1
1
mirror of https://github.com/swaywm/sway synced 2024-11-18 14:53:52 +01:00
sway/sway/layout.c
Jarkko Oranen 924ed6464c Prevent "move next" and "move prev" commands from crashing
Fixes #1120

When the parent of a view is C_WORKSPACE and the movement direction
is either MOVE_PREV or MOVE_NEXT, the code would attempt to move the
views to the next output, but swayc_adjacent_output can't accept
non-directional movement commands and causes undefined behaviour and
a segfault.

If the code is simply skipped, we end up in an infinite loop.

Instead, we can allow containers whose parent is a C_WORKSPACE take the
path that handles MOVE_PREV and MOVE_NEXT, which behaves as you would
expect.

I'm not certain that this fix is entirely correct as the desired behaviour
of move_container is not very well defined, but it seems to work.
2017-03-19 16:58:39 +02:00

1771 lines
54 KiB
C

#define _XOPEN_SOURCE 500
#include <stdlib.h>
#include <stdbool.h>
#include <math.h>
#include <wlc/wlc.h>
#include "sway/extensions.h"
#include "sway/config.h"
#include "sway/container.h"
#include "sway/workspace.h"
#include "sway/focus.h"
#include "sway/output.h"
#include "sway/ipc-server.h"
#include "sway/border.h"
#include "sway/layout.h"
#include "list.h"
#include "log.h"
swayc_t root_container;
swayc_t *current_focus;
list_t *scratchpad;
int min_sane_h = 60;
int min_sane_w = 100;
void init_layout(void) {
root_container.id = 0; // normally assigned in new_swayc()
root_container.type = C_ROOT;
root_container.layout = L_NONE;
root_container.name = strdup("root");
root_container.children = create_list();
root_container.handle = -1;
root_container.visible = true;
current_focus = &root_container;
scratchpad = create_list();
}
int index_child(const swayc_t *child) {
swayc_t *parent = child->parent;
int i, len;
if (!child->is_floating) {
len = parent->children->length;
for (i = 0; i < len; ++i) {
if (parent->children->items[i] == child) {
break;
}
}
} else {
len = parent->floating->length;
for (i = 0; i < len; ++i) {
if (parent->floating->items[i] == child) {
break;
}
}
}
if (!sway_assert(i < len, "Stray container")) {
return -1;
}
return i;
}
void add_child(swayc_t *parent, swayc_t *child) {
sway_log(L_DEBUG, "Adding %p (%d, %fx%f) to %p (%d, %fx%f)", child, child->type,
child->width, child->height, parent, parent->type, parent->width, parent->height);
list_add(parent->children, child);
child->parent = parent;
// set focus for this container
if (!parent->focused) {
parent->focused = child;
}
if (parent->type == C_WORKSPACE && child->type == C_VIEW && (parent->workspace_layout == L_TABBED || parent->workspace_layout == L_STACKED)) {
child = new_container(child, parent->workspace_layout);
}
}
static double *get_height(swayc_t *cont) {
return &cont->height;
}
static double *get_width(swayc_t *cont) {
return &cont->width;
}
void insert_child(swayc_t *parent, swayc_t *child, int index) {
if (index > parent->children->length) {
index = parent->children->length;
}
if (index < 0) {
index = 0;
}
list_insert(parent->children, index, child);
child->parent = parent;
if (!parent->focused) {
parent->focused = child;
}
if (parent->type == C_WORKSPACE && child->type == C_VIEW && (parent->workspace_layout == L_TABBED || parent->workspace_layout == L_STACKED)) {
child = new_container(child, parent->workspace_layout);
}
if (is_auto_layout(parent->layout)) {
/* go through each group, adjust the size of the first child of each group */
double *(*get_maj_dim)(swayc_t *cont);
double *(*get_min_dim)(swayc_t *cont);
if (parent->layout == L_AUTO_LEFT || parent->layout == L_AUTO_RIGHT) {
get_maj_dim = get_width;
get_min_dim = get_height;
} else {
get_maj_dim = get_height;
get_min_dim = get_width;
}
for (int i = index; i < parent->children->length;) {
int start = auto_group_start_index(parent, i);
int end = auto_group_end_index(parent, i);
swayc_t *first = parent->children->items[start];
if (start + 1 < parent->children->length) {
/* preserve the group's dimension along major axis */
*get_maj_dim(first) = *get_maj_dim(parent->children->items[start + 1]);
} else {
/* new group, let the apply_layout handle it */
first->height = first->width = 0;
break;
}
double remaining = *get_min_dim(parent);
for (int j = end - 1; j > start; --j) {
swayc_t *sibling = parent->children->items[j];
if (sibling == child) {
/* the inserted child won't yet have its minor
dimension set */
remaining -= *get_min_dim(parent) / (end - start);
} else {
remaining -= *get_min_dim(sibling);
}
}
*get_min_dim(first) = remaining;
i = end;
}
}
}
void add_floating(swayc_t *ws, swayc_t *child) {
sway_log(L_DEBUG, "Adding %p (%d, %fx%f) to %p (%d, %fx%f)", child, child->type,
child->width, child->height, ws, ws->type, ws->width, ws->height);
if (!sway_assert(ws->type == C_WORKSPACE, "Must be of workspace type")) {
return;
}
list_add(ws->floating, child);
child->parent = ws;
child->is_floating = true;
if (!ws->focused) {
ws->focused = child;
}
ipc_event_window(child, "floating");
}
swayc_t *add_sibling(swayc_t *fixed, swayc_t *active) {
swayc_t *parent = fixed->parent;
if (fixed->is_floating) {
if (active->is_floating) {
int i = index_child(fixed);
list_insert(parent->floating, i + 1, active);
} else {
list_add(parent->children, active);
}
} else {
if (active->is_floating) {
list_add(parent->floating, active);
} else {
int i = index_child(fixed);
if (is_auto_layout(parent->layout)) {
list_add(parent->children, active);
} else {
list_insert(parent->children, i + 1, active);
}
}
}
active->parent = parent;
// focus new child
parent->focused = active;
return active->parent;
}
swayc_t *replace_child(swayc_t *child, swayc_t *new_child) {
swayc_t *parent = child->parent;
if (parent == NULL) {
return NULL;
}
int i = index_child(child);
if (child->is_floating) {
parent->floating->items[i] = new_child;
} else {
parent->children->items[i] = new_child;
}
// Set parent and focus for new_child
new_child->parent = child->parent;
if (child->parent->focused == child) {
child->parent->focused = new_child;
}
child->parent = NULL;
// Set geometry for new child
new_child->x = child->x;
new_child->y = child->y;
new_child->width = child->width;
new_child->height = child->height;
// reset geometry for child
child->width = 0;
child->height = 0;
// deactivate child
if (child->type == C_VIEW) {
wlc_view_set_state(child->handle, WLC_BIT_ACTIVATED, false);
}
return parent;
}
swayc_t *remove_child(swayc_t *child) {
int i;
swayc_t *parent = child->parent;
if (child->is_floating) {
// Special case for floating views
for (i = 0; i < parent->floating->length; ++i) {
if (parent->floating->items[i] == child) {
list_del(parent->floating, i);
break;
}
}
i = 0;
} else {
for (i = 0; i < parent->children->length; ++i) {
if (parent->children->items[i] == child) {
list_del(parent->children, i);
break;
}
}
if (is_auto_layout(parent->layout) && parent->children->length) {
/* go through each group, adjust the size of the last child of each group */
double *(*get_maj_dim)(swayc_t *cont);
double *(*get_min_dim)(swayc_t *cont);
if (parent->layout == L_AUTO_LEFT || parent->layout == L_AUTO_RIGHT) {
get_maj_dim = get_width;
get_min_dim = get_height;
} else {
get_maj_dim = get_height;
get_min_dim = get_width;
}
for (int j = parent->children->length - 1; j >= i;) {
int start = auto_group_start_index(parent, j);
int end = auto_group_end_index(parent, j);
swayc_t *first = parent->children->items[start];
if (i == start) {
/* removed element was first child in the current group,
use its size along the major axis */
*get_maj_dim(first) = *get_maj_dim(child);
} else if (start > i) {
/* preserve the group's dimension along major axis */
*get_maj_dim(first) = *get_maj_dim(parent->children->items[start - 1]);
}
if (end != parent->children->length) {
double remaining = *get_min_dim(parent);
for (int k = start; k < end - 1; ++k) {
swayc_t *sibling = parent->children->items[k];
remaining -= *get_min_dim(sibling);
}
/* last element of the group gets remaining size, elements
that don't change groups keep their ratio */
*get_min_dim((swayc_t *) parent->children->items[end - 1]) = remaining;
} /* else last group, let apply_layout handle it */
j = start - 1;
}
}
}
// Set focused to new container
if (parent->focused == child) {
if (parent->children->length > 0) {
parent->focused = parent->children->items[i ? i-1:0];
} else if (parent->floating && parent->floating->length) {
parent->focused = parent->floating->items[parent->floating->length - 1];
} else {
parent->focused = NULL;
}
}
child->parent = NULL;
// deactivate view
if (child->type == C_VIEW) {
wlc_view_set_state(child->handle, WLC_BIT_ACTIVATED, false);
}
return parent;
}
void swap_container(swayc_t *a, swayc_t *b) {
if (!sway_assert(a&&b, "parameters must be non null") ||
!sway_assert(a->parent && b->parent, "containers must have parents")) {
return;
}
size_t a_index = index_child(a);
size_t b_index = index_child(b);
swayc_t *a_parent = a->parent;
swayc_t *b_parent = b->parent;
// Swap the pointers
if (a->is_floating) {
a_parent->floating->items[a_index] = b;
} else {
a_parent->children->items[a_index] = b;
}
if (b->is_floating) {
b_parent->floating->items[b_index] = a;
} else {
b_parent->children->items[b_index] = a;
}
a->parent = b_parent;
b->parent = a_parent;
if (a_parent->focused == a) {
a_parent->focused = b;
}
// don't want to double switch
if (b_parent->focused == b && a_parent != b_parent) {
b_parent->focused = a;
}
}
void swap_geometry(swayc_t *a, swayc_t *b) {
double x = a->x;
double y = a->y;
double w = a->width;
double h = a->height;
a->x = b->x;
a->y = b->y;
a->width = b->width;
a->height = b->height;
b->x = x;
b->y = y;
b->width = w;
b->height = h;
}
static void swap_children(swayc_t *container, int a, int b) {
if (a >= 0 && b >= 0 && a < container->children->length
&& b < container->children->length
&& a != b) {
swayc_t *pa = (swayc_t *)container->children->items[a];
swayc_t *pb = (swayc_t *)container->children->items[b];
container->children->items[a] = container->children->items[b];
container->children->items[b] = pa;
if (is_auto_layout(container->layout)) {
size_t ga = auto_group_index(container, a);
size_t gb = auto_group_index(container, b);
if (ga != gb) {
swap_geometry(pa, pb);
}
}
}
}
void move_container(swayc_t *container, enum movement_direction dir, int move_amt) {
enum swayc_layouts layout = L_NONE;
swayc_t *parent = container->parent;
if (container->is_floating) {
swayc_t *output = swayc_parent_by_type(container, C_OUTPUT);
switch(dir) {
case MOVE_LEFT:
container->x = MAX(0, container->x - move_amt);
break;
case MOVE_RIGHT:
container->x = MIN(output->width - container->width, container->x + move_amt);
break;
case MOVE_UP:
container->y = MAX(0, container->y - move_amt);
break;
case MOVE_DOWN:
container->y = MIN(output->height - container->height, container->y + move_amt);
break;
default:
break;
}
update_geometry(container);
return;
}
if (container->type != C_VIEW && container->type != C_CONTAINER) {
return;
}
if (dir == MOVE_UP || dir == MOVE_DOWN) {
layout = L_VERT;
} else if (dir == MOVE_LEFT || dir == MOVE_RIGHT) {
layout = L_HORIZ;
} else if (dir == MOVE_FIRST) {
// swap first child in auto layout with currently focused child
if (is_auto_layout(parent->layout)) {
int focused_idx = index_child(container);
swayc_t *first = parent->children->items[0];
if (focused_idx > 0) {
list_swap(parent->children, 0, focused_idx);
swap_geometry(first, container);
}
arrange_windows(parent->parent, -1, -1);
ipc_event_window(container, "move");
set_focused_container_for(parent->parent, container);
}
return;
} else if (! (dir == MOVE_NEXT || dir == MOVE_PREV)) {
return;
}
swayc_t *child = container;
bool ascended = false;
// View is wrapped in intermediate container which is needed for displaying
// the titlebar. Moving only the view outside of its parent container would just
// wrap it again under worspace. There would effectively be no movement,
// just a change of wrapping container.
if (child->type == C_VIEW &&
parent->type == C_CONTAINER &&
parent->children->length == 1 &&
parent->parent->type == C_WORKSPACE) {
child = parent;
parent = parent->parent;
}
while (true) {
sway_log(L_DEBUG, "container:%p, parent:%p, child %p,",
container,parent,child);
if (parent->layout == layout
|| (layout == L_NONE && (parent->type == C_CONTAINER || parent->type == C_WORKSPACE)) /* accept any layout for next/prev direction */
|| (parent->layout == L_TABBED && layout == L_HORIZ)
|| (parent->layout == L_STACKED && layout == L_VERT)
|| is_auto_layout(parent->layout)) {
int diff;
// If it has ascended (parent has moved up), no container is removed
// so insert it at index, or index+1.
// if it has not, the moved container is removed, so it needs to be
// inserted at index-1, or index+1
if (ascended) {
diff = dir == MOVE_LEFT || dir == MOVE_UP || dir == MOVE_PREV ? 0 : 1;
} else {
diff = dir == MOVE_LEFT || dir == MOVE_UP || dir == MOVE_PREV ? -1 : 1;
}
int idx = index_child(child);
int desired = idx + diff;
if (dir == MOVE_NEXT || dir == MOVE_PREV) {
// Next/Prev always wrap.
if (desired < 0) {
desired += parent->children->length;
} else if (desired >= parent->children->length) {
desired = 0;
}
}
// when it has ascended, legal insertion position is 0:len
// when it has not, legal insertion position is 0:len-1
if (desired >= 0 && desired - ascended < parent->children->length) {
if (!ascended) {
child = parent->children->items[desired];
// Move container into sibling container
if (child->type == C_CONTAINER) {
parent = child;
// Insert it in first/last if matching layout, otherwise
// insert it next to focused container
if (parent->layout == layout
|| (parent->layout == L_TABBED && layout == L_HORIZ)
|| (parent->layout == L_STACKED && layout == L_VERT)
|| is_auto_layout(parent->layout)) {
desired = (diff < 0) * parent->children->length;
} else {
desired = index_child(child->focused) + 1;
}
//reset geometry
container->width = container->height = 0;
}
}
if (container->parent == parent) {
swap_children(parent, idx, desired);
} else {
swayc_t *old_parent = remove_child(container);
insert_child(parent, container, desired);
destroy_container(old_parent);
sway_log(L_DEBUG,"Moving to %p %d", parent, desired);
}
break;
}
}
// Change parent layout if we need to
if (parent->children->length == 1 && parent->layout != layout && layout != L_NONE) {
/* swayc_change_layout(parent, layout); */
parent->layout = layout;
continue;
}
if (parent->type == C_WORKSPACE) {
// If moving to an adjacent output we need a starting position (since this
// output might border to multiple outputs).
struct wlc_point abs_pos;
get_absolute_center_position(container, &abs_pos);
swayc_t *output = swayc_adjacent_output(parent->parent, dir, &abs_pos, true);
if (output) {
sway_log(L_DEBUG, "Moving between outputs");
swayc_t *old_parent = remove_child(container);
destroy_container(old_parent);
swayc_t *dest = output->focused;
switch (dir) {
case MOVE_LEFT:
case MOVE_UP:
// reset container geometry
container->width = container->height = 0;
add_child(dest, container);
break;
case MOVE_RIGHT:
case MOVE_DOWN:
// reset container geometry
container->width = container->height = 0;
insert_child(dest, container, 0);
break;
default:
break;
}
// arrange new workspace
arrange_windows(dest, -1, -1);
set_focused_container(container);
break;
}
// We simply cannot move any further.
if (parent->layout == layout) {
break;
}
// Create container around workspace to insert child into
parent = new_container(parent, layout);
// Previous line set the resulting container's layout to
// workspace_layout. It should have been just layout.
parent->layout = parent->parent->layout;
}
ascended = true;
child = parent;
parent = child->parent;
}
arrange_windows(parent->parent, -1, -1);
ipc_event_window(container, "move");
set_focused_container_for(parent->parent, container);
}
void move_container_to(swayc_t* container, swayc_t* destination) {
if (container == destination || swayc_is_parent_of(container, destination)) {
return;
}
swayc_t *parent = remove_child(container);
// Send to new destination
if (container->is_floating) {
swayc_t *ws = swayc_active_workspace_for(destination);
add_floating(ws, container);
// If the workspace only has one child after adding one, it
// means that the workspace was just initialized.
if (ws->children->length + ws->floating->length == 1) {
ipc_event_workspace(NULL, ws, "init");
}
} else if (destination->type == C_WORKSPACE) {
// reset container geometry
container->width = container->height = 0;
add_child(destination, container);
// If the workspace only has one child after adding one, it
// means that the workspace was just initialized.
if (destination->children->length + destination->floating->length == 1) {
ipc_event_workspace(NULL, destination, "init");
}
} else {
// reset container geometry
container->width = container->height = 0;
add_sibling(destination, container);
}
// Destroy old container if we need to
parent = destroy_container(parent);
// Refocus
swayc_t *op1 = swayc_parent_by_type(destination, C_OUTPUT);
swayc_t *op2 = swayc_parent_by_type(parent, C_OUTPUT);
set_focused_container(get_focused_view(op1));
arrange_windows(op1, -1, -1);
update_visibility(op1);
if (op1 != op2) {
set_focused_container(get_focused_view(op2));
arrange_windows(op2, -1, -1);
update_visibility(op2);
}
}
void move_workspace_to(swayc_t* workspace, swayc_t* destination) {
if (workspace == destination || swayc_is_parent_of(workspace, destination)) {
return;
}
swayc_t *src_op = remove_child(workspace);
// reset container geometry
workspace->width = workspace->height = 0;
add_child(destination, workspace);
sort_workspaces(destination);
// Refocus destination (change to new workspace)
set_focused_container(get_focused_view(workspace));
arrange_windows(destination, -1, -1);
update_visibility(destination);
// make sure source output has a workspace
if (src_op->children->length == 0) {
char *ws_name = workspace_next_name(src_op->name);
swayc_t *ws = new_workspace(src_op, ws_name);
ws->is_focused = true;
free(ws_name);
}
set_focused_container(get_focused_view(src_op));
update_visibility(src_op);
}
static void adjust_border_geometry(swayc_t *c, struct wlc_geometry *g,
const struct wlc_size *res, int left, int right, int top, int bottom) {
g->size.w += left + right;
if (g->origin.x - left < 0) {
g->size.w += g->origin.x - left;
} else if (g->origin.x + g->size.w - right > res->w) {
g->size.w = res->w - g->origin.x + right;
}
g->size.h += top + bottom;
if (g->origin.y - top < 0) {
g->size.h += g->origin.y - top;
} else if (g->origin.y + g->size.h - top > res->h) {
g->size.h = res->h - g->origin.y + top;
}
g->origin.x = MIN((uint32_t)MAX(g->origin.x - left, 0), res->w);
g->origin.y = MIN((uint32_t)MAX(g->origin.y - top, 0), res->h);
}
static void update_border_geometry_floating(swayc_t *c, struct wlc_geometry *geometry) {
struct wlc_geometry g = *geometry;
c->actual_geometry = g;
swayc_t *output = swayc_parent_by_type(c, C_OUTPUT);
struct wlc_size res;
output_get_scaled_size(output->handle, &res);
switch (c->border_type) {
case B_NONE:
break;
case B_PIXEL:
adjust_border_geometry(c, &g, &res, c->border_thickness,
c->border_thickness, c->border_thickness, c->border_thickness);
break;
case B_NORMAL:
{
int title_bar_height = config->font_height + 4; // borders + padding
adjust_border_geometry(c, &g, &res, c->border_thickness,
c->border_thickness, title_bar_height, c->border_thickness);
struct wlc_geometry title_bar = {
.origin = {
.x = c->actual_geometry.origin.x - c->border_thickness,
.y = c->actual_geometry.origin.y - title_bar_height
},
.size = {
.w = c->actual_geometry.size.w + (2 * c->border_thickness),
.h = title_bar_height
}
};
c->title_bar_geometry = title_bar;
break;
}
}
c->border_geometry = g;
*geometry = c->actual_geometry;
update_container_border(c);
}
void update_layout_geometry(swayc_t *parent, enum swayc_layouts prev_layout) {
switch (parent->layout) {
case L_TABBED:
case L_STACKED:
if (prev_layout != L_TABBED && prev_layout != L_STACKED) {
// cache current geometry for all non-float children
int i;
for (i = 0; i < parent->children->length; ++i) {
swayc_t *child = parent->children->items[i];
child->cached_geometry.origin.x = child->x;
child->cached_geometry.origin.y = child->y;
child->cached_geometry.size.w = child->width;
child->cached_geometry.size.h = child->height;
}
}
break;
default:
if (prev_layout == L_TABBED || prev_layout == L_STACKED) {
// recover cached geometry for all non-float children
int i;
for (i = 0; i < parent->children->length; ++i) {
swayc_t *child = parent->children->items[i];
// only recoverer cached geometry if non-zero
if (!wlc_geometry_equals(&child->cached_geometry, &wlc_geometry_zero)) {
child->x = child->cached_geometry.origin.x;
child->y = child->cached_geometry.origin.y;
child->width = child->cached_geometry.size.w;
child->height = child->cached_geometry.size.h;
}
}
}
break;
}
}
static int update_gap_geometry(swayc_t *container, struct wlc_geometry *g) {
swayc_t *ws = swayc_parent_by_type(container, C_WORKSPACE);
swayc_t *op = ws->parent;
int gap = container->is_floating ? 0 : swayc_gap(container);
if (gap % 2 != 0) {
// because gaps are implemented as "half sized margins" it's currently
// not possible to align views properly with odd sized gaps.
gap -= 1;
}
g->origin.x = container->x + gap/2 < op->width ? container->x + gap/2 : op->width-1;
g->origin.y = container->y + gap/2 < op->height ? container->y + gap/2 : op->height-1;
g->size.w = container->width > gap ? container->width - gap : 1;
g->size.h = container->height > gap ? container->height - gap : 1;
if ((!config->edge_gaps && gap > 0) || (config->smart_gaps && ws->children->length == 1)) {
// Remove gap against the workspace edges. Because a pixel is not
// divisable, depending on gap size and the number of siblings our view
// might be at the workspace edge without being exactly so (thus test
// with gap, and align correctly).
if (container->x - gap <= ws->x) {
g->origin.x = ws->x;
g->size.w = container->width - gap/2;
}
if (container->y - gap <= ws->y) {
g->origin.y = ws->y;
g->size.h = container->height - gap/2;
}
if (container->x + container->width + gap >= ws->x + ws->width) {
g->size.w = ws->x + ws->width - g->origin.x;
}
if (container->y + container->height + gap >= ws->y + ws->height) {
g->size.h = ws->y + ws->height - g->origin.y;
}
}
return gap;
}
void update_geometry(swayc_t *container) {
if (container->type != C_VIEW && container->type != C_CONTAINER) {
return;
}
swayc_t *workspace = swayc_parent_by_type(container, C_WORKSPACE);
swayc_t *op = workspace->parent;
swayc_t *parent = container->parent;
struct wlc_geometry geometry = {
.origin = {
.x = container->x < op->width ? container->x : op->width-1,
.y = container->y < op->height ? container->y : op->height-1
},
.size = {
.w = container->width,
.h = container->height,
}
};
int gap = 0;
// apply inner gaps to non-tabbed/stacked containers
swayc_t *p = swayc_tabbed_stacked_ancestor(container);
if (p == NULL) {
gap = update_gap_geometry(container, &geometry);
}
swayc_t *output = swayc_parent_by_type(container, C_OUTPUT);
struct wlc_size size;
output_get_scaled_size(output->handle, &size);
if (swayc_is_fullscreen(container)) {
geometry.origin.x = 0;
geometry.origin.y = 0;
geometry.size.w = size.w;
geometry.size.h = size.h;
if (op->focused == workspace) {
wlc_view_bring_to_front(container->handle);
}
container->border_geometry = wlc_geometry_zero;
container->title_bar_geometry = wlc_geometry_zero;
border_clear(container->border);
} else if (container->is_floating) { // allocate border for floating window
update_border_geometry_floating(container, &geometry);
} else if (!container->is_floating) { // allocate border for titled window
container->border_geometry = geometry;
int border_top = container->border_thickness;
int border_bottom = container->border_thickness;
int border_left = container->border_thickness;
int border_right = container->border_thickness;
// handle hide_edge_borders
if (config->hide_edge_borders != E_NONE && (gap <= 0 || (config->smart_gaps && workspace->children->length == 1))) {
if (config->hide_edge_borders == E_VERTICAL || config->hide_edge_borders == E_BOTH) {
if (geometry.origin.x == workspace->x) {
border_left = 0;
}
if (geometry.origin.x + geometry.size.w == workspace->x + workspace->width) {
border_right = 0;
}
}
if (config->hide_edge_borders == E_HORIZONTAL || config->hide_edge_borders == E_BOTH) {
if (geometry.origin.y == workspace->y || should_hide_top_border(container, geometry.origin.y)) {
border_top = 0;
}
if (geometry.origin.y + geometry.size.h == workspace->y + workspace->height) {
border_bottom = 0;
}
}
if (config->hide_edge_borders == E_SMART && workspace->children->length == 1) {
border_top = 0;
border_bottom = 0;
border_left = 0;
border_right = 0;
}
}
int title_bar_height = config->font_height + 4; //borders + padding
if (parent->layout == L_TABBED && parent->children->length > 1) {
int i, x = 0, w, l, r;
l = parent->children->length;
w = geometry.size.w / l;
r = geometry.size.w % l;
for (i = 0; i < parent->children->length; ++i) {
swayc_t *view = parent->children->items[i];
if (view == container) {
x = w * i;
if (i == l - 1) {
w += r;
}
break;
}
}
struct wlc_geometry title_bar = {
.origin = {
.x = container->border_geometry.origin.x + x,
.y = container->border_geometry.origin.y
},
.size = {
.w = w,
.h = title_bar_height
}
};
geometry.origin.x += border_left;
geometry.origin.y += title_bar.size.h;
geometry.size.w -= (border_left + border_right);
geometry.size.h -= (border_bottom + title_bar.size.h);
container->title_bar_geometry = title_bar;
} else if (parent->layout == L_STACKED && parent->children->length > 1) {
int i, y = 0;
for (i = 0; i < parent->children->length; ++i) {
swayc_t *view = parent->children->items[i];
if (view == container) {
y = title_bar_height * i;
}
}
struct wlc_geometry title_bar = {
.origin = {
.x = container->border_geometry.origin.x,
.y = container->border_geometry.origin.y + y
},
.size = {
.w = container->border_geometry.size.w,
.h = title_bar_height
}
};
title_bar_height = title_bar_height * parent->children->length;
geometry.origin.x += border_left;
geometry.origin.y += title_bar_height;
geometry.size.w -= (border_left + border_right);
geometry.size.h -= (border_bottom + title_bar_height);
container->title_bar_geometry = title_bar;
} else {
switch (container->border_type) {
case B_NONE:
break;
case B_PIXEL:
geometry.origin.x += border_left;
geometry.origin.y += border_top;
geometry.size.w -= (border_left + border_right);
geometry.size.h -= (border_top + border_bottom);
break;
case B_NORMAL:
{
struct wlc_geometry title_bar = {
.origin = {
.x = container->border_geometry.origin.x,
.y = container->border_geometry.origin.y
},
.size = {
.w = container->border_geometry.size.w,
.h = title_bar_height
}
};
geometry.origin.x += border_left;
geometry.origin.y += title_bar.size.h;
geometry.size.w -= (border_left + border_right);
geometry.size.h -= (border_bottom + title_bar.size.h);
container->title_bar_geometry = title_bar;
break;
}
}
}
container->actual_geometry = geometry;
if (container->type == C_VIEW) {
update_container_border(container);
}
}
if (container->type == C_VIEW) {
wlc_view_set_geometry(container->handle, 0, &geometry);
}
}
/**
* Layout application prototypes
*/
static void apply_horiz_layout(swayc_t *container, const double x,
const double y, const double width,
const double height, const int start,
const int end);
static void apply_vert_layout(swayc_t *container, const double x,
const double y, const double width,
const double height, const int start,
const int end);
static void apply_tabbed_or_stacked_layout(swayc_t *container, double x,
double y, double width,
double height);
static void apply_auto_layout(swayc_t *container, const double x, const double y,
const double width, const double height,
enum swayc_layouts group_layout,
bool master_first);
static void arrange_windows_r(swayc_t *container, double width, double height) {
int i;
if (width == -1 || height == -1) {
swayc_log(L_DEBUG, container, "Arranging layout for %p", container);
width = container->width;
height = container->height;
}
// pixels are indivisible. if we don't round the pixels, then the view
// calculations will be off (e.g. 50.5 + 50.5 = 101, but in reality it's
// 50 + 50 = 100). doing it here cascades properly to all width/height/x/y.
width = floor(width);
height = floor(height);
sway_log(L_DEBUG, "Arranging layout for %p %s %fx%f+%f,%f", container,
container->name, container->width, container->height, container->x,
container->y);
double x = 0, y = 0;
switch (container->type) {
case C_ROOT:
for (i = 0; i < container->children->length; ++i) {
swayc_t *output = container->children->items[i];
sway_log(L_DEBUG, "Arranging output '%s' at %f,%f", output->name, output->x, output->y);
arrange_windows_r(output, -1, -1);
}
return;
case C_OUTPUT:
{
struct wlc_size resolution;
output_get_scaled_size(container->handle, &resolution);
width = resolution.w; height = resolution.h;
// output must have correct size due to e.g. seamless mouse,
// but a workspace might be smaller depending on panels.
container->width = width;
container->height = height;
}
// arrange all workspaces:
for (i = 0; i < container->children->length; ++i) {
swayc_t *child = container->children->items[i];
arrange_windows_r(child, -1, -1);
}
// Bring all unmanaged views to the front
for (i = 0; i < container->unmanaged->length; ++i) {
wlc_handle *handle = container->unmanaged->items[i];
wlc_view_bring_to_front(*handle);
}
return;
case C_WORKSPACE:
{
swayc_t *output = swayc_parent_by_type(container, C_OUTPUT);
width = output->width, height = output->height;
for (i = 0; i < desktop_shell.panels->length; ++i) {
struct panel_config *config = desktop_shell.panels->items[i];
if (config->output == output->handle) {
struct wlc_size size = *wlc_surface_get_size(config->surface);
sway_log(L_DEBUG, "-> Found panel for this workspace: %ux%u, position: %u", size.w, size.h, config->panel_position);
switch (config->panel_position) {
case DESKTOP_SHELL_PANEL_POSITION_TOP:
y += size.h; height -= size.h;
break;
case DESKTOP_SHELL_PANEL_POSITION_BOTTOM:
height -= size.h;
break;
case DESKTOP_SHELL_PANEL_POSITION_LEFT:
x += size.w; width -= size.w;
break;
case DESKTOP_SHELL_PANEL_POSITION_RIGHT:
width -= size.w;
break;
}
}
}
int gap = swayc_gap(container);
x = container->x = x + gap;
y = container->y = y + gap;
width = container->width = width - gap * 2;
height = container->height = height - gap * 2;
sway_log(L_DEBUG, "Arranging workspace '%s' at %f, %f", container->name, container->x, container->y);
}
// children are properly handled below
break;
case C_VIEW:
{
container->width = width;
container->height = height;
update_geometry(container);
sway_log(L_DEBUG, "Set view to %.f x %.f @ %.f, %.f", container->width,
container->height, container->x, container->y);
}
return;
default:
container->width = width;
container->height = height;
x = container->x;
y = container->y;
// add gaps to top level tapped/stacked container
if (container->parent->type == C_WORKSPACE &&
(container->layout == L_TABBED || container->layout == L_STACKED)) {
update_geometry(container);
width = container->border_geometry.size.w;
height = container->border_geometry.size.h;
x = container->border_geometry.origin.x;
y = container->border_geometry.origin.y;
}
// update container size if it's a direct child in a tabbed/stacked layout
// if parent is a workspace, its actual_geometry won't be initialized
if (swayc_tabbed_stacked_parent(container) != NULL &&
container->parent->type != C_WORKSPACE) {
// Use parent actual_geometry as a base for calculating
// container geometry
container->width = container->parent->actual_geometry.size.w;
container->height = container->parent->actual_geometry.size.h;
container->x = container->parent->actual_geometry.origin.x;
container->y = container->parent->actual_geometry.origin.y;
update_geometry(container);
width = container->width = container->actual_geometry.size.w;
height = container->height = container->actual_geometry.size.h;
x = container->x = container->actual_geometry.origin.x;
y = container->y = container->actual_geometry.origin.y;
}
break;
}
switch (container->layout) {
case L_HORIZ:
default:
apply_horiz_layout(container, x, y, width, height, 0,
container->children->length);
break;
case L_VERT:
apply_vert_layout(container, x, y, width, height, 0,
container->children->length);
break;
case L_TABBED:
case L_STACKED:
apply_tabbed_or_stacked_layout(container, x, y, width, height);
break;
case L_AUTO_LEFT:
apply_auto_layout(container, x, y, width, height, L_VERT, true);
break;
case L_AUTO_RIGHT:
apply_auto_layout(container, x, y, width, height, L_VERT, false);
break;
case L_AUTO_TOP:
apply_auto_layout(container, x, y, width, height, L_HORIZ, true);
break;
case L_AUTO_BOTTOM:
apply_auto_layout(container, x, y, width, height, L_HORIZ, false);
break;
}
// Arrage floating layouts for workspaces last
if (container->type == C_WORKSPACE) {
for (int i = 0; i < container->floating->length; ++i) {
swayc_t *view = container->floating->items[i];
if (view->type == C_VIEW) {
update_geometry(view);
sway_log(L_DEBUG, "Set floating view to %.f x %.f @ %.f, %.f",
view->width, view->height, view->x, view->y);
if (swayc_is_fullscreen(view)) {
wlc_view_bring_to_front(view->handle);
} else if (!container->focused ||
!swayc_is_fullscreen(container->focused)) {
wlc_view_bring_to_front(view->handle);
}
}
}
}
}
void apply_horiz_layout(swayc_t *container, const double x, const double y,
const double width, const double height,
const int start, const int end) {
double scale = 0;
// Calculate total width
for (int i = start; i < end; ++i) {
double *old_width = &((swayc_t *)container->children->items[i])->width;
if (*old_width <= 0) {
if (end - start > 1) {
*old_width = width / (end - start - 1);
} else {
*old_width = width;
}
}
scale += *old_width;
}
scale = width / scale;
// Resize windows
double child_x = x;
if (scale > 0.1) {
sway_log(L_DEBUG, "Arranging %p horizontally", container);
swayc_t *focused = NULL;
for (int i = start; i < end; ++i) {
swayc_t *child = container->children->items[i];
sway_log(L_DEBUG,
"Calculating arrangement for %p:%d (will scale %f by %f)", child,
child->type, width, scale);
child->x = child_x;
child->y = y;
if (child == container->focused) {
focused = child;
}
if (i == end - 1) {
double remaining_width = x + width - child_x;
arrange_windows_r(child, remaining_width, height);
} else {
arrange_windows_r(child, child->width * scale, height);
}
child_x += child->width;
}
// update focused view border last because it may
// depend on the title bar geometry of its siblings.
if (focused && container->children->length > 1) {
update_container_border(focused);
}
}
}
void apply_vert_layout(swayc_t *container, const double x, const double y,
const double width, const double height, const int start,
const int end) {
int i;
double scale = 0;
// Calculate total height
for (i = start; i < end; ++i) {
double *old_height = &((swayc_t *)container->children->items[i])->height;
if (*old_height <= 0) {
if (end - start > 1) {
*old_height = height / (end - start - 1);
} else {
*old_height = height;
}
}
scale += *old_height;
}
scale = height / scale;
// Resize
double child_y = y;
if (scale > 0.1) {
sway_log(L_DEBUG, "Arranging %p vertically", container);
swayc_t *focused = NULL;
for (i = start; i < end; ++i) {
swayc_t *child = container->children->items[i];
sway_log(L_DEBUG,
"Calculating arrangement for %p:%d (will scale %f by %f)", child,
child->type, height, scale);
child->x = x;
child->y = child_y;
if (child == container->focused) {
focused = child;
}
if (i == end - 1) {
double remaining_height = y + height - child_y;
arrange_windows_r(child, width, remaining_height);
} else {
arrange_windows_r(child, width, child->height * scale);
}
child_y += child->height;
}
// update focused view border last because it may
// depend on the title bar geometry of its siblings.
if (focused && container->children->length > 1) {
update_container_border(focused);
}
}
}
void apply_tabbed_or_stacked_layout(swayc_t *container, double x, double y,
double width, double height) {
int i;
swayc_t *focused = NULL;
for (i = 0; i < container->children->length; ++i) {
swayc_t *child = container->children->items[i];
child->x = x;
child->y = y;
if (child == container->focused) {
focused = child;
} else {
arrange_windows_r(child, width, height);
}
}
if (focused) {
arrange_windows_r(focused, width, height);
}
}
void apply_auto_layout(swayc_t *container, const double x, const double y,
const double width, const double height,
enum swayc_layouts group_layout,
bool master_first) {
// Auto layout "container" in width x height @ x, y
// using "group_layout" for each of the groups in the container.
// There is one "master" group, plus container->nb_slave_groups.
// Each group is layed out side by side following the "major" axis.
// The direction of the layout used for groups is the "minor" axis.
// Example:
//
// ---- major axis -->
// +---------+-----------+
// | | | |
// | master | slave 1 | |
// | +-----------+ | minor axis (direction of group_layout)
// | | | |
// | | slave 2 | V
// +---------+-----------+
//
// container with three children (one master and two slaves) and
// a single slave group (containing slave 1 and 2). The master
// group and slave group are layed out using L_VERT.
size_t nb_groups = auto_group_count(container);
// the target dimension of the container along the "major" axis, each
// group in the container will be layed out using "group_layout" along
// the "minor" axis.
double dim_maj;
double pos_maj;
// x and y coords for the next group to be laid out.
const double *group_x, *group_y;
// pos of the next group to layout along the major axis
double pos;
// size of the next group along the major axis.
double group_dim;
// height and width of next group to be laid out.
const double *group_h, *group_w;
switch (group_layout) {
default:
sway_log(L_DEBUG, "Unknown layout type (%d) used in %s()",
group_layout, __func__);
/* fall through */
case L_VERT:
dim_maj = width;
pos_maj = x;
group_x = &pos;
group_y = &y;
group_w = &group_dim;
group_h = &height;
break;
case L_HORIZ:
dim_maj = height;
pos_maj = y;
group_x = &x;
group_y = &pos;
group_w = &width;
group_h = &group_dim;
break;
}
/* Determine the dimension of each of the groups in the layout.
* Dimension will be width for a VERT layout and height for a HORIZ
* layout. */
double old_group_dim[nb_groups];
double old_dim = 0;
for (size_t group = 0; group < nb_groups; ++group) {
int idx;
if (auto_group_bounds(container, group, &idx, NULL)) {
swayc_t *child = container->children->items[idx];
double *dim = group_layout == L_HORIZ ? &child->height : &child->width;
if (*dim <= 0) {
// New child with uninitialized dimension
*dim = dim_maj;
if (nb_groups > 1) {
// child gets a dimension proportional to existing groups,
// it will be later scaled based on to the available size
// in the major axis.
*dim /= (nb_groups - 1);
}
}
old_dim += *dim;
old_group_dim[group] = *dim;
}
}
double scale = dim_maj / old_dim;
/* Apply layout to each group */
pos = pos_maj;
for (size_t group = 0; group < nb_groups; ++group) {
int start, end; // index of first (inclusive) and last (exclusive) child in the group
if (auto_group_bounds(container, group, &start, &end)) {
// adjusted size of the group
group_dim = old_group_dim[group] * scale;
if (group == nb_groups - 1) {
group_dim = pos_maj + dim_maj - pos; // remaining width
}
sway_log(L_DEBUG, "Arranging container %p column %zu, children [%d,%d[ (%fx%f+%f,%f)",
container, group, start, end, *group_w, *group_h, *group_x, *group_y);
switch (group_layout) {
default:
case L_VERT:
apply_vert_layout(container, *group_x, *group_y, *group_w, *group_h, start, end);
break;
case L_HORIZ:
apply_horiz_layout(container, *group_x, *group_y, *group_w, *group_h, start, end);
break;
}
/* update position for next group */
pos += group_dim;
}
}
}
void arrange_windows(swayc_t *container, double width, double height) {
update_visibility(container);
arrange_windows_r(container, width, height);
layout_log(&root_container, 0);
}
void arrange_backgrounds(void) {
struct background_config *bg;
for (int i = 0; i < desktop_shell.backgrounds->length; ++i) {
bg = desktop_shell.backgrounds->items[i];
wlc_view_send_to_back(bg->handle);
}
}
/**
* Get swayc in the direction of newly entered output.
*/
static swayc_t *get_swayc_in_output_direction(swayc_t *output, enum movement_direction dir) {
if (!output) {
return NULL;
}
swayc_t *ws = swayc_focus_by_type(output, C_WORKSPACE);
if (ws && ws->children->length > 0) {
switch (dir) {
case MOVE_LEFT:
// get most right child of new output
return ws->children->items[ws->children->length-1];
case MOVE_RIGHT:
// get most left child of new output
return ws->children->items[0];
case MOVE_UP:
case MOVE_DOWN:
{
swayc_t *focused_view = swayc_focus_by_type(ws, C_VIEW);
if (focused_view && focused_view->parent) {
swayc_t *parent = focused_view->parent;
if (parent->layout == L_VERT) {
if (dir == MOVE_UP) {
// get child furthest down on new output
return parent->children->items[parent->children->length-1];
} else if (dir == MOVE_DOWN) {
// get child furthest up on new output
return parent->children->items[0];
}
}
return focused_view;
}
break;
}
default:
break;
}
}
return output;
}
swayc_t *get_swayc_in_direction_under(swayc_t *container, enum movement_direction dir, swayc_t *limit) {
if (dir == MOVE_CHILD) {
return container->focused;
}
swayc_t *parent = container->parent;
if (dir == MOVE_PARENT) {
if (parent->type == C_OUTPUT) {
return NULL;
} else {
return parent;
}
}
if (dir == MOVE_PREV || dir == MOVE_NEXT) {
int focused_idx = index_child(container);
if (focused_idx == -1) {
return NULL;
} else {
int desired = (focused_idx + (dir == MOVE_NEXT ? 1 : -1)) %
parent->children->length;
if (desired < 0) {
desired += parent->children->length;
}
return parent->children->items[desired];
}
}
// If moving to an adjacent output we need a starting position (since this
// output might border to multiple outputs).
struct wlc_point abs_pos;
get_absolute_center_position(container, &abs_pos);
if (container->type == C_VIEW && swayc_is_fullscreen(container)) {
sway_log(L_DEBUG, "Moving from fullscreen view, skipping to output");
container = swayc_parent_by_type(container, C_OUTPUT);
get_absolute_center_position(container, &abs_pos);
swayc_t *output = swayc_adjacent_output(container, dir, &abs_pos, true);
return get_swayc_in_output_direction(output, dir);
}
if (container->type == C_WORKSPACE && container->fullscreen) {
sway_log(L_DEBUG, "Moving to fullscreen view");
return container->fullscreen;
}
swayc_t *wrap_candidate = NULL;
while (true) {
// Test if we can even make a difference here
bool can_move = false;
int desired;
int idx = index_child(container);
if (parent->type == C_ROOT) {
swayc_t *output = swayc_adjacent_output(container, dir, &abs_pos, true);
if (!output || output == container) {
return wrap_candidate;
}
sway_log(L_DEBUG, "Moving between outputs");
return get_swayc_in_output_direction(output, dir);
} else {
if (is_auto_layout(parent->layout)) {
bool is_major = parent->layout == L_AUTO_LEFT || parent->layout == L_AUTO_RIGHT
? dir == MOVE_LEFT || dir == MOVE_RIGHT
: dir == MOVE_DOWN || dir == MOVE_UP;
size_t gidx = auto_group_index(parent, idx);
if (is_major) {
size_t desired_grp = gidx + (dir == MOVE_RIGHT || dir == MOVE_DOWN ? 1 : -1);
can_move = auto_group_bounds(parent, desired_grp, &desired, NULL);
} else {
desired = idx + (dir == MOVE_RIGHT || dir == MOVE_DOWN ? 1 : -1);
int start, end;
can_move = auto_group_bounds(parent, gidx, &start, &end)
&& desired >= start && desired < end;
}
} else {
if (dir == MOVE_LEFT || dir == MOVE_RIGHT) {
if (parent->layout == L_HORIZ || parent->layout == L_TABBED) {
can_move = true;
desired = idx + (dir == MOVE_LEFT ? -1 : 1);
}
} else {
if (parent->layout == L_VERT || parent->layout == L_STACKED) {
can_move = true;
desired = idx + (dir == MOVE_UP ? -1 : 1);
}
}
}
}
if (can_move) {
if (container->is_floating) {
if (desired < 0) {
wrap_candidate = parent->floating->items[parent->floating->length-1];
} else if (desired >= parent->floating->length){
wrap_candidate = parent->floating->items[0];
} else {
wrap_candidate = parent->floating->items[desired];
}
if (wrap_candidate) {
wlc_view_bring_to_front(wrap_candidate->handle);
}
return wrap_candidate;
} else if (desired < 0 || desired >= parent->children->length) {
can_move = false;
int len = parent->children->length;
if (!wrap_candidate && len > 1) {
if (desired < 0) {
wrap_candidate = parent->children->items[len-1];
} else {
wrap_candidate = parent->children->items[0];
}
if (config->force_focus_wrapping) {
return wrap_candidate;
}
}
} else {
sway_log(L_DEBUG, "%s cont %d-%p dir %i sibling %d: %p", __func__,
idx, container, dir, desired, parent->children->items[desired]);
return parent->children->items[desired];
}
}
if (!can_move) {
container = parent;
parent = parent->parent;
if (!parent || container == limit) {
// wrapping is the last chance
return wrap_candidate;
}
}
}
}
swayc_t *get_swayc_in_direction(swayc_t *container, enum movement_direction dir) {
return get_swayc_in_direction_under(container, dir, NULL);
}
void recursive_resize(swayc_t *container, double amount, enum wlc_resize_edge edge) {
int i;
bool layout_match = true;
sway_log(L_DEBUG, "Resizing %p with amount: %f", container, amount);
if (edge == WLC_RESIZE_EDGE_LEFT || edge == WLC_RESIZE_EDGE_RIGHT) {
container->width += amount;
layout_match = container->layout == L_HORIZ;
} else if (edge == WLC_RESIZE_EDGE_TOP || edge == WLC_RESIZE_EDGE_BOTTOM) {
container->height += amount;
layout_match = container->layout == L_VERT;
}
if (container->type == C_VIEW) {
update_geometry(container);
return;
}
if (layout_match) {
for (i = 0; i < container->children->length; i++) {
recursive_resize(container->children->items[i], amount/container->children->length, edge);
}
} else {
for (i = 0; i < container->children->length; i++) {
recursive_resize(container->children->items[i], amount, edge);
}
}
}
enum swayc_layouts default_layout(swayc_t *output) {
if (config->default_layout != L_NONE) {
return config->default_layout;
} else if (config->default_orientation != L_NONE) {
return config->default_orientation;
} else if (output->width >= output->height) {
return L_HORIZ;
} else {
return L_VERT;
}
}
bool is_auto_layout(enum swayc_layouts layout) {
return (layout >= L_AUTO_FIRST) && (layout <= L_AUTO_LAST);
}
/**
* Return the number of master elements in a container
*/
static inline size_t auto_master_count(const swayc_t *container) {
sway_assert(container->children->length >= 0, "Container %p has (negative) children %d",
container, container->children->length);
return MIN(container->nb_master, (size_t)container->children->length);
}
/**
* Return the number of children in the slave groups. This corresponds to the children
* that are not members of the master group.
*/
static inline size_t auto_slave_count(const swayc_t *container) {
return container->children->length - auto_master_count(container);
}
/**
* Return the number of slave groups in the container.
*/
size_t auto_slave_group_count(const swayc_t *container) {
return MIN(container->nb_slave_groups, auto_slave_count(container));
}
/**
* Return the combined number of master and slave groups in the container.
*/
size_t auto_group_count(const swayc_t *container) {
return auto_slave_group_count(container)
+ (container->children->length && container->nb_master ? 1 : 0);
}
/**
* given the index of a container's child, return the index of the first child of the group
* which index is a member of.
*/
int auto_group_start_index(const swayc_t *container, int index) {
if (index < 0 || ! is_auto_layout(container->layout)
|| (size_t)index < container->nb_master) {
return 0;
} else {
size_t nb_slaves = auto_slave_count(container);
size_t nb_slave_grp = auto_slave_group_count(container);
size_t grp_sz = nb_slaves / nb_slave_grp;
size_t remainder = nb_slaves % nb_slave_grp;
int idx2 = (nb_slave_grp - remainder) * grp_sz + container->nb_master;
int start_idx;
if (index < idx2) {
start_idx = ((index - container->nb_master) / grp_sz) * grp_sz + container->nb_master;
} else {
start_idx = idx2 + ((index - idx2) / (grp_sz + 1)) * (grp_sz + 1);
}
return MIN(start_idx, container->children->length);
}
}
/**
* given the index of a container's child, return the index of the first child of the group
* that follows the one which index is a member of.
* This makes the function usable to walk through the groups in a container.
*/
int auto_group_end_index(const swayc_t *container, int index) {
if (index < 0 || ! is_auto_layout(container->layout)) {
return container->children->length;
} else {
int nxt_idx;
if ((size_t)index < container->nb_master) {
nxt_idx = auto_master_count(container);
} else {
size_t nb_slaves = auto_slave_count(container);
size_t nb_slave_grp = auto_slave_group_count(container);
size_t grp_sz = nb_slaves / nb_slave_grp;
size_t remainder = nb_slaves % nb_slave_grp;
int idx2 = (nb_slave_grp - remainder) * grp_sz + container->nb_master;
if (index < idx2) {
nxt_idx = ((index - container->nb_master) / grp_sz + 1) * grp_sz + container->nb_master;
} else {
nxt_idx = idx2 + ((index - idx2) / (grp_sz + 1) + 1) * (grp_sz + 1);
}
}
return MIN(nxt_idx, container->children->length);
}
}
/**
* return the index of the Group containing <index>th child of <container>.
* The index is the order of the group along the container's major axis (starting at 0).
*/
size_t auto_group_index(const swayc_t *container, int index) {
if (index < 0) {
return 0;
}
bool master_first = (container->layout == L_AUTO_LEFT || container->layout == L_AUTO_TOP);
size_t nb_slaves = auto_slave_count(container);
if ((size_t)index < container->nb_master) {
if (master_first || nb_slaves <= 0) {
return 0;
} else {
return auto_slave_group_count(container);
}
} else {
size_t nb_slave_grp = auto_slave_group_count(container);
size_t grp_sz = nb_slaves / nb_slave_grp;
size_t remainder = nb_slaves % nb_slave_grp;
int idx2 = (nb_slave_grp - remainder) * grp_sz + container->nb_master;
size_t grp_idx;
if (index < idx2) {
grp_idx = (index - container->nb_master) / grp_sz;
} else {
grp_idx = (nb_slave_grp - remainder) + (index - idx2) / (grp_sz + 1) ;
}
return grp_idx + (master_first && container-> nb_master ? 1 : 0);
}
}
/**
* Return the first index (inclusive) and last index (exclusive) of the elements of a group in
* an auto layout.
* If the bounds of the given group can be calculated, they are returned in the start/end
* parameters (int pointers) and the return value will be true.
* The indexes are passed by reference and can be NULL.
*/
bool auto_group_bounds(const swayc_t *container, size_t group_index, int *start, int *end) {
size_t nb_grp = auto_group_count(container);
if (group_index >= nb_grp) {
return false;
}
bool master_first = (container->layout == L_AUTO_LEFT || container->layout == L_AUTO_TOP);
size_t nb_master = auto_master_count(container);
size_t nb_slave_grp = auto_slave_group_count(container);
int g_start, g_end;
if (nb_master && (master_first ? group_index == 0 : group_index == nb_grp - 1)) {
g_start = 0;
g_end = nb_master;
} else {
size_t nb_slaves = auto_slave_count(container);
size_t grp_sz = nb_slaves / nb_slave_grp;
size_t remainder = nb_slaves % nb_slave_grp;
size_t g0 = master_first && container->nb_master ? 1 : 0;
size_t g1 = g0 + nb_slave_grp - remainder;
if (group_index < g1) {
g_start = container->nb_master + (group_index - g0) * grp_sz;
g_end = g_start + grp_sz;
} else {
size_t g2 = group_index - g1;
g_start = container->nb_master
+ (nb_slave_grp - remainder) * grp_sz
+ g2 * (grp_sz + 1);
g_end = g_start + grp_sz + 1;
}
}
if (start) {
*start = g_start;
}
if (end) {
*end = g_end;
}
return true;
}