{b:0>4} + {b:0>4} = {b:0>4} ({})", .{ a, b, my_result, overflowed }); print(". Furthermore, ", .{}); // Here's a fun one: // // @bitReverse(comptime T: type, integer: T) T // * 'T' will be the type of the input and output. // * 'integer' is the value to reverse. // * The return value will be the same type with the // value's bits reversed! // // Now it's your turn. See if you can fix this attempt to use // this builtin to reverse the bits of a u8 integer. const input: u8 = 0b11110000; const tupni: u8 = @bitReverse(input); print("{b:0>8} backwards is {b:0>8}.\n", .{ input, tupni }); }