1
0
mirror of https://github.com/rust-lang/rustlings.git synced 2024-11-08 09:09:17 +01:00

iterators4 solution

This commit is contained in:
mo8it 2024-06-28 15:31:15 +02:00
parent 56a9197f55
commit 2af437fd90
3 changed files with 80 additions and 10 deletions

@ -1,9 +1,9 @@
fn factorial(num: u64) -> u64 {
// Complete this function to return the factorial of num
fn factorial(num: u8) -> u64 {
// TODO: Complete this function to return the factorial of `num`.
// Do not use:
// - early returns (using the `return` keyword explicitly)
// Try not to use:
// - imperative style loops (for, while)
// - imperative style loops (for/while)
// - additional variables
// For an extra challenge, don't use:
// - recursion
@ -19,20 +19,20 @@ mod tests {
#[test]
fn factorial_of_0() {
assert_eq!(1, factorial(0));
assert_eq!(factorial(0), 1);
}
#[test]
fn factorial_of_1() {
assert_eq!(1, factorial(1));
assert_eq!(factorial(1), 1);
}
#[test]
fn factorial_of_2() {
assert_eq!(2, factorial(2));
assert_eq!(factorial(2), 2);
}
#[test]
fn factorial_of_4() {
assert_eq!(24, factorial(4));
assert_eq!(factorial(4), 24);
}
}

@ -942,10 +942,10 @@ dir = "18_iterators"
hint = """
In an imperative language, you might write a `for` loop that updates a mutable
variable. Or, you might write code utilizing recursion and a match clause. In
Rust you can take another functional approach, computing the factorial
Rust, you can take another functional approach, computing the factorial
elegantly with ranges and iterators.
Hint 2: Check out the `fold` and `rfold` methods!"""
Check out the `fold` and `rfold` methods!"""
[[exercises]]
name = "iterators5"

@ -1 +1,71 @@
// Solutions will be available before the stable release. Thank you for testing the beta version 🥰
// 3 possible solutions are presented.
// With `for` loop and a mutable variable.
fn factorial_for(num: u64) -> u64 {
let mut result = 1;
for x in 2..=num {
result *= x;
}
result
}
// Equivalent to `factorial_for` but shorter and without a `for` loop and
// mutable variables.
fn factorial_fold(num: u64) -> u64 {
// Case num==0: The iterator 2..=0 is empty
// -> The initial value of `fold` is returned which is 1.
// Case num==1: The iterator 2..=1 is also empty
// -> The initial value 1 is returned.
// Case num==2: The iterator 2..=2 contains one element
// -> The initial value 1 is multiplied by 2 and the result
// is returned.
// Case num==3: The iterator 2..=3 contains 2 elements
// -> 1 * 2 is calculated, then the result 2 is multiplied by
// the second element 3 so the result 6 is returned.
// And so on…
(2..=num).fold(1, |acc, x| acc * x)
}
// Equivalent to `factorial_fold` but with a built-in method that is suggested
// by Clippy.
fn factorial_product(num: u64) -> u64 {
(2..=num).product()
}
fn main() {
// You can optionally experiment here.
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn factorial_of_0() {
assert_eq!(factorial_for(0), 1);
assert_eq!(factorial_fold(0), 1);
assert_eq!(factorial_product(0), 1);
}
#[test]
fn factorial_of_1() {
assert_eq!(factorial_for(1), 1);
assert_eq!(factorial_fold(1), 1);
assert_eq!(factorial_product(1), 1);
}
#[test]
fn factorial_of_2() {
assert_eq!(factorial_for(2), 2);
assert_eq!(factorial_fold(2), 2);
assert_eq!(factorial_product(2), 2);
}
#[test]
fn factorial_of_4() {
assert_eq!(factorial_for(4), 24);
assert_eq!(factorial_fold(4), 24);
assert_eq!(factorial_product(4), 24);
}
}