1
0
mirror of https://git.openwrt.org/openwrt/openwrt.git synced 2024-10-20 22:48:10 +02:00
Commit Graph

887 Commits

Author SHA1 Message Date
Szabolcs Hubai
dd3c1ad8ee ramips: rt305x: use lzma-loader for ZyXEL Keenetic Lite rev.B
Fixes boot loader LZMA decompression issue,
reported by GitHub user KOLANICH at [0].

The reported LZMA ERROR has date of 2020-07-20, soon after
the device support landed:

Ralink UBoot Version: 3.5.2.4_ZyXEL

....

3: System Boot system code via Flash.
   Image Name:   MIPS OpenWrt Linux-4.14.187
   Created:      2020-07-20   3:39:11 UTC
   Image Type:   MIPS Linux Kernel Image (lzma compressed)
   Data Size:    1472250 Bytes =  1.4 MB
   Load Address: 80000000
   Entry Point:  80000000
   Verifying Checksum ... OK
   Uncompressing Kernel Image ... LZMA ERROR 1 - must RESET board to recover

[0] fea232ae8f (commitcomment-45016560)

Fixes: 4dc9ad4af8c921494d20b303b6772fc6b5af3a69 ("ramips: add support for ZyXEL Keenetic Lite Rev.B")
Signed-off-by: Szabolcs Hubai <szab.hu@gmail.com>
2021-04-08 09:20:59 +02:00
Shiji Yang
dfc9044fad ramips: fix IMAGE_SIZE of HC5x6: fix image size of HC5x61
"firmware" partition size defined in the device tree file is 0xf70000,
so the right IMAGE_SIZE is 15808k

Fixes: df1e5d646345 ("ramips: fix partition layout of hiwifi hc5x61")
Signed-off-by: Shiji Yang <yangshiji66@qq.com>
2021-04-03 18:56:02 +02:00
Daniel Engberg
e83f7e5d76 ramips: Fix booting on MQmaker WiTi board
This fixes the dreaded "lzma error 1" also reported on similar devices
Ref: https://bugs.openwrt.org/index.php?do=details&task_id=3057

Fixes: FS#3057
Signed-off-by: Daniel Engberg <daniel.engberg.lists@pyret.net>
2021-04-03 18:56:02 +02:00
René van Dorst
12f3d1466a ramips: Fix booting on MTC WR1201
This fixes the dreaded "lzma error 1" also reported on similar devices
Ref: https://bugs.openwrt.org/index.php?do=details&task_id=3057

Fixes: FS#3057
Signed-off-by: René van Dorst <opensource@vdorst.com>
2021-04-03 18:56:02 +02:00
INAGAKI Hiroshi
b3ca1f30ef ramips: add support for ELECOM WRC-1750GST2
ELECOM WRC-1750GST2 is a 2.4/5 GHz band 11ac (Wi-Fi 5) router, based on
MT7621A.

Specification:

- SoC		: MediaTek MT7621A
- RAM		: DDR3 256 MiB (NT5CC128M16JR-EK)
- Flash		: SPI-NOR 32 MiB (MX25L25645GMI-08G)
- WLAN		: 2.4/5 GHz 3T3R (2x MediaTek MT7615)
- Ethernet	: 10/100/1000 Mbps x5
  - Switch	: MediaTek MT7530 (SoC)
- LEDs/Keys	: 4x/6x (2x buttons, 1x slide-switch)
- UART		: through-hole on PCB
  - J4: 3.3V, GND, TX, RX, from ethernet port side
  - 57600n8
- Power		: 12 VDC, 1.5 A

Flash instruction using factory image:

1. Boot WRC-1750GST2 normally with "Router" mode
2. Access to "http://192.168.2.1/" and open firmware update page
   ("ファームウェア更新")
3. Select the OpenWrt factory image and click apply ("適用") button
4. Wait ~120 seconds to complete flashing

MAC addresses:

LAN	: 04:AB:18:xx:xx:23 (Factory, 0xE000 (hex))
WAN	: 04:AB:18:xx:xx:24 (Factory, 0xE006 (hex))
2.4GHz	: 04:AB:18:xx:xx:25 (Factory, 0x4    (hex))
5GHz	: 04:AB:18:xx:xx:26 (Factory, 0x8004 (hex))

Signed-off-by: INAGAKI Hiroshi <musashino.open@gmail.com>
2021-03-21 22:45:20 +01:00
Lech Perczak
410fb05b44 rampis: use lzma-loader for ZTE MF283+
Without that, after merging support to master, the device fails to boot
due to LZMA decompression error:

3: System Boot system code via Flash.
## Booting image at bc080000 ...
raspi_read: from:80000 len:40
.   Image Name:   MIPS OpenWrt Linux-5.4.99
   Created:      2021-02-25  23:35:00 UTC
   Image Type:   MIPS Linux Kernel Image (lzma compressed)
   Data Size:    1786664 Bytes =  1.7 MB
   Load Address: 80000000
   Entry Point:  80000000
raspi_read: from:80040 len:1b4328
............................   Verifying Checksum ... OK
   Uncompressing Kernel Image ... LZMA ERROR 1 - must RESET board to recover

Use lzma-loader to fix it.

Fixes: 59d065c9f81c ("ramips: add support for ZTE MF283+")
Signed-off-by: Lech Perczak <lech.perczak@gmail.com>
2021-03-19 01:25:26 +01:00
David Bauer
ac5675ec8f ramips: fix broken UniFi 6 Lite image
Ubiquiti's own bootloader expects the configuration mode to be present
with a "@" instead of a "-" for the sperator character. Otherwise
booting of the image fails.

Signed-off-by: David Bauer <mail@david-bauer.net>
2021-03-18 00:54:25 +01:00
Adrian Schmutzler
9397b22df1 treewide: make AddDepends/usb-serial selective
Make packages depending on usb-serial selective, so we do not have
to add kmod-usb-serial manually for every device.

Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
2021-03-06 12:38:38 +01:00
Lech Perczak
59d065c9f8 ramips: add support for ZTE MF283+
ZTE MF283+ is a dual-antenna LTE category 4 router, based on Ralink
RT3352 SoC, and built-in ZTE P685M PCIe MiniCard LTE modem.

Hardware highlighs:
- CPU: MIPS24KEc at 400MHz,
- RAM: 64MB DDR2,
- Flash: 16MB SPI,
- Ethernet: 4 10/100M port switch with VLAN support,
- Wireless: Dual-stream 802.11n (RT2860), with two internal antennas,
- WWAN: Built-in ZTE P685M modem, with two internal antennas and two
  switching SMA connectors for external antennas,
- FXS: Single ATA, with two connectors marked PHONE1 and PHONE2,
  internally wired in parallel by 0-Ohm resistors, handled entirely by
  internal WWAN modem.
- USB: internal miniPCIe slot for modem,
  unpopulated USB A connector on PCB.
- SIM slot for the WWAN modem.
- UART connector for the console (unpopulated) at 3.3V,
  pinout: 1: VCC, 2: TXD, 3: RXD, 4: GND,
  settings: 57600-8-N-1.
- LEDs: Power (fixed), WLAN, WWAN (RGB),
  phone (bicolor, controlled by modem), Signal,
  4 link/act LEDs for LAN1-4.
- Buttons: WPS, reset.

Installation:
As the modem is, for most of the time, provided by carriers, there is no
possibility to flash through web interface, only built-in FOTA update
and TFTP recovery are supported.

There are two installation methods:
(1) Using serial console and initramfs-kernel - recommended, as it
allows you to back up original firmware, or
(2) Using TFTP recovery - does not require disassembly.

(1) Using serial console:
To install OpenWrt, one needs to disassemble the
router and flash it via TFTP by using serial console:
- Locate unpopulated 4-pin header on the top of the board, near buttons.
- Connect UART adapter to the connector. Use 3.3V voltage level only,
  omit VCC connection. Pin 1 (VCC) is marked by square pad.
- Put your initramfs-kernel image in TFTP server directory.
- Power-up the device.
- Press "1" to load initramfs image to RAM.
- Enter IP address chosen for the device (defaults to 192.168.0.1).
- Enter TFTP server IP address (defaults to 192.168.0.22).
- Enter image filename as put inside TFTP server - something short,
  like firmware.bin is recommended.
- Hit enter to load the image. U-boot will store above values in
  persistent environment for next installation.
- If you ever might want to return to vendor firmware,
  BACK UP CONTENTS OF YOUR FLASH NOW.
  For this router, commonly used by mobile networks,
  plain vendor images are not officially available.
  To do so, copy contents of each /dev/mtd[0-3], "firmware" - mtd3 being the
  most important, and copy them over network to your PC. But in case
  anything goes wrong, PLEASE do back up ALL OF THEM.
- From under OpenWrt just booted, load the sysupgrade image to tmpfs,
  and execute sysupgrade.

(2) Using TFTP recovery
- Set your host IP to 192.168.0.22 - for example using:
sudo ip addr add 192.168.0.22/24 dev <interface>
- Set up a TFTP server on your machine
- Put the sysupgrade image in TFTP server root named as 'root_uImage'
  (no quotes), for example using tftpd:
  cp openwrt-ramips-rt305x-zte_mf283plus-squashfs-sysupgrade.bin /srv/tftp/root_uImage
- Power on the router holding BOTH Reset and WPS buttons held for around
  5 seconds, until after WWAN and Signal LEDs blink.
- Wait for OpenWrt to start booting up, this should take around a
  minute.

Return to original firmware:
Here, again there are two possibilities are possible, just like for
installation:
(1) Using initramfs-kernel image and serial console
(2) Using TFTP recovery

(1) Using initramfs-kernel image and serial console
- Boot OpenWrt initramfs-kernel image via TFTP the same as for
  installation.
- Copy over the backed up "firmware.bin" image of "mtd3" to /tmp/
- Use "mtd write /tmp/firmware.bin /dev/mtd3", where firmware.bin is
  your backup taken before OpenWrt installation, and /dev/mtd3 is the
  "firmware" partition.

(2) Using TFTP recovery
- Follow the same steps as for installation, but replacing 'root_uImage'
  with firmware backup you took during installation, or by vendor
  firmware obtained elsewhere.

A few quirks of the device, noted from my instance:
- Wired and wireless MAC addresses written in flash are the same,
  despite being in separate locations.
- Power LED is hardwired to 3.3V, so there is no status LED per se, and
  WLAN LED is controlled by WLAN driver, so I had to hijack 3G/4G LED
  for status - original firmware also does this in bootup.
- FXS subsystem and its LED is controlled by the
  modem, so it work independently of OpenWrt.
  Tested to work even before OpenWrt booted.
  I managed to open up modem's shell via ADB,
  and found from its kernel logs, that FXS and its LED is indeed controlled
  by modem.
- While finding LEDs, I had no GPL source drop from ZTE, so I had to probe for
  each and every one of them manually, so this might not be complete -
  it looks like bicolor LED is used for FXS, possibly to support
  dual-ported variant in other device sharing the PCB.
- Flash performance is very low, despite enabling 50MHz clock and fast
  read command, due to using 4k sectors throughout the target. I decided
  to keep it at the moment, to avoid breaking existing devices - I
  identified one potentially affected, should this be limited to under
  4MB of Flash. The difference between sysupgrade durations is whopping
  3min vs 8min, so this is worth pursuing.

In vendor firmware, WWAN LED behaviour is as follows, citing the manual:
- red - no registration,
- green - 3G,
- blue - 4G.
Blinking indicates activity, so netdev trigger mapped from wwan0 to blue:wwan
looks reasonable at the moment, for full replacement, a script similar to
"rssileds" would need to be developed.

Behaviour of "Signal LED" in vendor firmware is as follows:
- Off - no signal,
- Blinking - poor coverage
- Solid - good coverage.

A few more details on the built-in LTE modem:
Modem is not fully supported upstream in Linux - only two CDC ports
(DIAG and one for QMI) probe. I sent patches upstream to add required device
IDs for full support.
The mapping of USB functions is as follows:
- CDC (QCDM) - dedicated to comunicating with proprietary Qualcomm tools.
- CDC (PCUI) - not supported by upstream 'option' driver yet. Patch
  submitted upstream.
- CDC (Modem) - Exactly the same as above
- QMI - A patch is sent upstream to add device ID, with that in place,
  uqmi did connect successfully, once I selected correct PDP context
  type for my SIM (IPv4-only, not default IPv4v6).
- ADB - self-explanatory, one can access the ADB shell with a device ID
  added to 51-android.rules like so:

SUBSYSTEM!="usb", GOTO="android_usb_rules_end"
LABEL="android_usb_rules_begin"
SUBSYSTEM=="usb", ATTR{idVendor}=="19d2", ATTR{idProduct}=="1275", ENV{adb_user}="yes"
ENV{adb_user}=="yes", MODE="0660", GROUP="plugdev", TAG+="uaccess"
LABEL="android_usb_rules_end"

While not really needed in OpenWrt, it might come useful if one decides to
move the modem to their PC to hack it further, insides seem to be pretty
interesting. ADB also works well from within OpenWrt without that. O
course it isn't needed for normal operation, so I left it out of
DEVICE_PACKAGES.

Signed-off-by: Lech Perczak <lech.perczak@gmail.com>
[remove kmod-usb-ledtrig-usbport, take merged upstream patches]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
2021-02-26 13:57:54 +01:00
Seo Suchan
ca6954e2dc ramips: use lzma-loader for Wevo devices
As kernel size increased it start to fail to load squishfs image,
using lzma-loader fixed it.
wevo_11acnas is almost same device as w2914ns-v2 except ram size,
so I expect same thing would've happen in that device too.

Signed-off-by: Seo Suchan <abnoeh@mail.com>
Reviewed-by: Sungbo Eo <mans0n@gorani.run>
2021-02-19 14:09:50 +01:00
Sander Vanheule
1e75909a35 ramips: mt7621: add TP-Link EAP235-Wall support
The TP-Link EAP235-Wall is a wall-mounted, PoE-powered AC1200 access
point with four gigabit ethernet ports.

When connecting to the device's serial port, it is strongly advised to
use an isolated UART adapter. This prevents linking different power
domains created by the PoE power supply, which may damage your devices.

The device's U-Boot supports saving modified environments with
`saveenv`. However, there is no u-boot-env partition, and saving
modifications will cause the partition table to be overwritten. This is
not an issue for running OpenWrt, but will prevent the vendor FW from
functioning properly.

Device specifications:
* SoC: MT7621DAT
* RAM: 128MiB
* Flash: 16MiB SPI-NOR
* Wireless 2.4GHz (MT7603EN): b/g/n, 2x2
* Wireless 5GHz (MT7613BEN): a/n/ac, 2x2
* Ethernet: 4× GbE
  * Back side: ETH0, PoE PD port
  * Bottom side: ETH1, ETH2, ETH3
* Single white device LED
* LED button, reset button (available for failsafe)
* PoE pass-through on port ETH3 (enabled with GPIO)

Datasheet of the flash chip specifies a maximum frequency of 33MHz, but
that didn't work. 20MHz gives no errors with reading (flash dump) or
writing (sysupgrade).

Device mac addresses:
Stock firmware uses the same MAC address for ethernet (on device label)
and 2.4GHz wireless. The 5GHz wireless address is incremented by one.
This address is stored in the 'info' ('default-mac') partition at an
offset of 8 bytes.
From OEM ifconfig:
    eth     a4:2b:b0:...:88
    ra0     a4:2b:b0:...:88
    rai0    a4:2b:b0:...:89

Flashing instructions:
* Enable SSH in the web interface, and SSH into the target device
* run `cliclientd stopcs`, this should return "success"
* upload the factory image via the web interface

Debricking:
U-boot can be interrupted during boot, serial console is 57600 baud, 8n1
This allows installing a sysupgrade image, or fixing the device in
another way.
* Access serial header from the side of the board, close to ETH3,
  pin-out is (1:TX, 2:RX, 3:GND, 4:3.3V), with pin 1 closest to ETH3.
* Interrupt bootloader by holding '4' during boot, which drops the
  bootloader into its shell
* Change default 'serverip' and 'ipaddr' variables (optional)
* Download initramfs with `tftpboot`, and boot image with `bootm`
    # tftpboot 84000000 openwrt-initramfs.bin
    # bootm

Revert to stock:
Using the tplink-safeloader utility from the firmware-utils package,
TP-Link's firmware image can be converted to an OpenWrt-compatible
sysupgrade image:
  $ ./staging_dir/host/bin/tplink-safeloader -B EAP235-WALL-V1 \
      -z EAP235-WALLv1_XXX_up_signed.bin -o eap235-sysupgrade.bin

This can then be flashed using the OpenWrt sysupgrade interface. The
image will appear to be incompatible and must be force flashed, without
keeping the current configuration.

Known issues:
- DFS support is incomplete (known issue with MT7613)
- MT7613 radio may stop responding when idling, reboot required.
  This was an issue with the ddc75ff704 version of mt76, but appears to
  have improved/disappeared with bc3963764d.
  Error notice example:
  [ 7099.554067] mt7615e 0000:02:00.0: Message 73 (seq 1) timeout

Hardware was kindly provided for porting by Stijn Segers.

Tested-by: Stijn Segers <foss@volatilesystems.org>
Signed-off-by: Sander Vanheule <sander@svanheule.net>
2021-02-19 14:00:08 +01:00
Stijn Segers
0265cba40a ramips: remove factory image for TP-Link Archer C20 v1
Similarly to the Archer C2 v1, the Archer C20 v1 will brick when one
tries to flash an OpenWrt factory image through the TP-Link web UI.
The wiki page contains an explicit warning about this [1].

Disable the factory image altogether since it serves no purpose.

[1] https://openwrt.org/toh/tp-link/tp-link_archer_c20_v1#installation

Signed-off-by: Stijn Segers <foss@volatilesystems.org>
2021-02-19 13:56:27 +01:00
Stijn Segers
ad5e29d38a ramips: remove factory image for TP-Link Archer C2 v1
Initial commit 8375623a0640 ("ramips: add support for TP-Link Archer
C2") contains detailed installation instructions, which do not mention
a factory image. From what I can see, no support to install OpenWrt
through the vendor web interface has been added since. The factory
image is also conspicuously absent from the device page in the wiki.
Yet, it is available for download.

I bricked my Archer C2 loading the factory image through the web UI.
Serial showed this error during bootloop:

  Uncompressing Kernel Image ... LZMA ERROR 1 - must RESET board to recover

This patch disables the undocumented factory image so users won't get
tricked into thinking easy web UI flashing actually works.

Signed-off-by: Stijn Segers <foss@volatilesystems.org>
2021-02-13 21:21:01 +01:00
INAGAKI Hiroshi
08768b44d9 ramips: add support for ELECOM WRC-1167FS
ELECOM WRC-1167FS is a 2.4/5 GHz band 11ac (WiFi-5) router, based on
MT7628AN.

Specification:

- SoC		: MediaTek MT7628AN
- RAM		: DDR2 64 MiB (NT5TU32M16FG-AC)
- Flash		: SPI-NOR 16 MiB (W25Q128JVSIQ)
- WLAN		: 2.4/5 GHz 2T2R
  - 2.4 GHz	: MediaTek MT7628AN (SoC)
  - 5 GHz	: MediaTek MT7612E
- Ethernet	: 10/100 Mbps x2
  - Switch	: MT7628AN (SoC)
- LEDs/Keys	: 6x, 3x (2x buttons, 1x slide-switch)
- UART		: through-hole on PCB
  - J1: 3.3V, GND, TX, RX from "J1" marking
  - 57600n8
- Power		: 12 VDC, 1 A

Flash instruction using factory image:

1. Boot WRC-1167FS normally
2. Access to "http://192.168.2.1/" and open firmware update page
   ("ファームウェア更新")
3. Select the OpenWrt factory image and click apply ("適用") button to
   perform firmware update
4. Wait ~120 seconds to complete flashing

Notes:

- Last 0x800000 (8 MiB) in SPI-NOR flash is not used on stock firmware

- Additional padding in factory image is required to avoid incomplete
  flashing on stock firmware

MAC addresses:

- LAN	: BC:5C:4C:xx:xx:68 (Config, ethaddr (text) / Factory, 0x28   (hex))
- WAN	: BC:5C:4C:xx:xx:69 (Config, wanaddr (text) / Factory, 0x22   (hex))
- 2.4GHz: BC:5C:4C:xx:xx:6A (Config, rmac    (text) / Factory, 0x4    (hex))
- 5GHz	: BC:5C:4C:xx:xx:6B (Config, rmac2   (text) / Factory, 0x8004 (hex))

Signed-off-by: INAGAKI Hiroshi <musashino.open@gmail.com>
2021-02-11 16:37:53 +01:00
Adrian Schmutzler
598b29585e target: use SPDX license identifiers on Makefiles
Use SPDX license tags to allow machines to check licenses.

Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
2021-02-10 15:47:18 +01:00
Andrew Pikler
cd2b661453 ramips: add support for Cudy WR1300
Specifications:
 - SoC: MediaTek MT7621AT
 - RAM: 128 MB (DDR3)
 - Flash: 16 MB (SPI NOR)
 - WiFi: MediaTek MT7603E, MediaTek MT7612E
 - Switch: 1 WAN, 4 LAN (Gigabit)
 - Ports: 1 USB 3.0
 - Buttons: Reset, WPS
 - LEDs: Power, System, Wan, Lan 1-4, WiFi 2.4G, WiFi 5G, WPS, USB
 - Power: DC 12V 1A tip positive

UART Serial:
  115200 baud
  Located on unpopulated 4 pin header near J4:

  J4
  [o] Rx
  [o] Tx
  [o] GND
  [ ] Vcc - Do not connect

Installation:

Download and flash the manufacturer's built OpenWRT image available at
http://www.cudytech.com/openwrt_software_download
Install the new OpenWRT image via luci (System -> Backup/Flash firmware)
Be sure to NOT keep settings. The force upgrade may need to be checked
due to differences in router naming conventions.

Recovery:
 - Loads only signed manufacture firmware due to bootloader RSA verification
 - serve tftp-recovery image as /recovery.bin on 192.168.1.88/24
 - connect to any lan ethernet port
 - power on the device while holding the reset button
 - wait at least 8 seconds before releasing reset button for image to
   download
 - See http://www.cudytech.com/newsinfo/547425.html

MAC addresses as verified by OEM firmware:

use   address   source
LAN   *:f0      label
WAN   *:f1      label + 1
2g    *:f0      label
5g    *:f2      label + 2

The label MAC address is found in bdinfo 0xde00.

Signed-off-by: Andrew Pikler <andrew.pikler@gmail.com>
2021-02-09 13:58:18 +01:00
Chukun Pan
82032f3509 ramips: add support for JCG Y2
JCG Y2 is an AC1300M router

Hardware specs:
  SoC: MediaTek MT7621AT
  Flash: Winbond W25Q128JVSQ 16MiB
  RAM: Nanya NT5CB128M16 256MiB
  WLAN: 2.4/5 GHz 2T2R (1x MediaTek MT7615)
  Ethernet: 10/100/1000 Mbps x5
  LED: POWER, INTERNET, 2.4G, 5G
  Button: Reset
  Power: DC 12V,1A

Flash instructions:
  Upload factory.bin in stock firmware's upgrade page.

MAC addresses map:
  0x0004  *:c8  wlan2g/wlan5g/label
  0xe000  *:c7  lan
  0xe006  *:c6  wan

Signed-off-by: Chukun Pan <amadeus@jmu.edu.cn>
2021-02-09 13:10:33 +01:00
Szabolcs Hubai
1e9afcca56 ramips: disable default build for HooToo HT-TM02
While the latest version of 19.07 release is usable,
the current master is unbootable on the device in a normal way.

"Normal way" installations includes:
- sysupgrade (e.g. from 19.07)
- RESET button recovery with Ron Curry's (Wingspinner) UBoot image
  (10.10.10.3 + "Kernal.bin")
- RESET button recovery with original U-Boot
  (10.10.10.254 + "kernel")

One could flash and boot the latest master sysupgrade image successfully
with serial access to the device. But a sysupgrade from this state still
breaks the U-Boot and soft-bricks the device.

Signed-off-by: Szabolcs Hubai <szab.hu@gmail.com>
2021-02-07 22:06:57 +01:00
INAGAKI Hiroshi
88fbddb49d ramips: add support for I-O DATA WN-DX1200GR
I-O DATA WN-DX1200GR is a 2.4/5 GHz band 11ac (WiFi-5) router, based on
MT7621A.

Specification:

- SoC		: MediaTek MT7621A
- RAM		: DDR3 128 MiB
- Flash		: raw NAND 128 MiB
- WLAN		: 2.4/5 GHz 2T2R
  - 2.4 GHz	: MediaTek MT7603E
  - 5 GHz	: MediaTek MT7613BE
- Ethernet	: 10/100/1000 Mbps x5
  - Switch	: MediaTek MT7530 (SoC)
- LEDs/keys	: 2x/3x (2x buttons, 1x slide-switch)
- UART		: through-hole on PCB
  - J5: 3.3V, TX, RX, NC, GND from triangle-mark
  - 57600n8
- Power		: 12 VDC, 1 A

Flash instruction using initramfs image:

1. Boot WN-DX1200GR normally
2. Access to "http://192.168.0.1/" and open firmware update page
   ("ファームウェア")
3. Select the OpenWrt initramfs image and click update ("更新") button
   to perform firmware update
4. On the initramfs image, perform sysupgrade with the
   squashfs-sysupgrade image
5. Wait ~120 seconds to complete flashing

Notes:

- currently, mt7615e driver in mt76 doesn't fully support MT7613
  (MT7663) wifi chip
  - the eeprom data in flash is not used by mt7615e driver and the
    driver reports the tx-power up to 3dBm
  - the correct MAC address for MT7613BE in eeprom data cannot be
    assigned to the phy

- last 0x80000 (512 KiB) in NAND flash is not used on stock firmware

- stock firmware requires "customized uImage header" (called as "combo
  image") by MSTC (MitraStar Technology Corp.), but U-Boot doesn't

  - uImage magic ( 0x0 - 0x3 ) : 0x434F4D43 ("COMC")
  - header crc32 ( 0x4 - 0x7 ) : with "data length" and "data crc32"
  - image name   (0x20 - 0x37) : model ID and firmware versions
  - data length  (0x38 - 0x3b) : kernel + rootfs
  - data crc32   (0x3c - 0x3f) : kernel + rootfs

MAC addresses:

LAN:	50:41:B9:xx:xx:08 (Ubootenv, ethaddr (text) / Factory, 0x1E000 (hex))
WAN:	50:41:B9:xx:xx:0A (Factory,  0x1E006 (hex))
2.4GHz:	50:41:B9:xx:xx:08 (Factory,  0x4     (hex))
5GHz:	50:41:B9:xx:xx:09 (Factory,  0x8004  (hex))

Signed-off-by: INAGAKI Hiroshi <musashino.open@gmail.com>
[add check whether dflag_offset is set]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
2021-02-07 21:58:51 +01:00
Yanase Yuki
d468ff97b7 build: move elx-header into image-commands.mk
ELECOM WAB-I1750-PS will need this in ath79, so move it to common
Makefile.

Signed-off-by: Yanase Yuki <dev@zpc.sakura.ne.jp>
2021-02-05 21:57:19 +01:00
David Bentham
4a18039785 ramips: add support for UniElec U7621-01
UniElec U7621-01 is a router platform board, the smaller model of
the U7621-06.
The device has the following specifications:

- MT7621AT (880 MHz)
- 256 of RAM (DDR3)
- 16 MB of FLASH (SPI NOR)
- 5x 1 Gbps Ethernet (MT7621 built-in switch)
- 1x 2.4Ghz MT7603E
- 1x 5Ghz MT7612
- 1x miniPCIe slots (PCIe bus only)
- 1x miniSIM slot
- 1x USB 2.0 (uses the usb 3.0 driver)
- 8x LEDs (1x GPIO-controlled)
- 1x reset button
- 1x UART header (4-pins)
- 1x GPIO header (30-pins)
- 1x DC jack for main power (12 V)

The following has been tested and is working:

- Ethernet switch
- 1x 2.4Ghz MT7603E (wifi)
- 1x 5Ghz MT7612 (wifi)
- miniPCIe slots (tested with Wi-Fi cards and LTE modem cards)
- miniSIM slot (works with normal size simcard)
- sysupgrade
- reset button

Installation:

This board has no locked down bootloader. The seller can be asked to
install openwrt v18.06, so upgrades are standard sysupgrade method.

Recovery:

This board contains a Chinese, closed-source bootloader called Breed
(Boot and Recovery Environment for Embedded Devices). Breed supports web
recovery and to enter it, you keep the reset button pressed for around
5 seconds during boot. Your machine will be assigned an IP through DHCP
and the router will use IP address 192.168.1.1. The recovery website is
in Chinese, but is easy to use. Click on the second item in the list to
access the recovery page, then the second item on the next page is where
you select the firmware. In order to start the recovery, you click the
button at the bottom.

LEDs list (left to right):

- ESW_P0_LED_0
- ESW_P1_LED_0
- ESW_P2_LED_0
- ESW_P3_LED_0
- ESW_P4_LED_0
- CTS2_N (GPIO10, configured as "status" LED)
- LED_WLAN# (connected with pin 44 in wifi1 slot)

Signed-off-by: David Bentham <db260179@gmail.com>
[add DEVICE_VARIANT, fix DEVICE_PACKAGES, remove &gpio]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
2021-02-05 17:31:51 +01:00
Ewan Parker
ddafcc7947 ramips: add support for Hi-Link HLK-7688A
Specifications:

  - SoC: MediaTek MT7688AN
  - RAM: 128 MB
  - Flash: 32 MB
  - Ethernet: 5x 10/100 (1x WAN, 4x LAN)
  - Wireless: built in 2.4GHz (bgn)
  - USB: 1x USB 2.0 port
  - Buttons: 1x Reset
  - LEDs: 1x (WiFi)

Flash instructions:

  - Configure TFTP server with IP address 10.10.10.3
  - Name the firmware file as firmware.bin
  - Connect any Ethernet port to the TFTP server's LAN
  - Choose option 2 in U-Boot
  - Alternatively choose option 7 to upload firmware to the built-in
    web server

MAC addresses as verified by OEM firmware:

  use   address   source
  2g    *:XX      factory 0x4
  LAN   *:XX+1    factory 0x28
  WAN   *:XX+1    factory 0x2e

Notes:

This board is ostensibly a module containing the MediaTek MT7688AN SoC,
128 MB DDR2 SDRAM and 32 MB flash storage.  The SoC can be operated in
IoT Gateway Mode or IoT Device Mode.

From some vendors the U-Boot that comes installed operates on UART 2
which is inaccessible in gateway mode and operates unreliably in the
Linux kernel when using more than 64 MB of RAM.  For those, updating
U-Boot is recommended.

Signed-off-by: Ewan Parker <ewan@ewan.cc>
[add WLAN to 01_leds]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
2021-02-05 14:54:47 +01:00
INAGAKI Hiroshi
eb11cd9ea3 ramips: add support for ELECOM WRC-2533GHBK-I
ELECOM WRC-2533GHBK-I is a 2.4/5 GHz band 11ac (Wi-Fi 5) router, based
on MT7621A.

Specification:

- SoC		: MediaTek MT7621A
- RAM		: DDR3 128 MiB
- Flash		: SPI-NOR 16 MiB
- WLAN		: 2.4/5 GHz 4T4R (2x MediaTek MT7615)
- Ethernet	: 10/100/1000 Mbps x5
  - Switch	: MediaTek MT7530 (SoC)
- LED/keys	: 4x/3x (2x buttons, 1x slide-switch)
- UART		: through-hole on PCB
  - J4: 3.3V, RX, GND, TX from SoC side
  - 57600n8
- Power		: 12VDC, 1.5A

Flash instruction using factory image:

1. Boot WRC-2533GHBK-I normally
2. Access to "http://192.168.2.1/" and open firmware update page
   ("ファームウェア更新")
3. Select the OpenWrt factory image and click apply ("適用") button
4. Wait ~150 seconds to complete flashing

MAC addresses:

LAN	: BC:5C:4C:xx:xx:89 (Config, ethaddr (text))
WAN	: BC:5C:4C:xx:xx:88 (Config, wanaddr (text))
2.4GHz	: BC:5C:4C:xx:xx:8A (Factory, 0x4    (hex))
5GHz	: BC:5C:4C:xx:xx:8B (Factory, 0x8004 (hex))

Signed-off-by: INAGAKI Hiroshi <musashino.open@gmail.com>
Reviewed-by: Sungbo Eo <mans0n@gorani.run>
2021-01-29 15:32:07 +01:00
Felix Fietkau
ff9846dbb9 ramips: use lzma-loader on zbtlink devices
Fixes boot loader LZMA decompression issues

Signed-off-by: Felix Fietkau <nbd@nbd.name>
2021-01-27 18:26:53 +01:00
Adrian Schmutzler
f52081bcf9 treewide: provide global default for SUPPORTED_DEVICES
The majority of our targets provide a default value for the variable
SUPPORTED_DEVICES, which is used in images to check against the
compatible on a running device:

  SUPPORTED_DEVICES := $(subst _,$(comma),$(1))

At the moment, this is implemented in the Device/Default block of
the individual targets or even subtargets. However, since we
standardized device names and compatible in the recent past, almost
all targets are following the same scheme now:

  device/image name:  vendor_model
  compatible:         vendor,model

The equal redundant definitions are a symptom of this process.

Consequently, this patch moves the definition to image.mk making it
a global default. For the few targets not using the scheme above,
SUPPORTED_DEVICES will be defined to a different value in
Device/Default anyway, overwriting the default. In other words:
This change is supposed to be cosmetic.

This can be used as a global measure to get the current compatible
with: $(firstword $(SUPPORTED_DEVICES))
(Though this is not precisely an achievement of this commit.)

Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
2021-01-23 12:45:21 +01:00
Dmytro Oz
c2a7bb520a ramips: mt7621: add support for Xiaomi Mi Router 4
Xiaomi Mi Router 4 is the same as Xiaomi Mi Router 3G, except for
the RAM (256Mib→128Mib), LEDs and gpio (MiNet button).

Specifications:

Power: 12 VDC, 1 A
Connector type: barrel
CPU1: MediaTek MT7621A (880 MHz, 4 cores)
FLA1: 128 MiB (ESMT F59L1G81MA)
RAM1: 128 MiB (ESMT M15T1G1664A)
WI1 chip1: MediaTek MT7603EN
WI1 802dot11 protocols: bgn
WI1 MIMO config: 2x2:2
WI1 antenna connector: U.FL
WI2 chip1: MediaTek MT7612EN
WI2 802dot11 protocols: an+ac
WI2 MIMO config: 2x2:2
WI2 antenna connector: U.FL
ETH chip1: MediaTek MT7621A
Switch: MediaTek MT7621A

UART Serial
[o] TX
[o] GND
[o] RX
[ ] VCC - Do not connect it

MAC addresses as verified by OEM firmware:

use   address   source
LAN   *:c2      factory 0xe000 (label)
WAN   *:c3      factory 0xe006
2g    *:c4      factory 0x0000
5g    *:c5      factory 0x8000

Flashing instructions:

1.Create a simple http server (nginx etc)
2.set uart enable
To enable writing to the console, you must reset to factory settings
Then you see uboot boot, press the keyboard 4 button (enter uboot command line)
If it is not successful, repeat the above operation of restoring the factory settings.
After entering the uboot command line, type:

setenv uart_en 1
saveenv
boot

3.use shell in uart
cd /tmp
wget http://"your_computer_ip:80"/openwrt-ramips-mt7621-xiaomi_mir4-squashfs-kernel1.bin
wget http://"your_computer_ip:80"/openwrt-ramips-mt7621-xiaomi_mir4-squashfs-rootfs0.bin
mtd write openwrt-ramips-mt7621-xiaomi_mir4-squashfs-kernel1.bin kernel1
mtd write openwrt-ramips-mt7621-xiaomi_mir4-squashfs-rootfs0.bin rootfs0
nvram set flag_try_sys1_failed=1
nvram commit
reboot
4.login to the router http://192.168.1.1/

Installation via Software exploit
Find the instructions in the https://github.com/acecilia/OpenWRTInvasion

Signed-off-by: Dmytro Oz <sequentiality@gmail.com>
[commit message facelift, rebase onto shared DTSI/common device
definition, bump uboot-envtools]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
2021-01-21 22:53:19 +01:00
Adrian Schmutzler
5a46b71826 ramips: mt7621: reorganize shared device definitions for Xiaomi
This creates a shared device definition for Xiaomi devices with
NAND and "separate" images, i.e. kernel1.bin and rootfs0.bin.

This allows to consolidate similar/duplicate code for AC2100 family
and Mi Router 3G.

Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
2021-01-21 22:52:02 +01:00
Sungbo Eo
583e39e3d5 kernel: drop empty kmod-ledtrig-* packages
The following four led triggers are enabled in generic config.

* kmod-ledtrig-default-on
* kmod-ledtrig-heartbeat
* kmod-ledtrig-netdev
* kmod-ledtrig-timer

Drop the packages and remove them from DEVICE_PACKAGES.
There's no other package depending on them in this repo.

Signed-off-by: Sungbo Eo <mans0n@gorani.run>
2021-01-15 18:24:31 +01:00
Leon M. George
211fed5f49 ramips: remove trailing whitespace in Makefiles
Remove trailing whitespaces in two *.mk files.

Signed-off-by: Leon M. George <leon@georgemail.eu>
[fix title, add message]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
2021-01-07 19:51:50 +01:00
David Bauer
fb4d7a9680 ramips: add support for Ubiquiti UniFi 6 Lite
Hardware
--------
MediaTek MT7621AT
256M DDR3
32M SPI-NOR
MediaTek MT7603 2T2R 802.11n 2.4GHz
MediaTek MT7915 2T2R 802.11ax 5GHz

Not Working
-----------
 - Bluetooth (connected to UART3)

UART
----

UART is located in the lower left corner of the board. Pinout is

0 - 3V3 (don't connect)
1 - RX
2 - TX
3 - GND

Console is 115200 8N1.

Boot
----

1. Connect to the serial console and connect power.

2. Double-press ESC when prompted

3. Set the fdt address

   $ fdt addr $(fdtcontroladdr)

4. Remove the signature node from the control FDT

   $ fdt rm /signature

5. Transfer and boot the OpenWrt initramfs image to the device.
   Make sure to name the file C0A80114.img and have it reachable at
   192.168.1.1/24

   $ tftpboot; bootm

Installation
------------

1. Connect to the booted device at 192.168.1.20 using username/password
   "ubnt".

2. Update the bootloader environment.

   $ fw_setenv devmode TRUE
   $ fw_setenv boot_openwrt "fdt addr \$(fdtcontroladdr);
     fdt rm /signature; bootubnt"
   $ fw_setenv bootcmd "run boot_openwrt"

3. Transfer the OpenWrt sysupgrade image to the device using SCP.

4. Check the mtd partition number for bs / kernel0 / kernel1

   $ cat /proc/mtd

5. Set the bootselect flag to boot from kernel0

   $ dd if=/dev/zero bs=1 count=1 of=/dev/mtdblock4

6. Write the OpenWrt sysupgrade image to both kernel0 as well as kernel1

   $ dd if=openwrt.bin of=/dev/mtdblock6
   $ dd if=openwrt.bin of=/dev/mtdblock7

7. Reboot the device. It should boot into OpenWrt.

Below are the original installation instructions prior to the discovery
of "devmode=TRUE". They are not required for installation and are
documentation only.

The bootloader employs signature verification on the FIT image
configurations. This way, booting unauthorized image without patching
the bootloader is not possible. Manually configuring the bootcmd in the
U-Boot envronment won't work, as this is restored to the default value
if modified.

The bootloader is made up of three different parts.

1. The SPL performing early board initialization and providing a XModem
   recovery in case the PBL is missing

2. The PBL being the primary U-Boot application and containing the
   control FDT. It is LZMA packed with a uImage header.

3. A Ubiquiti standalone U-Boot application providing the main boot
   routine as well as their recovery mechanism.

In a perfect world, we would only replace the PBL, as the SPL does not
perform checks on the PBLs integrity. However, as the PBL is in the same
eraseblock as the SPL, we need to at least rewrite both.

The bootloader will only verify integrity in case it has a "signature"
node in it's control device-tree. Renaming the signature node to
something else will prevent this from happening.

Warning: These instructions are based on the firmware intially
shipped with the device and potentially brick your device in a way it
can only be recovered using a SPI flasher.

Only (!) proceed if you understand this!

1. Extract the bootloader from the U-Boot partition using the OpenWrt
   initramfs image.

2. Split the bootloader into it's 3 components:

   $ dd if=bootloader.bin of=spl.bin bs=1 skip=0 count=45056
   $ dd if=bootloader.bin of=pbl.uimage bs=1 skip=45056 count=143360
   $ dd if=bootloader.bin of=ubnt.uimage bs=1 skip=188416

3. Strip the uImage header from the PBL

   $ dd if=pbl.uimage of=pbl.lzma bs=64 skip=1

4. Decompress the PBL

   $ lzma -d pbl.lzma --single-stream

   The decompressed PBL sha256sum should be
   d8b406c65240d260cf15be5f97f40c1d6d1b6e61ec3abed37bb841c90fcc1235

5. Open the decompressed PBL using your favorite hexeditor. Locate the
   control FDT at offset 0x4CED0 (0xD00DFEED). At offset 0x4D5BC, the
   label for the signature node is located. Rename the "signature"
   string at this offset to "signaturr".

   The patched PBL sha256sum should be
   d028e374cdb40ba44b6e3cef2e4e8a8c16a3b85eb15d9544d24fdd10eed64c97

6. Compress the patched PBL

   $ lzma -z pbl --lzma1=dict=67108864

   The resulting pbl.lzma file should have the sha256sum
   7ae6118928fa0d0b3fe4ff81abd80ecfd9ba2944cb0f0a462b6ae65913088b42

7. Create the PBL uimage

   $ SOURCE_DATE_EPOCH=1607909492 mkimage -A mips -O u-boot -C lzma
     -n "U-Boot 2018.03 [UniFi,v1.1.40.71]" -a 84000000 -e 84000000
     -T firmware -d pbl.lzma patched_pbl.uimage

   The resulting patched_pbl.uimage should have the sha256sum
   b90d7fa2dcc6814180d3943530d8d6b0d6a03636113c94e99af34f196d3cf2ce

8. Reassemble the complete bootloader

   $ dd if=patched_pbl.uimage of=aligned_pbl.uimage bs=143360 count=1
     conv=sync
   $ cat spl.bin > patched_uboot.bin
   $ cat aligned_pbl.uimage >> patched_uboot.bin
   $ cat ubnt.uimage >> patched_uboot.bin

   The resulting patched_uboot.bin should have the sha256sum
   3e1186f33b88a525687285c2a8b22e8786787b31d4648b8eee66c672222aa76b

9. Transfer your patched bootloader to the device. Also install the
   kmod-mtd-rw package using opkg and load it.

   $ insmod mtd-rw.ko i_want_a_brick=1

   Write the patched bootloader to mtd0

   $ mtd write patched_uboot.bin u-boot

10. Erase the kernel1 partition, as the bootloader might otherwise
    decide to boot from there.

    $ mtd erase kernel1

11. Transfer the OpenWrt sysupgrade image to the device and install
    using sysupgrade.

FIT configurations
------------------

In the future, the MT7621 UniFi6 family can be supported by a single
OpenWrt image.

config@1: U6 Lite
config@2: U6 IW
config@3: U6 Mesh
config@4: U6 Extender
config@5: U6 LR-EA (Early Access - GA is MT7622)

Signed-off-by: David Bauer <mail@david-bauer.net>
2021-01-05 16:25:13 +01:00
INAGAKI Hiroshi
7ba2f5c96f ramips: add support for ELECOM WRC-1167GST2
ELECOM WRC-1167GST2 is a 2.4/5 GHz band 11ac (Wi-Fi 5) router, based
on MT7621A.

Specification:

- SoC		: MediaTek MT7621A
- RAM		: DDR3 256 MiB
- Flash		: SPI-NOR 32 MiB
- WLAN		: 2.4/5 GHz 2T2R (MediaTek MT7615D)
- Ethernet	: 10/100/1000 Mbps x5
  - Switch	: MediaTek MT7530 (SoC)
- LED/keys	: 6x/6x (2x buttons, 1x slide-switch)
- UART		: through-hole on PCB
  - J4: 3.3V, GND, TX, RX from ethernet port side
  - 57600n8
- Power		: 12VDC, 1A

MAC addresses:

LAN	: 04:AB:18:**:**:07 (Factory, 0xE000 (hex))
WAN	: 04:AB:18:**:**:08 (Factory, 0xE006 (hex))
2.4 GHz	: 04:AB:18:**:**:09 (none)
5 GHz	: 04:AB:18:**:**:0A (none)

Flash instruction using factory image:

1. Boot WRC-1167GST2 normally
2. Access to "http://192.168.2.1/" and open firmware update page
   ("ファームウェア更新")
3. Select the OpenWrt factory image and click apply ("適用") button
4. Wait ~150 seconds to complete flashing

Notes:

- there is no way to configure the correct MAC address for secondary phy
  (5GHz) on MT7615D
- Wi-Fi band on primary phy (2.4GHz) cannot be limitted by specifying
  ieee80211-freq-limit
  (fail to register secondary phy due to error)
- mtd-mac-address in the wifi node is required for using
  mtd-mac-address-increment

Signed-off-by: INAGAKI Hiroshi <musashino.open@gmail.com>
[rebase onto split DTSI]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
2020-12-22 21:44:57 +01:00
INAGAKI Hiroshi
a04d733e56 ramips: add support for ELECOM WRC-1167GS2-B
ELECOM WRC-1167GS2-B is a 2.4/5 GHz band 11ac (Wi-Fi 5) router, based
on MT7621A.

Specification:

- SoC		: MediaTek MT7621A
- RAM		: DDR3 128 MiB
- Flash		: SPI-NOR 16 MiB
- WLAN		: 2.4/5 GHz 2T2R (MediaTek MT7615D)
- Ethernet	: 10/100/1000 Mbps x5
  - Switch	: MediaTek MT7530 (SoC)
- LED/keys	: 6x/6x (2x buttons, 1x slide-switch)
- UART		: through-hole on PCB
  - J4: 3.3V, GND, TX, RX from ethernet port side
  - 57600n8
- Power		: 12VDC, 1A

MAC addresses:

LAN	: 04:AB:18:**:**:13 (Factory, 0xFFF4 (hex))
WAN	: 04:AB:18:**:**:14 (Factory, 0xFFFA (hex))
2.4 GHz	: 04:AB:18:**:**:15 (none)
5 GHz	: 04:AB:18:**:**:16 (Factory, 0x4 (hex))

Flash instruction using factory image:

1. Boot WRC-1167GS2-B normally
2. Access to "http://192.168.2.1/" and open firmware update page
   ("ファームウェア更新")
3. Select the OpenWrt factory image and click apply ("適用") button
4. Wait ~120 seconds to complete flashing

Notes:

- there is no way to configure the correct MAC address for secondary phy
  (5GHz) on MT7615D
- Wi-Fi band on primary phy (2.4GHz) cannot be limitted by specifying
  ieee80211-freq-limit
  (fail to register secondary phy due to error)
- mtd-mac-address in the wifi node is required for using
  mtd-mac-address-increment

Signed-off-by: INAGAKI Hiroshi <musashino.open@gmail.com>
[rebase onto split DTSI patch]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
2020-12-22 21:44:57 +01:00
Andrew Pikler
28262f815e ramips: add support for D-Link DIR-882 R1
Specifications:
- SoC: MediaTek MT7621AT
- RAM: 128 MB (DDR3)
- Flash: 16 MB (SPI NOR)
- WiFi: MediaTek MT7615N (x2)
- Switch: 1 WAN, 4 LAN (Gigabit)
- Ports: 1 USB 2.0, 1 USB 3.0
- Buttons: Reset, WiFi Toggle, WPS
- LEDs: Power, Internet, WiFi 2.4G WiFi 5G, USB 2.0, USB 3.0

The R1 revision is identical to the A1 revision except
- No Config2 Parition, therefore
- factory partition resized to 64k from 128K
- Firmware partition offset is 0x50000 not 0x60000
- Firmware partitions size increased by 64K
- Firmware partition type is "denx,uimage", not "sge,uimage"
- Padding of image creation "uimage-padhdr 96" removed

Installation:
- Older firmware versions: put the factory image on a USB stick, turn on
the telnet console, and flash using the following cmd
"fw_updater Linux /mnt/usb_X_X/firmware.bin"

- D-Link FailsafeUI:
Power down the router, press and hold the reset button, then
re-plug it. Keep the reset button pressed until the internet LED stops
flashing, then jack into any lan port and manually assign a static IP
address in 192.168.0.0/24 other than 192.168.0.0 (e.g. 192.168.0.2)
and go to http://192.168.0.1
Flash with the factory image.

Signed-off-by: Andrew Pikler <andrew.pikler@gmail.com>
2020-12-22 19:11:50 +01:00
Andrew Pikler
40437b18f4 firmware: add tool for signing d-link ru router factory firmware images
Some Russian d-link routers require that their firmware be signed with a
salted md5 checksum followed by the bytes 0x00 0xc0 0xff 0xee. This tool
signs factory images the OEM's firmware accepts them.

Signed-off-by: Andrew Pikler <andrew.pikler@gmail.com>
2020-12-22 19:11:50 +01:00
Michael Pratt
a459696eb1 ramips: add support for Senao Engenius ESR600H
FCC ID: A8J-ESR750H

Engenius ESR600H is an indoor wireless router with a gigabit switch,
2.4 GHz and 5 GHz wireless, internal and external antennas, and a USB port.

**Specification:**

  - RT3662F			MIPS SOC, 5 GHz WMAC (2x2)
  - RT5392L			PCI on-board, 2.4 GHz (2x2)
  - AR8327			RGMII, 7-port GbE, 25 MHz clock
  - 40 MHz reference clock
  - 8 MB FLASH			25L6406EM2I-12G
  - 64 MB RAM
  - UART at J12			(unpopulated)
  - 2 internal antennas		(5 GHz)
  - 2 external antennas		(2.4 GHz)
  - 9 LEDs, 1 button		(power, wps, wifi2g, wifi5g, 5 LAN/WAN)
  - USB 2 port			(GPIO controlled power)

**MAC addresses:**

  MAC Addresses are labeled as WAN and WLAN
  U-boot environment has the the vendor MAC address for ethernet
  MAC addresses in "factory" are part of wifi calibration data

  eth0.2	WAN	*:13:e7		u-boot-env wanaddr
  eth0.1	----	*:13:e8		u-boot-env wanaddr + 1
  phy0		WLAN	*:14:b8		factory 0x8004
  phy1		----	*:14:bc		factory 0x4

**Installation:**

  Method 1: Firmware upgrade page

  OEM webpage at 192.168.0.1
  username and password "admin"
  Navigate to Network Setting --> Tools --> Firmware
  Click Browse and select the factory.dlf image
  Click Continue to confirm and wait 6 minutes or more...

  Method 2: Serial console to load TFTP image:

  (see TFTP recovery)

**Return to OEM:**

  Unlike most Engenius boards, this does not have a 'failsafe' image
  the only way to return to OEM is serial access to uboot

  Unlike most Engenius boards, public images are not available...
  so the only way to return to OEM is to have a copy
  of the MTD partition "firmware" BEFORE flashing openwrt.

**TFTP recovery:**

  Unlike most Engenius boards, TFTP is reliable here
  however it requires serial console access
  (soldering pins to the UART pinouts)

  build your own image...
  with 'ramdisk' selected under 'Target Images'

  rename initramfs-kernel.bin to 'uImageESR-600H'
  make the file available on a TFTP server at 192.168.99.8
  interrupt boot by holding or pressing '4' in serial console
  as soon as board is powered on

  `tftpboot 0x81000000`
  `bootm 0x81000000`
  perform a sysupgrade

**Format of OEM firmware image:**

  This Engenius board uses the Senao proprietary header
  with a unique Product ID. The header for factory.bin is
  generated by the mksenaofw program included in openwrt.

  .dlf file extension is also required for OEM software to accept it

**Note on using OKLI:**

  the kernel is now too large for the bootloader to handle
  so OKLI is used via the `kernel-loader` image command
  recently in master several other ramips boards have the same problem

  'Kernel panic - not syncing: Failed to find ralink,rt3883-sysc node'

  see commit ad19751edc21ae713bd95df6b93be64bd1e0c612

Signed-off-by: Michael Pratt <mcpratt@pm.me>
2020-12-22 19:11:50 +01:00
INAGAKI Hiroshi
fa373b219d ramips: unify elecom-*-factory for ELECOM WRC-GHBK2-S/GS/GST devices
Most of Build/elecom-wrc-factory and Build/elecom-wrc-gs-factory are
nearly equal, Unify those definitions by using "-N" option of mkhash and
splitting the appending text at the end of firmware image for WRC-GS/GST
devices.

Signed-off-by: INAGAKI Hiroshi <musashino.open@gmail.com>
2020-12-22 19:11:50 +01:00
Xinfa Deng
d89a7f0120 ramips: add support for GL.iNet GL-MT1300
The GL-MT1300 is a high-performance new generation pocket-sized router
that offers a powerful hardware and first-class cybersecurity protocol
with unique and modern design.

Specifications:
- SoC: MT7621A, Dual-Core @880MHz
- RAM: 256 MB DDR3
- Flash: 32 MB
- Ethernet: 3 x 10/100/1000: 2 x LAN + 1 x WAN
- Wireless: 1 x MT7615D Dual-Band 2.4GHz(400Mbps) + 5GHz(867Mbps)
- USB: 1 x USB 3.0 port
- Slot: 1 x MicroSD card slot
- Button: 1 x Reset button
- Switch: 1 x Mode switch
- LED: 1 x Blue LED + 1 x White LED

MAC addresses based on vendor firmware:
WAN : factory 0x4000
LAN : Mac from factory 0x4000 + 1
2.4GHz : factory 0x4
5GHz : Mac form factory 0x4 + 1

Flashing instructions:
1.Connect to one of LAN ports.
2.Set the static IP on the PC to 192.168.1.2.
3.Press the Reset button and power the device (do not release the button).
  After waiting for the blue led to flash 5 times, the white led will
  come on and release the button.
4.Browse the 192.168.1.1 web page and update firmware according to web
  tips.
5.The blue led will flash when the firmware is being upgraded.
6.The blue led stops blinking to indicate that the firmware upgrade is
  complete and U-Boot automatically starts the firmware.

For more information on GL-MT1300, see the OFFICIAL GL.iNet website:
https://www.gl-inet.com/products/gl-mt1300/

Signed-off-by: Xinfa Deng <xinfa.deng@gl-inet.com>
[add input-type for switch, wrap long line in 10_fix_wifi_mac]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
2020-12-17 12:05:26 +01:00
Adrian Schmutzler
6d4382711a ramips: use full names for Xiaomi Mi Router devices
This aligns the device/image names of the older Xiaomi Mi Router
devices with their "friendly" model and DEVICE_MODEL properties.

This also reintroduces consistency with the newer devices already
following that scheme.

Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
2020-12-08 17:18:57 +01:00
Pavel Chervontsev
6d98c098e4 ramips: add support for ASUS RT-N56U B1
Specifications:

SoC: MediaTek MT7621ST (880 MHz)
FLASH: 16 MiB (Macronix MX25L12835FM2I-10G)
RAM: 128 MiB (Nanya NT5CB64M16FP-DH)
WiFi: MediaTek MT7603EN bgn 2x2:2
WiFi: MediaTek MT7612EN an 2x2:2
BTN: Reset, WPS
LED: - Power
- WiFi 2.4 GHz
- WiFi 5 GHz
- WAN
- LAN {1-4}
- USB {1-2}
UART: UART is present as pin hole next to the aluminium capacitor.
3V3 - RX - GND - TX / 115200-8N1
3V3 is the nearest on the aluminium capacitor and nut hole (pin1).
USB: 2 ports
POWER: 12VDC, 1.5A (Barrel 5.5x2.1)

Installation:

Via TFTP:
    Set your computers IP-Address to 192.168.1.75
    Power up the Router with the Reset button pressed.
    Release the Reset button after 5 seconds.
    Upload OpenWRT sysupgrade image via TFTP:
    tftp -4 -v -m binary 192.168.1.1 -c put IMAGE

MAC addresses:

0x4     *:98  2g/wan, label
0x22    *:9c
0x28    *:98
0x8004  *:9c  5g/lan

Though addresses are written to 0x22 and 0x28, it appears that the
vendor firmware actually only uses 0x4 and 0x8004. Thus, we do the
same here.

Signed-off-by: Pavel Chervontsev <cherpash@gmail.com>
[add MAC address overview, add label-mac-device, fix IMAGE_SIZE]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
2020-11-28 20:51:50 +01:00
Sander Vanheule
f29231ece7 ramips: mt7621: replace missing custom-initramfs-uimage
custom-initramfs-uimage was replaced by calls to uImage, but apparently
mtc_wr1201 was missed in the transistion. Use uImage for this device
too.

Fixes: 9f574b1b875c "ramips: mt7621: drop custom uImage function"

Signed-off-by: Sander Vanheule <sander@svanheule.net>
2020-11-26 09:12:57 +01:00
Ataberk Özen
4287f73989 ramips: add support for Xiaomi Mi Router 4C
This commit adds support for Xiaomi's Mi Router 4C device.

Specifications:

- CPU: MediaTek MT7628AN (580MHz)
- Flash: 16MB
- RAM: 64MB DDR2
- 2.4 GHz: IEEE 802.11b/g/n with Integrated LNA and PA
- Antennas: 4x external single band antennas
- WAN: 1x 10/100M
- LAN: 2x 10/100M
- LEDs: 2x yellow/blue. Programmable (labelled as power on case)
                      - Non-programmable (shows WAN activity)
- Button: Reset

How to install:

1- Use OpenWRTInvasion to gain telnet and ftp access.
2- Push openwrt firmware to /tmp/ using ftp.
3- Connect to router using telnet. (IP: 192.168.31.1 -
   Username: root - No password)
4- Use command "mtd -r write /tmp/firmware.bin OS1" to flash into
   the router..
5- It takes around 2 minutes. After that router will restart itself
   to OpenWrt.

Signed-off-by: Ataberk Özen <ataberkozen123@gmail.com>
[wrap commit message, bump PKG_RELEASE for uboot-envtools, remove
dts-v1 from DTS, fix LED labels]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
2020-11-25 19:34:13 +01:00
Sander Vanheule
9f574b1b87 ramips: mt7621: drop custom uImage function
Use the mkimage argument overrides provided by uImage to implement the
customisations required for the initramfs, instead of the near-identical
custom function.

Signed-off-by: Sander Vanheule <sander@svanheule.net>
2020-11-25 15:51:22 +01:00
Filip Moc
b641eb6ecf ramips: add support for TP-Link MR6400 v5
TL-MR6400v5 is very similar to TL-MR6400v4. Main differences are:
  - smaller form factor
  - different LED GPIOs
  - different switch connections

You can flash via tftp recovery:
 - serve tftp-recovery image as /tp_recovery.bin on 192.168.0.225/24
 - connect to any ethernet port
 - power on the device while holding the reset button
 - wait at least 8 seconds before releasing reset button

Flashing via OEM web interface does not work.

LTE module does not support DHCP so it must be configured via QMI.

Hardware Specification (v5.0 EU):
 - SoC: MT7628NN
 - Flash: Winbond W25Q64JVS (8MiB)
 - RAM: ESMT M14D5121632A (64MiB)
 - Wireless: SoC platform only (2.4GHz b/g/n, 2x internal antenna)
 - Ethernet: 1NIC (4x100M)
 - WWAN: TP-LINK LTE MODULE (2x external detachable antenna)
 - Power: DC 9V 0.85A

Signed-off-by: Filip Moc <lede@moc6.cz>
2020-11-25 13:23:06 +01:00
Filip Moc
0d65177658 ramips: add support for TP-Link MR6400 v4
You can flash via tftp recovery:
 - serve tftp-recovery image as /tp_recovery.bin on 192.168.0.225/24
 - connect to any ethernet port
 - power on the device while holding the reset button
 - wait at least 8 seconds before releasing reset button

Flashing via OEM web interface does not work.

LTE module does not support DHCP so it must be configured via QMI.

Hardware Specification (v4.0 EU):
 - SoC: MT7628NN
 - Flash: Winbond W25Q64JVS (8MiB)
 - RAM: ESMT M14D5121632A (64MiB)
 - Wireless: SoC platform only (2.4GHz b/g/n, 2x internal antenna)
 - Ethernet: 1NIC (4x100M)
 - WWAN: TP-LINK LTE MODULE (2x external detachable antenna)
 - Power: DC 9V 0.85A

Signed-off-by: Filip Moc <lede@moc6.cz>
2020-11-23 00:46:40 +00:00
Marc Egerton
f276395cda ramips: add support for the Hak5 WiFi Pineapple Mark 7
This patch adds support for the WiFi Pineapple Mark 7, a wireless
penetration testing tool.

Specifications:
    * SoC: MediaTek MT7628 (580MHz)
    * RAM: 256MiB (DDR2)
    * Storage 1: 32MiB NOR (SPI)
    * Storage 2: 2GB eMMC
    * Wireless 1: 802.11b/g/n 2.4GHz (Built In)
    * Wireless 2: 802.11b/g/n 2.4GHz (MT7601)
    * Wireless 3: 802.11b/g/n 2.4GHz (MT7601)
    * USB: 1x USB Type-A 2.0 Host Port
    * Ethernet: 1x USB Type-C AX88772C Ethernet
    * UART: 57600 8N1 on PCB
    * Inputs: 1x Reset Button
    * Outputs: 1x RGB LED
    * FCCID: 2AA52MK7

Flash Instructions:
    Original firmware is based on OpenWRT.
    Use sysupgrade via SSH to flash.

Signed-off-by: Marc Egerton <foxtrot@realloc.me>
[pepe2k@gmail.com: set only required/used gpio groups to gpio function]
Signed-off-by: Piotr Dymacz <pepe2k@gmail.com>
2020-11-18 23:49:34 +01:00
Adrian Schmutzler
a51e46e543 ramips: add Xiaomi Mi Router 4A Gigabit explicitly
This device has previously been supported by the image
for Xiaomi Mi Router 3G v2. Since this is not obvious, the
4A is marketed as a new major revision and it also seems to
have a different bootloader, this will be both more tidy and
more helpful for the users.

Apart from that, note that there also is a 100M version of
the device that uses mt7628 platform, so a specifically named
image will also prevent confusion in this area.

Specifications:

- SoC:      MediaTek MT7621
- Flash:    16 MiB NOR SPI
- RAM:      128 MiB DDR3
- Ethernet: 3x 10/100/1000 Mbps (switched, 2xLAN + WAN)
- WIFI0:    MT7603E 2.4GHz 802.11b/g/n
- WIFI1:    MT7612E 5GHz 802.11ac
- Antennas: 4x external (2 per radio), non-detachable
- LEDs:     Programmable "power" LED (two-coloured, yellow/blue)
            Non-programmable "internet" LED (shows WAN activity)
- Buttons:  Reset

Installation:

Bootloader won't accept any serial input unless "boot_wait" u-boot
environment variable is changed to "on".

Vendor firmware won't accept any serial input until "uart_en" is
set to "1".

Using the https://github.com/acecilia/OpenWRTInvasion exploit you
can gain access to shell to enable these options:

To enable uart keyboard actions - 'nvram set uart_en=1'
To make uboot delay boot work - 'nvram set boot_wait=on'
Set boot delay to 5 - 'nvram set bootdelay=5'

Then run 'nvram commit' to make the changes permanent.

Once in the shell (following the OpenWRTInvasion instructions) you
can then run the following to flash OpenWrt and then reboot:

'cd /tmp; curl https://downloads.openwrt.org/...-sysupgrade.bin
  --output firmware.bin; mtd -e OS1 -r write firmware.bin OS1'

Suggested-by: David Bentham <db260179@gmail.com>
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
2020-11-12 17:18:26 +01:00
James McGuire
de768829a5 ramips: add support for D-Link DIR-2640 A1
This patch adds support for D-Link DIR-2640 A1.

Specifications:
* Board: AP-MTKH7-0002
* SoC: MediaTek MT7621AT
* RAM: 256 MB (DDR3)
* Flash: 128 MB (NAND)
* WiFi: MediaTek MT7615N (x2)
* Switch: 1 WAN, 4 LAN (Gigabit)
* Ports: 1 USB 2.0, 1 USB 3.0
* Buttons: Reset, WPS
* LEDs: Power (blue/orange), Internet (blue/orange), WiFi 2.4G (blue),
        WiFi 5G (blue), USB 3.0 (blue), USB 2.0 (blue)

Notes:
* WiFi 2.4G and WiFi 5G LEDs are wired directly to the wireless chips

Installation:
* D-Link Recovery GUI: power down the router, press and hold the reset
  button, then re-plug it. Keep the reset button pressed until the power
  LED starts flashing orange, manually assign a static IP address under
  the 192.168.0.xxx subnet (e.g. 192.168.0.2) and go to http://192.168.0.1

* Some modern browsers may have problems flashing via the Recovery GUI,
  if that occurs consider uploading the firmware through cURL:

    curl -v -i -F "firmware=@file.bin" 192.168.0.1

MAC addresses:

lan   factory 0xe000     *:a7 (label)
wan   factory 0xe006     *:aa
2.4   factory 0xe000 +1  *:a8
5.0   factory 0xe000 +2  *:a9

Seems like vendor didn't replace the dummy entries in the calibration data.

Signed-off-by: James McGuire <jamesm51@gmail.com>
[fix device definition title]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
2020-11-11 17:35:10 +01:00
John Thomson
254f51443d mt7621: mikrotik: use vmlinuz (zBoot ELF)
- minimal built initramfs: 11MB vmlinux ELF -> 4.5MB vmlinuz
- ~5 seconds for kernel decompression, which was equivalent to the
  additional time to load the uncompressed ELF from SPI NOR.
- Removes requirement for lzma-loader, which may have been causing some
  image builds to fail to boot on Mikrotik mt7621.

Fixes: FS#3354
Suggested-by: Thibaut VARÈNE <hacks@slashdirt.org>
Signed-off-by: John Thomson <git@johnthomson.fastmail.com.au>
2020-10-29 21:35:03 +08:00
Nuno Goncalves
2a860bf4f4 ramips: add support for Wavlink WL-WN530HG4
Same hardware as Phicomm K2G but different flash layout.

Specification:
- SoC: MediaTek MT7620A
- Flash: 8 MB
- RAM: 64 MB
- Ethernet: 4 FE ports and 1 GE port (RTL8211F on port 5)
- Wireless radio: MT7620 for 2.4G and MT7612E for 5G, both equipped
  with external PA.
- UART: 1 x UART on PCB - 57600 8N1

Flash instruction:
To avoid requiring UART for TFTP a dual flash procedure is suggested
to install the squashfs image:
1. Rename openwrt-ramips-mt7620-wavlink_wl-wn530hg4-initramfs-kernel.bin
   to WN530HG4-WAVLINK.
2. Flash this file with the factory web interface.
3. With OpenWRT now running use standard sysupgrade to install the
   squashfs image.

Signed-off-by: Nuno Goncalves <nunojpg@gmail.com>
[remove dts-v1, remove model from LED labels, wrap commit message]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
2020-10-27 21:20:16 +01:00
Jianhui Zhao
63ab77d0eb ramips: mt7621: use lzma-loader for U7621-06
The U7621-06 fails to boot if the kernel is large.
Enabling lzma-loader resolves the issue.

Signed-off-by: Jianhui Zhao <zhaojh329@gmail.com>
2020-10-25 22:30:02 +08:00