1
0
Fork 0
mirror of https://github.com/karpathy/minGPT synced 2024-06-08 15:56:05 +02:00
minGPT/mingpt/model.py

198 lines
8.3 KiB
Python

"""
GPT model:
- the initial stem consists of a combination of token encoding and a positional encoding
- the meat of it is a uniform sequence of Transformer blocks
- each Transformer is a sequential combination of a 1-hidden-layer MLP block and a self-attention block
- all blocks feed into a central residual pathway similar to resnets
- the final decoder is a linear projection into a vanilla Softmax classifier
"""
import math
import logging
import torch
import torch.nn as nn
from torch.nn import functional as F
logger = logging.getLogger(__name__)
class GPTConfig:
""" base GPT config, params common to all GPT versions """
embd_pdrop = 0.1
resid_pdrop = 0.1
attn_pdrop = 0.1
def __init__(self, vocab_size, block_size, **kwargs):
self.vocab_size = vocab_size
self.block_size = block_size
for k,v in kwargs.items():
setattr(self, k, v)
class GPT1Config(GPTConfig):
""" GPT-1 like network roughly 125M params """
n_layer = 12
n_head = 12
n_embd = 768
class CausalSelfAttention(nn.Module):
"""
A vanilla multi-head masked self-attention layer with a projection at the end.
I believe I could have just used torch.nn.MultiheadAttention but their documentation
is all but absent and code ugly so I don't trust it, rolling my own here.
"""
def __init__(self, config):
super().__init__()
assert config.n_embd % config.n_head == 0
# key, query, value projections for all heads
self.key = nn.Linear(config.n_embd, config.n_embd)
self.query = nn.Linear(config.n_embd, config.n_embd)
self.value = nn.Linear(config.n_embd, config.n_embd)
# regularization
self.attn_drop = nn.Dropout(config.attn_pdrop)
self.resid_drop = nn.Dropout(config.resid_pdrop)
# output projection
self.proj = nn.Linear(config.n_embd, config.n_embd)
# causal mask to ensure that attention is only applied to the left in the input sequence
self.register_buffer("mask", torch.tril(torch.ones(config.block_size, config.block_size))
.view(1, 1, config.block_size, config.block_size))
self.n_head = config.n_head
def forward(self, x, layer_past=None):
B, T, C = x.size()
# calculate query, key, values for all heads in batch and move head forward to be the batch dim
k = self.key(x).view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)
q = self.query(x).view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)
v = self.value(x).view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)
# causal self-attention; Self-attend: (B, nh, T, hs) x (B, nh, hs, T) -> (B, nh, T, T)
att = (q @ k.transpose(-2, -1)) * (1.0 / math.sqrt(k.size(-1)))
att = att.masked_fill(self.mask[:,:,:T,:T] == 0, -1e10) # todo: just use float('-inf') instead?
att = F.softmax(att, dim=-1)
att = self.attn_drop(att)
y = att @ v # (B, nh, T, T) x (B, nh, T, hs) -> (B, nh, T, hs)
y = y.transpose(1, 2).contiguous().view(B, T, C) # re-assemble all head outputs side by side
# output projection
y = self.resid_drop(self.proj(y))
return y
class Block(nn.Module):
""" an unassuming Transformer block """
def __init__(self, config):
super().__init__()
self.ln1 = nn.LayerNorm(config.n_embd)
self.ln2 = nn.LayerNorm(config.n_embd)
self.attn = CausalSelfAttention(config)
self.mlp = nn.Sequential(
nn.Linear(config.n_embd, 4 * config.n_embd),
nn.GELU(),
nn.Linear(4 * config.n_embd, config.n_embd),
nn.Dropout(config.resid_pdrop),
)
def forward(self, x):
x = x + self.attn(self.ln1(x))
x = x + self.mlp(self.ln2(x))
return x
class GPT(nn.Module):
""" the full GPT language model, with a context size of block_size """
def __init__(self, config):
super().__init__()
# input embedding stem
self.tok_emb = nn.Embedding(config.vocab_size, config.n_embd)
self.pos_emb = nn.Parameter(torch.zeros(1, config.block_size, config.n_embd))
self.drop = nn.Dropout(config.embd_pdrop)
# transformer
self.blocks = nn.Sequential(*[Block(config) for _ in range(config.n_layer)])
# decoder head
self.ln_f = nn.LayerNorm(config.n_embd)
self.head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
self.block_size = config.block_size
self.apply(self._init_weights)
logger.info("number of parameters: %e", sum(p.numel() for p in self.parameters()))
def get_block_size(self):
return self.block_size
def _init_weights(self, module):
if isinstance(module, (nn.Linear, nn.Embedding)):
module.weight.data.normal_(mean=0.0, std=0.02)
if isinstance(module, nn.Linear) and module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
def configure_optimizers(self, train_config):
"""
This long function is unfortunately doing something very simple and is being very defensive:
We are separating out all parameters of the model into two buckets: those that will experience
weight decay for regularization and those that won't (biases, and layernorm/embedding weights).
We are then returning the PyTorch optimizer object.
"""
# separate out all parameters to those that will and won't experience regularizing weight decay
decay = set()
no_decay = set()
whitelist_weight_modules = (torch.nn.Linear, )
blacklist_weight_modules = (torch.nn.LayerNorm, torch.nn.Embedding)
for mn, m in self.named_modules():
for pn, p in m.named_parameters():
fpn = '%s.%s' % (mn, pn) if mn else pn # full param name
if pn.endswith('bias'):
# all biases will not be decayed
no_decay.add(fpn)
elif pn.endswith('weight') and isinstance(m, whitelist_weight_modules):
# weights of whitelist modules will be weight decayed
decay.add(fpn)
elif pn.endswith('weight') and isinstance(m, blacklist_weight_modules):
# weights of blacklist modules will NOT be weight decayed
no_decay.add(fpn)
# special case the position embedding parameter in the root GPT module as not decayed
no_decay.add('pos_emb')
# validate that we considered every parameter
param_dict = {pn: p for pn, p in self.named_parameters()}
inter_params = decay & no_decay
union_params = decay | no_decay
assert len(inter_params) == 0, "parameters %s made it into both decay/no_decay sets!" % (str(inter_params), )
assert len(param_dict.keys() - union_params) == 0, "parameters %s were not separated into either decay/no_decay set!" \
% (str(param_dict.keys() - union_params), )
# create the pytorch optimizer object
optim_groups = [
{"params": [param_dict[pn] for pn in sorted(list(decay))], "weight_decay": train_config.weight_decay},
{"params": [param_dict[pn] for pn in sorted(list(no_decay))], "weight_decay": 0.0},
]
optimizer = torch.optim.AdamW(optim_groups, lr=train_config.learning_rate, betas=train_config.betas)
return optimizer
def forward(self, idx, targets=None):
b, t = idx.size()
assert t <= self.block_size, "Cannot forward, model block size is exhausted."
# forward the GPT model
token_embeddings = self.tok_emb(idx) # each index maps to a (learnable) vector
position_embeddings = self.pos_emb[:, :t, :] # each position maps to a (learnable) vector
x = self.drop(token_embeddings + position_embeddings)
x = self.blocks(x)
x = self.ln_f(x)
logits = self.head(x)
# if we are given some desired targets also calculate the loss
loss = None
if targets is not None:
loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1))
return logits, loss