1
0
mirror of https://git.openwrt.org/openwrt/openwrt.git synced 2024-10-21 06:58:37 +02:00
Commit Graph

1041 Commits

Author SHA1 Message Date
Bjørn Mork
5ab5bacda2 kernel: mtdsplit_uimage: replace "fonfxc" and "sge" parsers
Convert users of the "fonfxc" and "sge" parsers to the generic
"openwrt,uimage", using device specific "openwrt,padding" properties.

Tested-by: Stijn Segers <foss@volatilesystems.org> [DIR-878 A1]
Signed-off-by: Bjørn Mork <bjorn@mork.no>
2021-01-22 21:03:11 +01:00
Adrian Schmutzler
b3eccbca7c ramips: fix port labels for Xiaomi Mi Router 4
The OEM assignment of LAN ports is swapped.

Fixes: c2a7bb520a0f ("ramips: mt7621: add support for Xiaomi Mi Router 4")

Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
2021-01-21 22:56:43 +01:00
Dmytro Oz
c2a7bb520a ramips: mt7621: add support for Xiaomi Mi Router 4
Xiaomi Mi Router 4 is the same as Xiaomi Mi Router 3G, except for
the RAM (256Mib→128Mib), LEDs and gpio (MiNet button).

Specifications:

Power: 12 VDC, 1 A
Connector type: barrel
CPU1: MediaTek MT7621A (880 MHz, 4 cores)
FLA1: 128 MiB (ESMT F59L1G81MA)
RAM1: 128 MiB (ESMT M15T1G1664A)
WI1 chip1: MediaTek MT7603EN
WI1 802dot11 protocols: bgn
WI1 MIMO config: 2x2:2
WI1 antenna connector: U.FL
WI2 chip1: MediaTek MT7612EN
WI2 802dot11 protocols: an+ac
WI2 MIMO config: 2x2:2
WI2 antenna connector: U.FL
ETH chip1: MediaTek MT7621A
Switch: MediaTek MT7621A

UART Serial
[o] TX
[o] GND
[o] RX
[ ] VCC - Do not connect it

MAC addresses as verified by OEM firmware:

use   address   source
LAN   *:c2      factory 0xe000 (label)
WAN   *:c3      factory 0xe006
2g    *:c4      factory 0x0000
5g    *:c5      factory 0x8000

Flashing instructions:

1.Create a simple http server (nginx etc)
2.set uart enable
To enable writing to the console, you must reset to factory settings
Then you see uboot boot, press the keyboard 4 button (enter uboot command line)
If it is not successful, repeat the above operation of restoring the factory settings.
After entering the uboot command line, type:

setenv uart_en 1
saveenv
boot

3.use shell in uart
cd /tmp
wget http://"your_computer_ip:80"/openwrt-ramips-mt7621-xiaomi_mir4-squashfs-kernel1.bin
wget http://"your_computer_ip:80"/openwrt-ramips-mt7621-xiaomi_mir4-squashfs-rootfs0.bin
mtd write openwrt-ramips-mt7621-xiaomi_mir4-squashfs-kernel1.bin kernel1
mtd write openwrt-ramips-mt7621-xiaomi_mir4-squashfs-rootfs0.bin rootfs0
nvram set flag_try_sys1_failed=1
nvram commit
reboot
4.login to the router http://192.168.1.1/

Installation via Software exploit
Find the instructions in the https://github.com/acecilia/OpenWRTInvasion

Signed-off-by: Dmytro Oz <sequentiality@gmail.com>
[commit message facelift, rebase onto shared DTSI/common device
definition, bump uboot-envtools]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
2021-01-21 22:53:19 +01:00
Adrian Schmutzler
93be5926a2 ramips: mt7621: create DTSI for Xiaomi NAND devices
This creates a DTSI for Xiaomi devices with 128M NAND.

This allows to consolidate the partitions and a few other nodes for
AC2100 family and Mi Router 3G.

Note that the Mi Router 3 Pro has 256M NAND and differently sized
partitions.

Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
2021-01-21 22:52:02 +01:00
David Bauer
b4c0d377f6 ramips: limit 5GHz channels for UniFi 6 Lite
The MT7915 radio currently advertises 2.4GHz channels while the antenna
path only supports 5 GHz. Limit the radio to 5GHz channels to prevent
users from configuring non-supported channels.

Signed-off-by: David Bauer <mail@david-bauer.net>
2021-01-06 00:00:01 +01:00
David Bauer
fb4d7a9680 ramips: add support for Ubiquiti UniFi 6 Lite
Hardware
--------
MediaTek MT7621AT
256M DDR3
32M SPI-NOR
MediaTek MT7603 2T2R 802.11n 2.4GHz
MediaTek MT7915 2T2R 802.11ax 5GHz

Not Working
-----------
 - Bluetooth (connected to UART3)

UART
----

UART is located in the lower left corner of the board. Pinout is

0 - 3V3 (don't connect)
1 - RX
2 - TX
3 - GND

Console is 115200 8N1.

Boot
----

1. Connect to the serial console and connect power.

2. Double-press ESC when prompted

3. Set the fdt address

   $ fdt addr $(fdtcontroladdr)

4. Remove the signature node from the control FDT

   $ fdt rm /signature

5. Transfer and boot the OpenWrt initramfs image to the device.
   Make sure to name the file C0A80114.img and have it reachable at
   192.168.1.1/24

   $ tftpboot; bootm

Installation
------------

1. Connect to the booted device at 192.168.1.20 using username/password
   "ubnt".

2. Update the bootloader environment.

   $ fw_setenv devmode TRUE
   $ fw_setenv boot_openwrt "fdt addr \$(fdtcontroladdr);
     fdt rm /signature; bootubnt"
   $ fw_setenv bootcmd "run boot_openwrt"

3. Transfer the OpenWrt sysupgrade image to the device using SCP.

4. Check the mtd partition number for bs / kernel0 / kernel1

   $ cat /proc/mtd

5. Set the bootselect flag to boot from kernel0

   $ dd if=/dev/zero bs=1 count=1 of=/dev/mtdblock4

6. Write the OpenWrt sysupgrade image to both kernel0 as well as kernel1

   $ dd if=openwrt.bin of=/dev/mtdblock6
   $ dd if=openwrt.bin of=/dev/mtdblock7

7. Reboot the device. It should boot into OpenWrt.

Below are the original installation instructions prior to the discovery
of "devmode=TRUE". They are not required for installation and are
documentation only.

The bootloader employs signature verification on the FIT image
configurations. This way, booting unauthorized image without patching
the bootloader is not possible. Manually configuring the bootcmd in the
U-Boot envronment won't work, as this is restored to the default value
if modified.

The bootloader is made up of three different parts.

1. The SPL performing early board initialization and providing a XModem
   recovery in case the PBL is missing

2. The PBL being the primary U-Boot application and containing the
   control FDT. It is LZMA packed with a uImage header.

3. A Ubiquiti standalone U-Boot application providing the main boot
   routine as well as their recovery mechanism.

In a perfect world, we would only replace the PBL, as the SPL does not
perform checks on the PBLs integrity. However, as the PBL is in the same
eraseblock as the SPL, we need to at least rewrite both.

The bootloader will only verify integrity in case it has a "signature"
node in it's control device-tree. Renaming the signature node to
something else will prevent this from happening.

Warning: These instructions are based on the firmware intially
shipped with the device and potentially brick your device in a way it
can only be recovered using a SPI flasher.

Only (!) proceed if you understand this!

1. Extract the bootloader from the U-Boot partition using the OpenWrt
   initramfs image.

2. Split the bootloader into it's 3 components:

   $ dd if=bootloader.bin of=spl.bin bs=1 skip=0 count=45056
   $ dd if=bootloader.bin of=pbl.uimage bs=1 skip=45056 count=143360
   $ dd if=bootloader.bin of=ubnt.uimage bs=1 skip=188416

3. Strip the uImage header from the PBL

   $ dd if=pbl.uimage of=pbl.lzma bs=64 skip=1

4. Decompress the PBL

   $ lzma -d pbl.lzma --single-stream

   The decompressed PBL sha256sum should be
   d8b406c65240d260cf15be5f97f40c1d6d1b6e61ec3abed37bb841c90fcc1235

5. Open the decompressed PBL using your favorite hexeditor. Locate the
   control FDT at offset 0x4CED0 (0xD00DFEED). At offset 0x4D5BC, the
   label for the signature node is located. Rename the "signature"
   string at this offset to "signaturr".

   The patched PBL sha256sum should be
   d028e374cdb40ba44b6e3cef2e4e8a8c16a3b85eb15d9544d24fdd10eed64c97

6. Compress the patched PBL

   $ lzma -z pbl --lzma1=dict=67108864

   The resulting pbl.lzma file should have the sha256sum
   7ae6118928fa0d0b3fe4ff81abd80ecfd9ba2944cb0f0a462b6ae65913088b42

7. Create the PBL uimage

   $ SOURCE_DATE_EPOCH=1607909492 mkimage -A mips -O u-boot -C lzma
     -n "U-Boot 2018.03 [UniFi,v1.1.40.71]" -a 84000000 -e 84000000
     -T firmware -d pbl.lzma patched_pbl.uimage

   The resulting patched_pbl.uimage should have the sha256sum
   b90d7fa2dcc6814180d3943530d8d6b0d6a03636113c94e99af34f196d3cf2ce

8. Reassemble the complete bootloader

   $ dd if=patched_pbl.uimage of=aligned_pbl.uimage bs=143360 count=1
     conv=sync
   $ cat spl.bin > patched_uboot.bin
   $ cat aligned_pbl.uimage >> patched_uboot.bin
   $ cat ubnt.uimage >> patched_uboot.bin

   The resulting patched_uboot.bin should have the sha256sum
   3e1186f33b88a525687285c2a8b22e8786787b31d4648b8eee66c672222aa76b

9. Transfer your patched bootloader to the device. Also install the
   kmod-mtd-rw package using opkg and load it.

   $ insmod mtd-rw.ko i_want_a_brick=1

   Write the patched bootloader to mtd0

   $ mtd write patched_uboot.bin u-boot

10. Erase the kernel1 partition, as the bootloader might otherwise
    decide to boot from there.

    $ mtd erase kernel1

11. Transfer the OpenWrt sysupgrade image to the device and install
    using sysupgrade.

FIT configurations
------------------

In the future, the MT7621 UniFi6 family can be supported by a single
OpenWrt image.

config@1: U6 Lite
config@2: U6 IW
config@3: U6 Mesh
config@4: U6 Extender
config@5: U6 LR-EA (Early Access - GA is MT7622)

Signed-off-by: David Bauer <mail@david-bauer.net>
2021-01-05 16:25:13 +01:00
Adrian Schmutzler
1fb40a72da treewide: use more descriptive names for concatenated partitions
A few devices in ath79 and ramips use mtd-concat to concatenate
individual partitions into a bigger "firmware" or "ubi" partition.

However, the original partitions are still present and visible,
and one can write to them directly although this might break the
actual virtual, concatenated partition.

As we cannot do much about the former, let's at least choose more
descriptive names than just "firmwareX" in order to indicate the
concatenation to the user. He might be less tempted into overwriting
a "fwconcat1" than a "firmware1", which might be perceived as an
alternate firmware for dual boot etc.

This applies the new naming consistently for all relevant devices,
i.e. fwconcatX for virtual "firmware" members and ubiconcatX for
"ubi" members.

While at it, use DT labels and label property consistently, and
also use consistent zero-based indexing.

Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
2020-12-27 20:33:45 +01:00
INAGAKI Hiroshi
7ba2f5c96f ramips: add support for ELECOM WRC-1167GST2
ELECOM WRC-1167GST2 is a 2.4/5 GHz band 11ac (Wi-Fi 5) router, based
on MT7621A.

Specification:

- SoC		: MediaTek MT7621A
- RAM		: DDR3 256 MiB
- Flash		: SPI-NOR 32 MiB
- WLAN		: 2.4/5 GHz 2T2R (MediaTek MT7615D)
- Ethernet	: 10/100/1000 Mbps x5
  - Switch	: MediaTek MT7530 (SoC)
- LED/keys	: 6x/6x (2x buttons, 1x slide-switch)
- UART		: through-hole on PCB
  - J4: 3.3V, GND, TX, RX from ethernet port side
  - 57600n8
- Power		: 12VDC, 1A

MAC addresses:

LAN	: 04:AB:18:**:**:07 (Factory, 0xE000 (hex))
WAN	: 04:AB:18:**:**:08 (Factory, 0xE006 (hex))
2.4 GHz	: 04:AB:18:**:**:09 (none)
5 GHz	: 04:AB:18:**:**:0A (none)

Flash instruction using factory image:

1. Boot WRC-1167GST2 normally
2. Access to "http://192.168.2.1/" and open firmware update page
   ("ファームウェア更新")
3. Select the OpenWrt factory image and click apply ("適用") button
4. Wait ~150 seconds to complete flashing

Notes:

- there is no way to configure the correct MAC address for secondary phy
  (5GHz) on MT7615D
- Wi-Fi band on primary phy (2.4GHz) cannot be limitted by specifying
  ieee80211-freq-limit
  (fail to register secondary phy due to error)
- mtd-mac-address in the wifi node is required for using
  mtd-mac-address-increment

Signed-off-by: INAGAKI Hiroshi <musashino.open@gmail.com>
[rebase onto split DTSI]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
2020-12-22 21:44:57 +01:00
INAGAKI Hiroshi
a04d733e56 ramips: add support for ELECOM WRC-1167GS2-B
ELECOM WRC-1167GS2-B is a 2.4/5 GHz band 11ac (Wi-Fi 5) router, based
on MT7621A.

Specification:

- SoC		: MediaTek MT7621A
- RAM		: DDR3 128 MiB
- Flash		: SPI-NOR 16 MiB
- WLAN		: 2.4/5 GHz 2T2R (MediaTek MT7615D)
- Ethernet	: 10/100/1000 Mbps x5
  - Switch	: MediaTek MT7530 (SoC)
- LED/keys	: 6x/6x (2x buttons, 1x slide-switch)
- UART		: through-hole on PCB
  - J4: 3.3V, GND, TX, RX from ethernet port side
  - 57600n8
- Power		: 12VDC, 1A

MAC addresses:

LAN	: 04:AB:18:**:**:13 (Factory, 0xFFF4 (hex))
WAN	: 04:AB:18:**:**:14 (Factory, 0xFFFA (hex))
2.4 GHz	: 04:AB:18:**:**:15 (none)
5 GHz	: 04:AB:18:**:**:16 (Factory, 0x4 (hex))

Flash instruction using factory image:

1. Boot WRC-1167GS2-B normally
2. Access to "http://192.168.2.1/" and open firmware update page
   ("ファームウェア更新")
3. Select the OpenWrt factory image and click apply ("適用") button
4. Wait ~120 seconds to complete flashing

Notes:

- there is no way to configure the correct MAC address for secondary phy
  (5GHz) on MT7615D
- Wi-Fi band on primary phy (2.4GHz) cannot be limitted by specifying
  ieee80211-freq-limit
  (fail to register secondary phy due to error)
- mtd-mac-address in the wifi node is required for using
  mtd-mac-address-increment

Signed-off-by: INAGAKI Hiroshi <musashino.open@gmail.com>
[rebase onto split DTSI patch]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
2020-12-22 21:44:57 +01:00
Adrian Schmutzler
d0b7e186e6 ramips: mt7621: create DTSI for ELECOM WRC GS devices with 2 PCI
This creates a dedicated DTSI for ELECOM WRC GS devices with 2 PCI
WiFi chips in preparation for the 1 chip - dual radio devices, so
the latter can reuse part of the common definitions.

Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
2020-12-22 21:44:57 +01:00
Andrew Pikler
28262f815e ramips: add support for D-Link DIR-882 R1
Specifications:
- SoC: MediaTek MT7621AT
- RAM: 128 MB (DDR3)
- Flash: 16 MB (SPI NOR)
- WiFi: MediaTek MT7615N (x2)
- Switch: 1 WAN, 4 LAN (Gigabit)
- Ports: 1 USB 2.0, 1 USB 3.0
- Buttons: Reset, WiFi Toggle, WPS
- LEDs: Power, Internet, WiFi 2.4G WiFi 5G, USB 2.0, USB 3.0

The R1 revision is identical to the A1 revision except
- No Config2 Parition, therefore
- factory partition resized to 64k from 128K
- Firmware partition offset is 0x50000 not 0x60000
- Firmware partitions size increased by 64K
- Firmware partition type is "denx,uimage", not "sge,uimage"
- Padding of image creation "uimage-padhdr 96" removed

Installation:
- Older firmware versions: put the factory image on a USB stick, turn on
the telnet console, and flash using the following cmd
"fw_updater Linux /mnt/usb_X_X/firmware.bin"

- D-Link FailsafeUI:
Power down the router, press and hold the reset button, then
re-plug it. Keep the reset button pressed until the internet LED stops
flashing, then jack into any lan port and manually assign a static IP
address in 192.168.0.0/24 other than 192.168.0.0 (e.g. 192.168.0.2)
and go to http://192.168.0.1
Flash with the factory image.

Signed-off-by: Andrew Pikler <andrew.pikler@gmail.com>
2020-12-22 19:11:50 +01:00
Michael Pratt
a459696eb1 ramips: add support for Senao Engenius ESR600H
FCC ID: A8J-ESR750H

Engenius ESR600H is an indoor wireless router with a gigabit switch,
2.4 GHz and 5 GHz wireless, internal and external antennas, and a USB port.

**Specification:**

  - RT3662F			MIPS SOC, 5 GHz WMAC (2x2)
  - RT5392L			PCI on-board, 2.4 GHz (2x2)
  - AR8327			RGMII, 7-port GbE, 25 MHz clock
  - 40 MHz reference clock
  - 8 MB FLASH			25L6406EM2I-12G
  - 64 MB RAM
  - UART at J12			(unpopulated)
  - 2 internal antennas		(5 GHz)
  - 2 external antennas		(2.4 GHz)
  - 9 LEDs, 1 button		(power, wps, wifi2g, wifi5g, 5 LAN/WAN)
  - USB 2 port			(GPIO controlled power)

**MAC addresses:**

  MAC Addresses are labeled as WAN and WLAN
  U-boot environment has the the vendor MAC address for ethernet
  MAC addresses in "factory" are part of wifi calibration data

  eth0.2	WAN	*:13:e7		u-boot-env wanaddr
  eth0.1	----	*:13:e8		u-boot-env wanaddr + 1
  phy0		WLAN	*:14:b8		factory 0x8004
  phy1		----	*:14:bc		factory 0x4

**Installation:**

  Method 1: Firmware upgrade page

  OEM webpage at 192.168.0.1
  username and password "admin"
  Navigate to Network Setting --> Tools --> Firmware
  Click Browse and select the factory.dlf image
  Click Continue to confirm and wait 6 minutes or more...

  Method 2: Serial console to load TFTP image:

  (see TFTP recovery)

**Return to OEM:**

  Unlike most Engenius boards, this does not have a 'failsafe' image
  the only way to return to OEM is serial access to uboot

  Unlike most Engenius boards, public images are not available...
  so the only way to return to OEM is to have a copy
  of the MTD partition "firmware" BEFORE flashing openwrt.

**TFTP recovery:**

  Unlike most Engenius boards, TFTP is reliable here
  however it requires serial console access
  (soldering pins to the UART pinouts)

  build your own image...
  with 'ramdisk' selected under 'Target Images'

  rename initramfs-kernel.bin to 'uImageESR-600H'
  make the file available on a TFTP server at 192.168.99.8
  interrupt boot by holding or pressing '4' in serial console
  as soon as board is powered on

  `tftpboot 0x81000000`
  `bootm 0x81000000`
  perform a sysupgrade

**Format of OEM firmware image:**

  This Engenius board uses the Senao proprietary header
  with a unique Product ID. The header for factory.bin is
  generated by the mksenaofw program included in openwrt.

  .dlf file extension is also required for OEM software to accept it

**Note on using OKLI:**

  the kernel is now too large for the bootloader to handle
  so OKLI is used via the `kernel-loader` image command
  recently in master several other ramips boards have the same problem

  'Kernel panic - not syncing: Failed to find ralink,rt3883-sysc node'

  see commit ad19751edc21ae713bd95df6b93be64bd1e0c612

Signed-off-by: Michael Pratt <mcpratt@pm.me>
2020-12-22 19:11:50 +01:00
Adrian Schmutzler
58c5deb975 ramips: do not enable unused GPIO controllers
Several devices enable GPIO controllers not used in the DTS files.

Drop them.

Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
2020-12-17 12:10:10 +01:00
Xinfa Deng
d89a7f0120 ramips: add support for GL.iNet GL-MT1300
The GL-MT1300 is a high-performance new generation pocket-sized router
that offers a powerful hardware and first-class cybersecurity protocol
with unique and modern design.

Specifications:
- SoC: MT7621A, Dual-Core @880MHz
- RAM: 256 MB DDR3
- Flash: 32 MB
- Ethernet: 3 x 10/100/1000: 2 x LAN + 1 x WAN
- Wireless: 1 x MT7615D Dual-Band 2.4GHz(400Mbps) + 5GHz(867Mbps)
- USB: 1 x USB 3.0 port
- Slot: 1 x MicroSD card slot
- Button: 1 x Reset button
- Switch: 1 x Mode switch
- LED: 1 x Blue LED + 1 x White LED

MAC addresses based on vendor firmware:
WAN : factory 0x4000
LAN : Mac from factory 0x4000 + 1
2.4GHz : factory 0x4
5GHz : Mac form factory 0x4 + 1

Flashing instructions:
1.Connect to one of LAN ports.
2.Set the static IP on the PC to 192.168.1.2.
3.Press the Reset button and power the device (do not release the button).
  After waiting for the blue led to flash 5 times, the white led will
  come on and release the button.
4.Browse the 192.168.1.1 web page and update firmware according to web
  tips.
5.The blue led will flash when the firmware is being upgraded.
6.The blue led stops blinking to indicate that the firmware upgrade is
  complete and U-Boot automatically starts the firmware.

For more information on GL-MT1300, see the OFFICIAL GL.iNet website:
https://www.gl-inet.com/products/gl-mt1300/

Signed-off-by: Xinfa Deng <xinfa.deng@gl-inet.com>
[add input-type for switch, wrap long line in 10_fix_wifi_mac]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
2020-12-17 12:05:26 +01:00
Adrian Schmutzler
6d4382711a ramips: use full names for Xiaomi Mi Router devices
This aligns the device/image names of the older Xiaomi Mi Router
devices with their "friendly" model and DEVICE_MODEL properties.

This also reintroduces consistency with the newer devices already
following that scheme.

Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
2020-12-08 17:18:57 +01:00
Adrian Schmutzler
89e6cc5c76 ramips: mt7628: create shared DTSI for Xiaomi Mi Router 4A/4C
The Xiaomi Mi Router 4A (100M) and 4C are relatively similar in
their specs. Create a shared DTSI for them.

Partitions are split in preparation for Mi Router 4AC.

Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
2020-12-08 15:39:00 +01:00
Adrian Schmutzler
66d12ce667 ramips: remove redundant status for USB controllers
mt7621, mt7628an and rt5350 have USB controllers (ehci/ohci or xhci)
enabled by default. Thus, this patch drops redundant status=okay
statements in derived device DTS files.

While at it, also drop an explicit status=okay in mt7621.dtsi, as
this is default.

Note:

For rt5350, about 50 % of the devices enabled ehci/ohci in the DTS
files, and there is actually no device actively disabling it.
It looks like only a few people are aware that the controllers are
enabled by default here.

Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
2020-12-07 14:22:00 +01:00
Adrian Schmutzler
e6a181dcea ramips: simplify status for ehci/ohci on mt7628 TP-Link devices
At the moment, ehci/ohci is enabled in mt7628an SoC DTSI, then
disabled in the TP-Link-specific DTSI files, and finally enabled
again in the DTS files of the devices needing it.

This on-off-on scheme is hard to grasp on a quick look. Thus, this
patch drops the status in the TP-Link-specific DTSI files, having
the TP-Link devices treated like the rest of mt7628an DTSes, i.e.
ehci/ohci is enabled by default and needs to be disabled explicitly
where needed.

Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
2020-12-07 14:22:00 +01:00
Adrian Schmutzler
aafee2b3e9 ramips: drop redundant status for gpio/gpio0
The first gpio controller (gpio or gpio0) is always enabled by
default in the SoC DTSI files. No need to set status=okay in the
device DTS files a second time.

Remove the redundant statements.

Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
2020-12-04 15:52:23 +01:00
Pavel Chervontsev
6d98c098e4 ramips: add support for ASUS RT-N56U B1
Specifications:

SoC: MediaTek MT7621ST (880 MHz)
FLASH: 16 MiB (Macronix MX25L12835FM2I-10G)
RAM: 128 MiB (Nanya NT5CB64M16FP-DH)
WiFi: MediaTek MT7603EN bgn 2x2:2
WiFi: MediaTek MT7612EN an 2x2:2
BTN: Reset, WPS
LED: - Power
- WiFi 2.4 GHz
- WiFi 5 GHz
- WAN
- LAN {1-4}
- USB {1-2}
UART: UART is present as pin hole next to the aluminium capacitor.
3V3 - RX - GND - TX / 115200-8N1
3V3 is the nearest on the aluminium capacitor and nut hole (pin1).
USB: 2 ports
POWER: 12VDC, 1.5A (Barrel 5.5x2.1)

Installation:

Via TFTP:
    Set your computers IP-Address to 192.168.1.75
    Power up the Router with the Reset button pressed.
    Release the Reset button after 5 seconds.
    Upload OpenWRT sysupgrade image via TFTP:
    tftp -4 -v -m binary 192.168.1.1 -c put IMAGE

MAC addresses:

0x4     *:98  2g/wan, label
0x22    *:9c
0x28    *:98
0x8004  *:9c  5g/lan

Though addresses are written to 0x22 and 0x28, it appears that the
vendor firmware actually only uses 0x4 and 0x8004. Thus, we do the
same here.

Signed-off-by: Pavel Chervontsev <cherpash@gmail.com>
[add MAC address overview, add label-mac-device, fix IMAGE_SIZE]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
2020-11-28 20:51:50 +01:00
Adrian Schmutzler
b69c21738e treewide: add space before SPDX identifier
Strictly, an SPDX identifier requires a space between the comment
marker and the identifier itself. The choice of the comment marker
itself is irrelevant.

Correct:

// SPDX-License-Identifier: GPL-2.0-or-later OR MIT

Wrong:

//SPDX-License-Identifier: GPL-2.0-or-later OR MIT

Fix that in the whole tree (actually, only ramips contained wrong
uses).

Found by checkpatch.pl

Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
2020-11-25 19:34:13 +01:00
Ataberk Özen
4287f73989 ramips: add support for Xiaomi Mi Router 4C
This commit adds support for Xiaomi's Mi Router 4C device.

Specifications:

- CPU: MediaTek MT7628AN (580MHz)
- Flash: 16MB
- RAM: 64MB DDR2
- 2.4 GHz: IEEE 802.11b/g/n with Integrated LNA and PA
- Antennas: 4x external single band antennas
- WAN: 1x 10/100M
- LAN: 2x 10/100M
- LEDs: 2x yellow/blue. Programmable (labelled as power on case)
                      - Non-programmable (shows WAN activity)
- Button: Reset

How to install:

1- Use OpenWRTInvasion to gain telnet and ftp access.
2- Push openwrt firmware to /tmp/ using ftp.
3- Connect to router using telnet. (IP: 192.168.31.1 -
   Username: root - No password)
4- Use command "mtd -r write /tmp/firmware.bin OS1" to flash into
   the router..
5- It takes around 2 minutes. After that router will restart itself
   to OpenWrt.

Signed-off-by: Ataberk Özen <ataberkozen123@gmail.com>
[wrap commit message, bump PKG_RELEASE for uboot-envtools, remove
dts-v1 from DTS, fix LED labels]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
2020-11-25 19:34:13 +01:00
Filip Moc
b641eb6ecf ramips: add support for TP-Link MR6400 v5
TL-MR6400v5 is very similar to TL-MR6400v4. Main differences are:
  - smaller form factor
  - different LED GPIOs
  - different switch connections

You can flash via tftp recovery:
 - serve tftp-recovery image as /tp_recovery.bin on 192.168.0.225/24
 - connect to any ethernet port
 - power on the device while holding the reset button
 - wait at least 8 seconds before releasing reset button

Flashing via OEM web interface does not work.

LTE module does not support DHCP so it must be configured via QMI.

Hardware Specification (v5.0 EU):
 - SoC: MT7628NN
 - Flash: Winbond W25Q64JVS (8MiB)
 - RAM: ESMT M14D5121632A (64MiB)
 - Wireless: SoC platform only (2.4GHz b/g/n, 2x internal antenna)
 - Ethernet: 1NIC (4x100M)
 - WWAN: TP-LINK LTE MODULE (2x external detachable antenna)
 - Power: DC 9V 0.85A

Signed-off-by: Filip Moc <lede@moc6.cz>
2020-11-25 13:23:06 +01:00
Filip Moc
4f4f6def0e ramips: add license to TP-Link MR6400 v4's DTS
Signed-off-by: Filip Moc <lede@moc6.cz>
2020-11-25 13:23:06 +01:00
Filip Moc
0d65177658 ramips: add support for TP-Link MR6400 v4
You can flash via tftp recovery:
 - serve tftp-recovery image as /tp_recovery.bin on 192.168.0.225/24
 - connect to any ethernet port
 - power on the device while holding the reset button
 - wait at least 8 seconds before releasing reset button

Flashing via OEM web interface does not work.

LTE module does not support DHCP so it must be configured via QMI.

Hardware Specification (v4.0 EU):
 - SoC: MT7628NN
 - Flash: Winbond W25Q64JVS (8MiB)
 - RAM: ESMT M14D5121632A (64MiB)
 - Wireless: SoC platform only (2.4GHz b/g/n, 2x internal antenna)
 - Ethernet: 1NIC (4x100M)
 - WWAN: TP-LINK LTE MODULE (2x external detachable antenna)
 - Power: DC 9V 0.85A

Signed-off-by: Filip Moc <lede@moc6.cz>
2020-11-23 00:46:40 +00:00
Marc Egerton
f276395cda ramips: add support for the Hak5 WiFi Pineapple Mark 7
This patch adds support for the WiFi Pineapple Mark 7, a wireless
penetration testing tool.

Specifications:
    * SoC: MediaTek MT7628 (580MHz)
    * RAM: 256MiB (DDR2)
    * Storage 1: 32MiB NOR (SPI)
    * Storage 2: 2GB eMMC
    * Wireless 1: 802.11b/g/n 2.4GHz (Built In)
    * Wireless 2: 802.11b/g/n 2.4GHz (MT7601)
    * Wireless 3: 802.11b/g/n 2.4GHz (MT7601)
    * USB: 1x USB Type-A 2.0 Host Port
    * Ethernet: 1x USB Type-C AX88772C Ethernet
    * UART: 57600 8N1 on PCB
    * Inputs: 1x Reset Button
    * Outputs: 1x RGB LED
    * FCCID: 2AA52MK7

Flash Instructions:
    Original firmware is based on OpenWRT.
    Use sysupgrade via SSH to flash.

Signed-off-by: Marc Egerton <foxtrot@realloc.me>
[pepe2k@gmail.com: set only required/used gpio groups to gpio function]
Signed-off-by: Piotr Dymacz <pepe2k@gmail.com>
2020-11-18 23:49:34 +01:00
Adrian Schmutzler
e0cc68daad ramips: use m25p,fast-read on Xiaomi Mi Router 4A Gb/3G v2
The Xiaomi Mi Router 4A Gigabit model has a race condition on bootup
causing the SQUASHFS data errors to appear and create a bootloop
scenario.

Adding the m25p,fast-read property resolves this issue.

Suggested-by: David Bentham <db260179@gmail.com>
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
2020-11-18 21:13:46 +01:00
Adrian Schmutzler
a51e46e543 ramips: add Xiaomi Mi Router 4A Gigabit explicitly
This device has previously been supported by the image
for Xiaomi Mi Router 3G v2. Since this is not obvious, the
4A is marketed as a new major revision and it also seems to
have a different bootloader, this will be both more tidy and
more helpful for the users.

Apart from that, note that there also is a 100M version of
the device that uses mt7628 platform, so a specifically named
image will also prevent confusion in this area.

Specifications:

- SoC:      MediaTek MT7621
- Flash:    16 MiB NOR SPI
- RAM:      128 MiB DDR3
- Ethernet: 3x 10/100/1000 Mbps (switched, 2xLAN + WAN)
- WIFI0:    MT7603E 2.4GHz 802.11b/g/n
- WIFI1:    MT7612E 5GHz 802.11ac
- Antennas: 4x external (2 per radio), non-detachable
- LEDs:     Programmable "power" LED (two-coloured, yellow/blue)
            Non-programmable "internet" LED (shows WAN activity)
- Buttons:  Reset

Installation:

Bootloader won't accept any serial input unless "boot_wait" u-boot
environment variable is changed to "on".

Vendor firmware won't accept any serial input until "uart_en" is
set to "1".

Using the https://github.com/acecilia/OpenWRTInvasion exploit you
can gain access to shell to enable these options:

To enable uart keyboard actions - 'nvram set uart_en=1'
To make uboot delay boot work - 'nvram set boot_wait=on'
Set boot delay to 5 - 'nvram set bootdelay=5'

Then run 'nvram commit' to make the changes permanent.

Once in the shell (following the OpenWRTInvasion instructions) you
can then run the following to flash OpenWrt and then reboot:

'cd /tmp; curl https://downloads.openwrt.org/...-sysupgrade.bin
  --output firmware.bin; mtd -e OS1 -r write firmware.bin OS1'

Suggested-by: David Bentham <db260179@gmail.com>
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
2020-11-12 17:18:26 +01:00
James McGuire
de768829a5 ramips: add support for D-Link DIR-2640 A1
This patch adds support for D-Link DIR-2640 A1.

Specifications:
* Board: AP-MTKH7-0002
* SoC: MediaTek MT7621AT
* RAM: 256 MB (DDR3)
* Flash: 128 MB (NAND)
* WiFi: MediaTek MT7615N (x2)
* Switch: 1 WAN, 4 LAN (Gigabit)
* Ports: 1 USB 2.0, 1 USB 3.0
* Buttons: Reset, WPS
* LEDs: Power (blue/orange), Internet (blue/orange), WiFi 2.4G (blue),
        WiFi 5G (blue), USB 3.0 (blue), USB 2.0 (blue)

Notes:
* WiFi 2.4G and WiFi 5G LEDs are wired directly to the wireless chips

Installation:
* D-Link Recovery GUI: power down the router, press and hold the reset
  button, then re-plug it. Keep the reset button pressed until the power
  LED starts flashing orange, manually assign a static IP address under
  the 192.168.0.xxx subnet (e.g. 192.168.0.2) and go to http://192.168.0.1

* Some modern browsers may have problems flashing via the Recovery GUI,
  if that occurs consider uploading the firmware through cURL:

    curl -v -i -F "firmware=@file.bin" 192.168.0.1

MAC addresses:

lan   factory 0xe000     *:a7 (label)
wan   factory 0xe006     *:aa
2.4   factory 0xe000 +1  *:a8
5.0   factory 0xe000 +2  *:a9

Seems like vendor didn't replace the dummy entries in the calibration data.

Signed-off-by: James McGuire <jamesm51@gmail.com>
[fix device definition title]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
2020-11-11 17:35:10 +01:00
Nuno Goncalves
2a860bf4f4 ramips: add support for Wavlink WL-WN530HG4
Same hardware as Phicomm K2G but different flash layout.

Specification:
- SoC: MediaTek MT7620A
- Flash: 8 MB
- RAM: 64 MB
- Ethernet: 4 FE ports and 1 GE port (RTL8211F on port 5)
- Wireless radio: MT7620 for 2.4G and MT7612E for 5G, both equipped
  with external PA.
- UART: 1 x UART on PCB - 57600 8N1

Flash instruction:
To avoid requiring UART for TFTP a dual flash procedure is suggested
to install the squashfs image:
1. Rename openwrt-ramips-mt7620-wavlink_wl-wn530hg4-initramfs-kernel.bin
   to WN530HG4-WAVLINK.
2. Flash this file with the factory web interface.
3. With OpenWRT now running use standard sysupgrade to install the
   squashfs image.

Signed-off-by: Nuno Goncalves <nunojpg@gmail.com>
[remove dts-v1, remove model from LED labels, wrap commit message]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
2020-10-27 21:20:16 +01:00
Chuanhong Guo
23be410b3d ramips: add support for TOTOLINK X5000R
Specifications:
- SoC: MT7621AT
- RAM: 256MB
- Flash: 16MB (EN25QH128A)
- Ethernet: 5xGbE
- WiFi: MT7915 2x2 2.4G 573.5Mbps + 2x2 5G 1201Mbps

Known issue:
MT7915 DBDC variant isn't supported yet.

Flash instruction:
Upload the sysupgrade firmware to the firmware upgrade page in
vendor fw.

Other info:
MT7915 seems to have two PCIEs connected to MT7621. Card detected on
PCIE0 has an ID of 14c3:7916 and the other one on PCIE1 has 14c3:7915.

Signed-off-by: Chuanhong Guo <gch981213@gmail.com>
2020-10-25 22:27:44 +08:00
Richard Fröhning
33b76d66d1 ramips: add support for TP-Link RE200 v4
TP-Link RE200 v4 is a wireless range extender with Ethernet and 2.4G and 5G
WiFi with internal antennas.
It's based on MediaTek MT7628AN+MT7610EN like the v2/v3.

Specifications
--------------

- MediaTek MT7628AN (580 Mhz)
- 64 MB of RAM
- 8 MB of FLASH
- 2T2R 2.4 GHz and 1T1R 5 GHz
- 1x 10/100 Mbps Ethernet
- 8x LED (GPIO-controlled), 2x button
- UART connection holes on PCB (57600 8n1)

There are 2.4G and 5G LEDs in red and green which are controlled
separately.

MAC addresses
-------------

The MAC address assignment matches stock firmware, i.e.:

LAN : *:8E
2.4G: *:8D
5G  : *:8C

MAC address assignment has been done according to the RE200 v2.

The label MAC address matches the OpenWrt ethernet address.

Installation
------------

Web Interface
-------------

It is possible to upgrade to OpenWrt via the web interface. Simply flash
the -factory.bin from OEM. In contrast to a stock firmware, this will not
overwrite U-Boot.

Recovery
--------

Unfortunately, this devices does not offer a recovery mode or a tftp
installation method. If the web interface upgrade fails, you have to open
your device and attach serial console.

Instructions for serial console and recovery may be checked out in
commit 6d6f36ae787c ("ramips: add support for TP-Link RE200 v2") or on
the device's Wiki page.

Signed-off-by: Richard Fröhning <misanthropos@gmx.de>
[removed empty line, fix commit message formatting]
Signed-off-by: David Bauer <mail@david-bauer.net>
2020-10-20 03:01:13 +02:00
David Bauer
929e8f0f55 ramips: fix logic level for DIR-645 buttons
The D-Link DIR-645 currently uses an incorrect logic level for its
buttons.

Correct them in order to prevent unintentional activation of failsafe
mode.

Reported-by: Perry Melange <isprotejesvalkata@gmail.com>
Signed-off-by: David Bauer <mail@david-bauer.net>
2020-10-03 22:52:58 +02:00
Adrian Schmutzler
ed5933beb6 ramips: remove option to set WiFi LED via aliases
In ramips, it's not common to use an alias for specifying the WiFi
LED; actually only one device uses this mechanism (TL-WR841N v14).

Particularly since the WiFi LEDs are typically distinguished between
2.4G and 5G etc. it is also not very useful for this target.

Thus, this patch removes the setup lines for this mechanism and
converts the TL-WR841N v14 to the normal setup.

Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
2020-10-02 14:51:57 +02:00
Adrian Schmutzler
c846dd91f0 ramips: remove model name from LED labels
Like in the previous patch for ath79 target, this will remove the
"devicename" from LED labels in ramips as well.

The devicename is removed in DTS files and 01_leds, consolidation
of definitions into DTSI files is done where (easily) possible,
and migration scripts are updated.

For the latter, all existing definitions were actually just
devicename migrations anyway. Therefore, those are removed and
a common migration file is created in target base-files. This is
actually another example of how the devicename removal makes things
easier.

Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
2020-10-02 14:51:57 +02:00
Adrian Schmutzler
315904a459 ramips: merge ethernet setup for RT-AC51U/RT-AC54U
The ethernet setup/label MAC address for RT-AC51U and RT-AC54U are
the same, so move them into the shared DTSI.

Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
2020-09-28 00:20:24 +02:00
Adrian Schmutzler
621297e867 ramips: move dts-v1 statement to top-level DTSI files
The "/dts-v1/;" identifier is supposed to be present once at the
top of a device tree file after the includes have been processed.

In ramips, we therefore requested to have in the DTS files so far,
and omit it in the DTSI files. However, essentially the syntax of
the parent mtxxxx/rtxxxx DTSI files already determines the DTS
version, so putting it into the DTS files is just a useless repetition.

Consequently, this patch puts the dts-v1 statement into the top-level
SoC-based DTSI files, and removes all other occurences.
Since the dts-v1 statement needs to be before any other definitions,
this also moves the includes accordingly where necessary.

Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
2020-09-25 23:26:40 +02:00
J. Scott Heppler
620f9c7734 ramips: add support for Linksys EA7300 v2
This submission relied heavily on the work of
Santiago Rodriguez-Papa <contact at rodsan.dev>

Specifications:

*  SoC:            MediaTek  MT7621A            (880  MHz  2c/4t)
*  RAM:            Winbond W632GG6MB-12         (256M  DDR3-1600)
*  Flash:          Winbond W29N01HVSINA         (128M  NAND)
*  Eth:            MediaTek  MT7621A            (10/100/1000  Mbps  x5)
*  Radio:          MT7603E/MT7615N              (2.4  GHz  &  5  GHz)
                     4  antennae:  1  internal  and  3  non-deatachable
*  USB:            3.0  (x1)
*  LEDs:
          White    (x1  logo)
          Green    (x6  eth  +  wps)
          Orange   (x5,  hardware-bound)
*  Buttons:
          Reset    (x1)
          WPS      (x1)

Installation:

Flash factory image through GUI.

This might fail due to the A/B nature of this device. When flashing, OEM
firmware writes over the non-booted partition. If booted from 'A',
flashing over 'B' won't work. To get around this, you should flash the
OEM image over itself. This will then boot the router from 'B' and
allow you to flash OpenWRT without problems.

Reverting to factory firmware:

Hard-reset the router three times to force it to boot from 'B.' This is
where the stock firmware resides. To remove any traces of OpenWRT from
your router simply flash the OEM image at this point.

Signed-off-by: J. Scott Heppler <shep971@centurylink.net>
2020-09-23 12:17:32 +02:00
Adrian Schmutzler
0cfdc7d446 target: update SPDX license names
SPDX moved from GPL-2.0 to GPL-2.0-only and from GPL-2.0+ to
GPL-2.0-or-later. Reflect that in the SPDX license headers.

Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
2020-09-22 20:58:26 +02:00
Chuanhong Guo
2188ef954e ramips: mt7621: pbr-m1: fix firmware size
This board is equipped with Winbond W25Q256FV 32M SPI-NOR.
Fix partition size for that.

Signed-off-by: Chuanhong Guo <gch981213@gmail.com>
2020-09-13 19:15:06 +08:00
Chuanhong Guo
8126521e11 ramips: mt7621: pbr-m1: increase SPI clock to 50MHz
Signed-off-by: Chuanhong Guo <gch981213@gmail.com>
2020-09-13 18:53:25 +08:00
Chuanhong Guo
6f2c95f0cf ramips: mt7621: pbr-m1: add pcie reset for asm1061
this board has a pcie to sata bridge connected to pcie2 with a
separated pcie reset on gpio7.
add reset-gpios and corresponding pinctrl nodes into dts.

Signed-off-by: Chuanhong Guo <gch981213@gmail.com>
2020-09-13 18:49:26 +08:00
Adrian Schmutzler
c4110a524e ramips: create common DTSI for Sunvalley Filehub devices
HooToo HT-TM05 and RAVPower RP-WD03 have almost identical hardware
(except for RAM size) and are from the same vendor (SunValley).

Create a common DTSI file for them.

Suggested-by: Russell Morris <rmorris@rkmorris.us>
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
2020-09-12 01:25:10 +02:00
Adrian Schmutzler
b56b499948 ramips: fix baud rate for RAVPower RP-WD03
The baud rate for the RAVPower RP-WD03 is 57600, not 115200.

Since this is the default from mt7620n.dtsi, the chosen node can
simply be removed from the device DTS.

Fixes: 5ef79af4f80f ("ramips: add support for Ravpower WD03")

Suggested-by: Russell Morris <rmorris@rkmorris.us>
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
2020-09-12 01:24:43 +02:00
Adrian Schmutzler
3fc7860961 ramips: assign LEDs for RAVPower RP-WD03
According to the User Manual, there is a "Wi-Fi LED" with blue and
green colors, doing the following by default:

  Flashing Blue: System loading
  Solid Blue: System loaded
  Flashing Green: Connecting to the Internet
  Solid Green: Connected to the Internet

According to this vendor behavior, we keep refer to the LED as "wifi"
but implement the according default behavior as in OEM firmware.

Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
2020-09-12 01:24:30 +02:00
Adrian Schmutzler
77825f3cfe ramips: fix MAC address assignment for RAVPower RP-WD03
MAC assignment based on vendor firmware:

  2.4 GHz    *:b4   (factory 0x04)
  LAN/label  *:b4   (factory 0x28)
  WAN        *:b5   (factory 0x2e)

The previously used location 0x4000 for ethernet is actually empty.

Therefore, fix the ethernet MAC address and set it as label-mac-address.

Fixes: 5ef79af4f80f ("ramips: add support for Ravpower WD03")

Suggested-by: Russell Morris <rmorris@rkmorris.us>
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
2020-09-12 01:24:02 +02:00
Adrian Schmutzler
07aa858a73 ramips: fix partitions and boot for RAVPower RP-WD03
The RAVPower RP-WD03 is a battery powered router, with an Ethernet and
USB port. Due due a limitation in the vendor supplied U-Boot bootloader,
we cannot exceed a 1.5 MB kernel size, as is the case with recent builds
(i.e. post v19.07). This breaks both factory and sysupgrade images.

To address this, use the lzma loader (loader-okli) to work around this
limitation.

The improvements here also address the "misplaced" U-Boot environment
partition, which is located between the kernel and rootfs in the stock
image / implementation. This is addressed by making use of mtd-concat,
maximizing space available in the booted image.
This will make sysupgrade from earlier versions impossible.

Changes are based on the recently supported HooToo HT-TM05, as the
hardware is almost identical (except for RAM size) and is from the same
vendor (SunValley). While at it, also change the SPI frequency
accordingly.

Installation:

 - Download the needed OpenWrt install files, place them in the root
   of a clean TFTP server running on your computer. Rename the files as,
   - openwrt-ramips-mt7620-ravpower_rp-wd03-squashfs-kernel.bin => kernel
   - openwrt-ramips-mt7620-ravpower_rp-wd03-squashfs-rootfs.bin => rootfs
 - Plug the router into your computer via Ethernet
 - Set your computer to use 10.10.10.254 as its IP address
 - With your router shut down, hold down the power button until the first
   white LED lights up.
 - Push and hold the reset button and release the power button. Continue
   holding the reset button for 30 seconds or until it begins searching
   for files on your TFTP server, whichever comes first.
 - The router (10.10.10.128) will look for your computer at 10.10.10.254
   and install the two files. Once it has finished installation, it will
   automatically reboot and start up OpenWrt.
 - Set your computer to use DHCP for its IP address

Notes:

 - U-Boot environment can be modified, u-boot-env is preserved on initial
   install or sysupgrade
 - mtd-concat functionality is included, to leave a "hole" for u-boot-env,
   combining the OEM kernel and rootfs partitions

Most of the changes in this commit are the work of Russell Morris (as
credited below), I only wrapped them up and added compat-version.
Thanks to @mpratt14 and @xabolcs for their help getting the lzma loader
to work!

Fixes: 5ef79af4f80f ("ramips: add support for Ravpower WD03")

Suggested-by: Russell Morris <rmorris@rkmorris.us>
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
2020-09-11 19:31:03 +02:00
Adrian Schmutzler
a4e5b8897a ramips: use proper name for RAVPower RP-WD03
The proper model name is RP-WD03 (i.e. with the RP- prefix).

Adjust all names to that.

Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
2020-09-11 19:18:54 +02:00
Josh Bendavid
b5dd746cbb ramips: add support for D-Link DIR-2660 A1
This patch adds support for D-Link DIR-2660 A1.

Specifications:
* Board: AP-MTKH7-0002
* SoC: MediaTek MT7621AT
* RAM: 256 MB (DDR3)
* Flash: 128 MB (NAND)
* WiFi: MediaTek MT7615N (x2)
* Switch: 1 WAN, 4 LAN (Gigabit)
* Ports: 1 USB 2.0, 1 USB 3.0
* Buttons: Reset, WPS
* LEDs: Power (white/orange), Internet (white/orange), WiFi 2.4G (white),
        WiFi 5G (white), USB 3.0 (white), USB 2.0 (white)

Notes:
* WiFi 2.4G and WiFi 5G LEDs are wired directly to the wireless chips

Installation:
* D-Link Recovery GUI: power down the router, press and hold the reset
  button, then re-plug it. Keep the reset button pressed until the power
  LED starts flashing orange, manually assign a static IP address under
  the 192.168.0.xxx subnet (e.g. 192.168.0.2) and go to http://192.168.0.1

* Some modern browsers may have problems flashing via the Recovery GUI,
  if that occurs consider uploading the firmware through cURL:

    curl -v -i -F "firmware=@file.bin" 192.168.0.1

MAC addresses:

lan   factory 0xe000     *:a7 (label)
wan   factory 0xe006     *:aa
2.4   factory 0xe000 +1  *:a8
5.0   factory 0xe000 +2  *:a9

Seems like vendor didn't replace the dummy entries in the calibration data.

Signed-off-by: Josh Bendavid <joshbendavid@gmail.com>
[rebase onto already merged DIR-1960 A1, add MAC addresses to commit message]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
2020-09-06 19:09:45 +02:00
Russell Morris
45a81f7056 ramips: add support for HooToo HT-TM05
The HooToo HT-TM05 is a battery powered router, with an Ethernet and USB port.
Vendor U-Boot limited to 1.5 MB kernel size, so use lzma loader (loader-okli).

Specifications:

  SOC:     MediaTek MT7620N
  BATTERY: 10400mAh
  WLAN:    802.11bgn
  LAN:     1x 10/100 Mbps Ethernet
  USB:     1x USB 2.0 (Type-A)
  RAM:     64 MB
  FLASH:   GigaDevice GD25Q64, Serial 8 MB Flash, clocked at 50 MHz
           Flash itself specified to 80 MHz, but speed limited by mt7620 SPI
           fast-read enabled (m25p)
  LED:     Status LED (blue after boot, green with WiFi traffic
           4 leds to indicate power level of the battery (unable to control)
  INPUT:   Power, reset button

MAC assignment based on vendor firmware:

  2.4 GHz    *:b4   (factory 0x04)
  LAN/label  *:b4   (factory 0x28)
  WAN        *:b5   (factory 0x2e)

Tested and working:

 - Ethernet
 - 2.4 GHz WiFi (Correct MAC-address)
 - Installation from TFTP (recovery)
 - OpenWRT sysupgrade (Preserving and non-preserving), through the usual
   ways: command line and LuCI
 - LEDs (except as noted above)
 - Button (reset)
 - I2C, which is needed for reading battery charge status and level
 - U-Boot environment / variables (from U-Boot, and OpenWrt)

Installation:

 - Download the needed OpenWrt install files, place them in the root
   of a clean TFTP server running on your computer. Rename the files as,
   - ramips-mt7620-hootoo_tm05-squashfs-kernel.bin => kernel
   - ramips-mt7620-hootoo_tm05-squashfs-rootfs.bin => rootfs
 - Plug the router into your computer via Ethernet
 - Set your computer to use 10.10.10.254 as its IP address
 - With your router shut down, hold down the power button until the first
   white LED lights up.
 - Push and hold the reset button and release the power button. Continue
   holding the reset button for 30 seconds or until it begins searching
   for files on your TFTP server, whichever comes first.
 - The router (10.10.10.128) will look for your computer at 10.10.10.254
   and install the two files. Once it has finished installation, it will
   automatically reboot and start up OpenWrt.
 - Set your computer to use DHCP for its IP address

Notes:

 - U-Boot environment can be modified, u-boot-env is preserved on initial
   install or sysupgrade
 - mtd-concat functionality is included, to leave a "hole" for u-boot-env,
   combining the OEM kernel and rootfs partitions

I would like to thank @mpratt14 and @xabolcs for their help getting the
lzma loader to work!

Signed-off-by: Russell Morris <rmorris@rkmorris.us>
[drop changes in image/Makefile, fix indent and PKG_RELEASE in
uboot-envtools, fix LOADER_FLASH_OFFS, minor commit message facelift,
add COMPILE to Device/Default]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
2020-09-03 14:15:30 +02:00