
Galactic File System

Juan Benet
juan@benet.ai

ABSTRACT
The Galactic File System is a peer-to-peer distributed file
system capable of sharing the same files with millions of
nodes. GFS combines a distributed hashtable, cryptographic
techniques, merkle trees, content-addressable storage, bit-
torrent, and tag-based filesystems to build a single massive
file system shared between peers. GFS has no single point
of failure, and nodes do not need to trust each other.

1. INTRODUCTION
[Motivate GFS. Introduce problems. Describe BitTorrent

existing problems (multiple files. one swarm. sloppy dht
implementation.) Describe version control efforts. Propose
potential combinations of good ideas.]

[Cite: CFS, Kademlia, Bittorrent, Chord, DHash, SFS,
Ori, Coral]

This paper introduces GFS, a novel peer-to-peer version-
controlled filesystem; and BitSwap, the novel peer-to-peer
block exchange protocol serving GFS.

The rest of the paper is organized as follows. Section 2
describes the design of the filesystem. Section 3 evaluates
various facets of the system under benchmark and common
workloads. Section 4 presents and evaluates a world-wide
deployment of GFS. Section 5 describes existing and po-
tential applications of GFS. Section 6 discusses related and
future work.

Notation Notes: (a) data structures are specified in Go
syntax, (b) rpc protocols are specified in capnp interface,
(c) object formats are specified in text with <fields>.

2. DESIGN

2.1 GFS Nodes
GFS is a distributed file system where all nodes are the

same. They are identified by a NodeId, the cryptographic
hash of a public-key (note that checksum will henceforth
refer specifically to crypographic hashes of an object). Nodes
also store their public and private keys. Clients are free to

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

instatiate a new node on every launch, though that means
losing any accrued benefits. It is recommended that nodes
remain the same.

type Checksum string

type PublicKey string

type PrivateKey string

type NodeId Checksum

type Node struct {

nodeid NodeID

pubkey PublicKey

prikey PrivateKey

}

Together, the nodes store the GFS files in local storage,
and send files to each other. GFS implements its features
by combining several subsystems with many desirable prop-
erties:

1. A Coral-based Distributed Sloppy Hash Table
(DSHT) to link and coordinate peer-to-peer nodes.
Described in Section 2.2.

2. A Bittorrent-like peer-to-peer Block Exchange (BE)
distribute Blocks efficiently, and to incentivize replica-
tion. Described in Section 2.3.

3. A Git-inspired Object Model (OM) to represent the
filesystem. Described in Section 2.4.

4. An SFS-based self-certifying name system. Described
in Section 2.5.

These subsystems are not independent. They are well
integrated and leverage their blended properties. However,
it is useful to describe them separately, building the system
from the bottom up. Note that all GFS nodes are identical,
and run the same program.

2.2 Distributed Sloppy Hash Table
First, GFS nodes implement a DSHT based on Kademlia

and Coral to coordinate and identify which nodes can serve
a particular block of data.

2.2.1 Kademlia DHT
Kademlia is a DHT that provides:

1. Efficient lookup through massive networks: queries on
average contact dlog2(n)e nodes. (e.g. 20 hops for a
network of 10000000 nodes).

2. Low coordination overhead: it optimizes the number
of control messages it sends to other nodes.

3. Resistance to various attacks, by preferring nodes who
have been part of the DHT longer.

4. wide useage in peer-to-peer applications, including
Gnutella and Bittorrent, forming networks of over 100
million nodes.

While some peer-to-peer filesystems store data blocks di-
rectly in DHTs, this “wastes storage and bandwidth, as data
must be stored at nodes where it is not needed”. Instead,
GFS stores a list of peers that can provide the data block.

2.2.2 Coral DSHT
Coral extends Kademlia in three particularly important

ways:

1. Kademlia stores values in nodes whose ids are“nearest”
(using XOR-distance) to the key. This does not take
into account application data locality, ignores “far”
nodes who may already have the data, and forces“near-
est” nodes to store it, whether they need it or not.
This wastes significant storage and bandwith. Instead,
Coral stores addresses to peers who can provide the
data blocks.

2. Coral relaxes the DHT API from get_value(key) to
get_any_values(key) (the “sloppy” in DSHT). This
still works since Coral users only need a single (work-
ing) peer, not the complete list. In return, Coral can
distribute only subsets of the values to the “nearest”
nodes, avoiding hot-spots (overloading all the nearest
nodes when a key becomes popular).

3. Additionally, Coral organizes a hierarchy of separate
DSHTs called clusters depending on region and size.
This enables nodes to query peers in their region first,
“finding nearby data without querying distant nodes”
and greatly reducing the latency of lookups.

2.2.3 GFS DSHT
The GFS DSHT supports four RPC calls:

2.3 Block Exchange - BitSwap Protocol
The exchange of data in GFS happens by exchanging

blocks with peers using a BitTorrent inspired protocol: BitSwap.
Like BitTorrent, BitSwap peers are looking to acquire a set
of blocks, and have blocks to offer in exchange. Unlike Bit-
Torrent, BitSwap is not limited to the blocks in one torrent.
BitSwap operates as a persistent marketplace where node
can acquire the blocks they need, regardless of what files
the blocks are part of. The blocks could come from com-
pletely unrelated files in the filesystem. But nodes come
together to barter in the marketplace.

While the notion of a barter system implies a virtual cur-
rency could be created, this would require a global ledger
(blockchain) to track ownership and transfer of the currency.
This will be explored in a future paper.

Instead, BitSwap nodes have to provide direct value to
each other in the form of blocks. This works fine when the
distribution of blocks across nodes is such that they have
the complements, what each other wants. This will seldom
be the case. Instead, it is more likely that nodes must work

for their blocks. In the case that a node has nothing that its
peers want (or nothing at all), it seeks the pieces its peers
might want, with lower priority. This incentivizes nodes
to cache and disseminate rare pieces, even if they are not
interested in them directly.

2.3.1 BitSwap Credit
The protocol must also incentivize nodes to seed when

they do not need anything in particular, as they might have
the blocks others want. Thus, BitSwap nodes send blocks to
their peers, optimistically expecting the debt to be repaid.
But, leeches (free-loading nodes that never share) must be
avoided. A simple credit-like system solves the problem:

1. Peers track their balance (in bytes verified) with other
nodes.

2. Peers send blocks to debtor peers probabilistically, ac-
cording to a function that falls as debt increases.

Note that if a peer decides not to send, the peer sub-
sequently ignores the other node for an ignore_cooldown

timeout. This prevents senders from trying to game the
probability by just causing more dice-rolls. (Default BitSwap
is 10 seconds).

2.3.2 BitSwap Strategy
The differing strategies that BitSwap peers might employ

have wildly different effects on the performance of the ex-
change as a whole. In BitTorrent, while a standard strategy
is specified (tit-for-tat), a variety of others have been imple-
mented, ranging from BitTyrant (sharing the least-possible),
to BitThief (exploiting a vulnerability and never share), to
PropShare (sharing proportionally). A range of strategies
(good and malicious) could similarly be implemented by
BitSwap peers. The choice of function, then, should aim
to:

1. maximize the trade performance for the node, and the
whole exchange

2. prevent freeloaders from exploiting and degrading the
exchange

3. be effective with and resistant to other, unknown strate-
gies

4. be lenient to trusted peers

The exploration of the space of such strategies is future
work. One choice of function that works in practice is the
sigmoid, scaled by a debt retio:

Let the debt ratio r between a node and its peer be:

r =
bytes_sent

bytes_recv

Given r, let the probability of sending to a debtor be:

P
(
send | r

)
=

1

1 + exp(6− 3r)

As you can see in Table 1, this function drops off quickly as
the nodes’ debt ratio surpasses twice the established credit.
The debt ratio is a measure of trust: lenient to debts between
nodes that have previously exchanged lots of data success-
fully, and merciless to unknown, untrusted nodes. This (a)

provides resistance to attackers who would create lots of
new nodes (sybill attacks), (b) protects previously successful
trade relationships, even if one of the nodes is temporarily
unable to provide value, and (c) eventually chokes relation-
ships that have deteriorated until they improve.

P (send | r) = likelihood

P (send | 0.0) = 1.00
P (send | 0.5) = 1.00
P (send | 1.0) = 0.98
P (send | 1.5) = 0.92
P (send | 2.0) = 0.73
P (send | 2.5) = 0.38
P (send | 3.0) = 0.12
P (send | 3.5) = 0.03
P (send | 4.0) = 0.01
P (send | 4.5) = 0.00

2.3.3 BitSwap Ledger
BitSwap nodes keep ledgers accounting the transfers with

other nodes. A ledger snapshot contains a pointer to the pre-
vious snapshot (its checksum), forming a hash-chain. This
allows nodes to keep track of history, and to avoid tamper-
ing. When activating a connection, BitSwap nodes exchange
their ledger information. If it does not match exactly, the
ledger is reinitialized from scratch, loosing the accrued credit
or debt. It is possible for malicious nodes to purposefully
“loose” the Ledger, hoping the erase debts. It is unlikely
that nodes will have accrued enough debt to warrant also
losing the accrued trust, however the partner node is free to
count it as misconduct (discussed later).

type Ledger struct {

parent Checksum

owner NodeId

partner NodeId

bytes_sent int

bytes_recv int

timestamp Timestamp

}

Nodes are free to keep the ledger history, though it is
not necessary for correct operation. Only the current ledger
entries are useful. Nodes are also free to garbage collect
ledgers as necessary, starting with the less useful ledgers:
the old (peers may not exist anymore) and small.

2.3.4 BitSwap Specification
BitSwap nodes follow a simple protocol.

Additional state kept:

type BitSwap struct {

ledgers map[NodeId]Ledger

// Ledgers known to this node, inc inactive

active map[NodeId]Peer

// currently open connections to other nodes

need_list []Checksum

// checksums of blocks this node needs

have_list []Checksum

// checksums of blocks this node has

}

type Peer struct {

nodeid NodeId

ledger Ledger

// Ledger between the node and this peer

last_seen Timestamp

// timestamp of last received message

want_list []Checksum

// checksums of all blocks wanted by peer

// includes blocks wanted by peer’s peers

}

Protocol interface:

interface Peer {

open (nodeid :NodeId, ledger :Ledger);

send_want_list (want_list :WantList);

send_block (block :Block) -> (complete :Bool);

close (final :Bool);

}

Sketch of the lifetime of a peer connection:

1. Open: peers send ledgers until they agree.

2. Sending: peers exchange want_lists and blocks.

3. Close: peers deactivate a connection.

4. Ignored: (special) a peer is ignored (for the duration
of a timeout) if a node’s strategy avoids sending

Peer.open(NodeId, Ledger).
When connecting, a node initializes a connection with a

Ledger, either stored from a connection in the past or a
new one zeroed out. Then, sends an Open message with the
Ledger to the peer.

Upon receiving an Open message, a peer chooses whether
to activate the connection. If – acording to the receiver’s
Ledger – the sender is not a trusted agent (transmission
below zero, or large outstanding debt) the receiver may opt
to ignore the request. This should be done probabilistically
with an ignore_cooldown timeout, as to allow errors to be
corrected and attackers to be thwarted.

If activating the connection, the receiver initializes a Peer
object, with the local version of the Ledger, and setting
the last_seen timestamp). Then, it compares the received
Ledger with its own. If they match exactly, the connections
have opened. If they do not match, the peer creates a new
zeroed out Ledger, and sends it.

Peer.send_want_list(WantList).
While the connection is open, nodes advertise their want_list

to all connected peers. This is done (a) upon opening the
connection, (b) after a randomized periodic timeout, (c) af-
ter a change in the want_list and (d) after receiving a new
block.

Upon receiving a want_list, a node stores it. Then, it
checks whether it has any of the wanted blocks. If so, it
sends them according to the BitSwap Strategy above.

Peer.send_block(Block).

Sending a block is straightforward. The node simply trans-
mits the block of data. Upon receiving all the data, the
receiver computes the Checksum to verify it matches the
expected one, and returns confirmation.

Upon finalizing the correct transmission of a block, the
receiver moves the block from need_list to have_list, and
both the receiver and sender update their ledgers to reflect
the additional bytes transmitted.

If a transmission verfication fails, the receiver instead pe-
nalizes the sender. Both receiver and sender should update
their ledgers accordingly, though the sender is either mal-
functioning or attacking the receiver. Note that BitSwap
expects to operate on a reliable transmission channel, so
data errors – which could lead to incorrect penalization of
an honest sender – are expected to be caught before the data
is given to BitSwap. GFS uses the uTP protocol.

Peer.close(Bool).
The final parameter to close signals whether the inten-

tion to tear down the connection is the sender’s or not. If
false, the receiver may opt to re-open the connection imme-
diatelty. This avoids premature closes.

A peer connection should be closed under two conditions:

• a silence_wait timeout has expired without receiving
any messages from the peer (default BitSwap uses 30
seconds). In this case, the node issues a Peer.close(false)

message.

• the node is exiting and BitSwap is being shut down.
In this case, the node issues a Peer.close(true) mes-
sage.

After a close message, both receiver and sender tear down
the connection, clearing any state stored. The Ledger may
be stored for the future, if it is useful to do so.

Notes.

• Non-open messages on an inactive connection should
be ignored. In case of a send_block message, the re-
ceiver may check the block to see if it is needed and
correct, and if so, use it. Regardless, all such out-of-
order messages trigger a close(false) message from
the receiver, to force re-initialization of the connection.

2.4 Object Model
The DHT and BitSwap allow GFS to form a massive peer-

to-peer system for storing and distributing blocks quickly
and robustly to users. GFS builds a filesystem out of this
efficient block distribution system, constructing files and di-
rectories out of blocks.

Files in GFS are represented as a collection of inter-related
objects, like in the version control system Git. Each ob-
ject is addressed by the cryptographic hash of its contents
(Checksum). The file objects are:

1. block: a variable-size block of data.

2. list: a collection of blocks or other lists.

3. tree: a collection of blocks, lists, or other trees.

4. commit: a snapshot in the version history of a tree.

We hoped to use the Git object formats exactly, but had
to depart to introduce certain features useful in a distributed
filesystem, for example fast size lookups (aggregate byte
sizes have been added to objects), large file deduplication
and versioning (adding a list object), and more. However,
our objects are perfectly compatible with Git and conversion
between the two does not lose any information.

Notes:

• varint is a variable size int, as in protocol-buffers.

• objects are serialized using capnp.

2.4.1 Block Object
The Block object contains an addressable unit of data,

and represents a file. GFS Blocks are like Git blobs or
filesystem data blocks. They store the users’ data. (The
name block is preferred over blob, as the Git-inspired view
of a blob as a file breaks down in GFS. GFS files can be
represented by both lists and blocks.) Format:

block <size>

<block data bytes>

...

2.4.2 List Object
The List object represents a large or de-duplicated file

made up of several GFS Blocks concatenated together. Lists
contain an ordered sequence of block or list objects. In a
sense, the GFS List functions like a filesystem file with in-
direct blocks. Since lists can contain other lists, topolo-
gies including linked lists and balanced trees are possible.
Directed graphs where the same node appears in multiple
places allow in-file deduplication. Cycles are not possible
(enforced by hash addessing). Format:

list <num objects> <size varint>

<list or block> <checksum> <size varint>

<list or block> <checksum> <size varint>

...

2.4.3 Tree Object
The tree object in GFS is similar to Git trees: it rep-

resents a directory, a list of checksums and names. The
checksums reference blob or other tree objects. Note that
traditional path naming is implemented entirely by the tree

objects. Blocks and lists are only addressed by their
checksums. Format:

tree <num objects> <size varint>

<tree or list or block> <checksum> <size varint> <name>

<tree or list or block> <checksum> <size varint> <name>

...

2.4.4 Commit Object
The commit object in GFS is similar to Git’s. It represents

a snapshot in the version history of a tree. Note that user
addresses are NodeIds (the hash of the public key).

commit <size varint>

parent <commit checksum>

tree <tree checksum>

author <author public key> <ISO UTC date>

committer <committer public key> <ISO UTC date>

<commit message>

2.4.5 Version control
The commit object represents a particular snapshot in the

version history of a tree. Comparing the trees and chil-
dren objects of two different commits reveals the differences
between two versions of the filesystem. As long as a single
commit and all the children objects it references are accessi-
ble, all preceding versions are retrievable and the full history
of the filesystem changes can be accessed. This is a conse-
quence of the Git object model and the graph it forms.

The full power of the Git version control tools is available
to GFS users. The object model is compatible (though not
the same). The standard Git tools can be used on the GFS

object graph after a conversion. Additionally, a fork of the
tools is under development that will allow users to use them
directly without conversion.

2.4.6 Object-level Cryptoraphy
GFS is equipped to handle object-level cryptographic op-

erations. Any additional bytes are appended to the bottom
of the object. This changes the object’s hash (defining a
different object, as it should). GFS exposes an API that
automatically verifies signatures or decrypts data.

• Signing. Signature appended.

• Encryption. Optional recipient’s public key appended.

2.4.7 Merkle Trees
The object model in GFS forms a Merkle Tree, which pro-

vides GFS with useful properties:

1. Content Addressing: all content is uniquely iden-
tified by its checksum, including child checksums.
This means a particular tree object points to specific
children. Committing changes to a block also commits
changes to the containing tree.

2. Tamper resistance: all content is verified with its
Checksum. If data is tampered with, before being de-
livered, the client detects and discards it.

3. Deduplication: all objects who hold the exact same
content are the same, and only stored once. This is
particularly useful with parent objects, such as lists,
trees, and commits.

2.5 The Filesystem

2.5.1 Filesystem Paths
GFS exposes a slash-delimited path-based API. Paths work

the same as in any traditional UNIX filesystem. Path sub-
components have different meanings per object:

object subcomponent meaning

block N/A (no children)
list integer index
tree string name
commit string name (in tree)

For example, given the sample objects in Figures 1 and 2:

to access tree ttt333:

ccc111/ttt333-name

to access block bbb222:

ccc111

ttt111

ttt222 ttt333

lll111bbb111 bbb222

bbb333 bbb444 bbb555

Figure 1: Sample Object Graph

ccc111 contents

commit 313

tree ttt111

author <author public key> <ISO UTC date>

committer <committer public key> <ISO UTC date>

ttt111 contents

tree 3 250

tree ttt222 46 ttt222-name

tree ttt333 166 ttt333-name

block bbb222 11 bbb222-name

ttt222 contents

tree 1 10

block bbb111 10 bbb111-name

ttt333 contents

tree 2 104

list lll111 93 lll111-name

block bbb222 11 bbb222-eman

lll111 contents

list 3 39

block bbb333 12

block bbb444 13

block bbb555 14

bbb111 contents # block bbb222 contents

block 1 block 2

1 22

bbb333 contents # block bbb444 contents

block 3 block 4

333 4444

bbb555 contents

block 5

55555

Figure 2: Sample Objects

tree 5 250

tree ttt222 46 ttt222-name

block bbb111 10 ttt222-name/bbb111-name

tree ttt333 166 ttt333-name

list lll111 93 ttt222-name/lll111-name

block bbb222 11 ttt333-name/bbb222-eman

block bbb222 11 bbb222-name

Figure 3: Flattened Tree for ttt111

ccc111/bbb222-name

ccc111/ttt333-name/bbb222-eman

to access list lll111:

ccc111/ttt333-name/lll111-name

to access block bbb555:

ccc111/ttt333-name/lll111-name/2

Note that:

(a) blocks have no children
.../<block>/<child> is impossible

(b) commits implicitly access their trees
.../<commit>/name looks up "name" in <commit>’s <tree>

(c) list children are accessed by their index
.../<list>/4 looks up the fifth block.

Path Lookup Performance.
Path-based access traverses the object graph. Retrieving

each object requires potentially looking up its key in the
DHT, connecting to peers, and retrieving its blocks. This is
considerable overhead, particularly when looking up paths
with many components. This is mitigated by:

• tree caching: since all objects are hash-addressed,
they can be cached indefinitely. Additionally, trees

tend to be small in size so GFS prioritizes caching them
over blocks.

• flattened trees: for any given tree, a special flattened
tree can be constructed to list all objects reachable
from the tree. Figure ?? shows an example of a flat-
tened tree. While GFS does not construct flattened
trees by default, it provides a function for users. For
example,

2.5.2 Publishing Objects
GFS is globally distributed. It is designed to allow the

files of millions of users to coexist together. The DHT with
content-hash addressing allows publishing objects in a fair,
secure, and entirely distributed way. Anyone can publish an
object by simply adding its key to the DHT, adding them-
selves as a peer, and giving other users the object’s hash.

Additionally, the GFS root directory supports special func-
tionality to allow namespacing and naming objects in a fair,
secure, and distributed manner.

(a) All objects are accessible by their hash. Thus, users
can always reference an object (and its children) using
/<object_hash>.

(b) /<node_id> provides a self-certifying filesystem for user
node_id. If it exists, the object returned is a special
tree signed by node_id’s private key. Thus, a user
can publish a tree or commit under their name, and
others can verify it by checking the signature matches.

(c) If /<domain> is a valid domain name, GFS looks up key
gfs in its DNS TXT record. GFS interprets the value as
either an object hash or another GFS path:

this DNS TXT record

fs.benet.ai. TXT "gfs=/aabbccddeeffgg ..."

behaves as symlink

ln -s /aabbccddeeffgg /fs.benet.ai

2.6 Local Objects
GFS clients require some local storage, an external system

on which to store and retrieve local raw data for the objects
GFS manages. The type of storage depends on the node’s
use case. In most cases, this is simply a portion of disk space
(either managed by the native filesystem, or directly by the
GFS client). In others, non- persistent caches for example,
this storage is just a portion of RAM.

Ultimately, all blocks available in GFS are in some node’s
local storage. And when nodes open files with GFS, the ob-
jects are downloaded and stored locally, at least temporarily.
This provides fast lookup for some configurable amount of
time thereafter.

2.6.1 Object Pinning
Nodes who wish to ensure the survival of particular ob-

jects can do so by pinning the objects. This ensures the
objects are kept in the node’s local storage. Pinning can
be done recursively, to pin down all descendent objects as
well. For example, recursively pinning a tree or commit en-
sures all objects pointed to are stored locally too. This is
particularly useful for nodes wishing to keep all their own
files.

