
Hakuin: Injecting Brain 
into Blind SQL Injection

Jakub Pružinec
Cybersecurity Researcher, Nanyang Technological University

1



WHOAMI

Jakub Pružinec

Nanyang Technological University, Singapore

pruzinec.jakub@ntu.edu.sg 

@offbyfour

Quynh Anh Nguyen

Nanyang Technological University, Singapore

aqnguyen@ntu.edu.sg 

@capstone_engine

mailto:pruzinec.jakub@ntu.edu.sg
https://twitter.com/offbyfour
mailto:aqnguyen@ntu.edu.sg
https://twitter.com/capstone_engine


1 SQL Injection & Blind SQL Injection

2 Optimizations & Tools

3 Language in Databases

4 Hakuin Framework

5 Performance Comparison

6 Future Work & Conclusion

Agenda



Benign Interaction

SQL queries build from user input.

SQL Injection (SQLI)

Malicious input alters the query’s logic.

Blind SQL Injection (BSQLI)

Same, but content not exposed.

Response differences – yes/no questions.

Slow and suspicious – one bit per request

SQL Injection & Blind SQL Injection



OPTIMIZATIONS

Exhaustive Search

Is the first letter “A”? Is it “B”? Is it “C”?

Linear complexity.

Binary Search

Is the first letter in the range from “A” to “N”?

Logarithmic complexity.

Character Set Narrowing

Try only certain characters (e.g., digits)

String Guessing

Try whole strings (e.g., common table names)

TOOLS

State of the Art

SQLMap, BBQSQL, jSQL Injection.

Many features (e.g., vulnerability scanning).

Rely on binary search for BSQLI (inefficient).

Optimizations & Tools



Natural Language

Text in DB is mostly in natural language.

Non-uniform character distribution

“A” is more common than “X” in English.

Context matters

The letter following “HELLO WORL_” is likely to be 

“D” but not “X”.

Binary Search not suitable

It treats all letters the same.

Language in Databases



Hakuin

Framework for optimizing text extraction via BSQLI.

Uses probabilistic language models & statistics.

Two approaches

One for DB schemas & one for DB content (i.e., rows)

Hakuin



Approach

A pretrained model estimates character probabilities based on partially 

extracted strings.

The probabilities are used to construct a Huffman tree.

The tree is searched – is the character in the left/right subtree?

Searching a well constructed Huffman tree is much faster than binary 

search.

Language Model

Five-gram trained on 2M tables and 3.8M columns extracted from Stack 

Exchange questions.

Detecting the End of String

EOS symbol predicted by the model and treated as any other character.

Much faster than extracting the string length in advance with binary search 

(other tools).

Hakuin → Database Schemas



Approach

Two parts – string guessing & character extraction.

Hakuin → Database Content



Problem 1: the data is not available in advance

We cannot pretrain models, so we train them on the fly.

Problem 2: Some models work well only on a certain type of data

We keep performance statistics of different strategies and always choose the best one.

The statistics are available with no extra cost, because they are calculated once the correct character is 

already known.

Strategies

Unigram learns character distribution.

Five-gram learns patterns.

Binary Search is a fallback.

Hakuin → Database Content (Character Extraction)



Strings in columns repeat

We keep track of previously extracted strings and try them again.

Approach

We construct a Huffman tree from the previous strings and search it.

Not all strings are worth trying

Adding a string to a Huffman tree raises the chances of success but 

increases the search cost.

We chose strings with high potential that minimize the expected 

number of requests (see the paper).

Hakuin → Database Content (String Extraction)



Measurements

Performance on DB schemas.

Performance on DB content.

Performance throughout the extraction process.

Datasets

SchemaDB dataset for RQ1 – 20 schemas, 184 tables, 938 columns, 12k characters.

GenericDB dataset for RQ2 and RQ3 – 4 tables, 12 columns, 1000 rows of real/realistic data.

Setup

A web application vulnerable to BSQLI.

Keeps count of the requests.

Tools

Hakuin, SQLMap, BBQSQL, jSQL Injection.

Evaluation



Performance on DB Schemas

Hakuin achieves 2.19 RPC, which is 5.98 times more efficient than the second-best tool.

Evaluation → Performance on Schemas



Performance on DB Content

Compared to the second-best performing tool, Hakuin is up to 25.9 times more efficient on columns with limited 

values and up to 3.2 times faster on normal columns.

Evaluation → Performance on Content



Performance Throughout Extraction Process

Hakuin’s models adapt quickly and outperform binary search almost immediately. In most cases, they 

performance continues to improve throughout the inference.

Evaluation → Performance throughout Extraction Process



DEMO



Future Work

Near future – parallelism, pre-implemented DBMS queries (SQLite & MySQL for now), non-textual data.

Future – integration with SQLMap vs new tool?

Takeaways

New datasets (security lists)

• 300k unique tables, 700k unique column names, 6k DB names

• Available at https://github.com/pruzko/hakuin/tree/main/hakuin/data/corpora

New language models

• Tables and columns pre-trained models

• Available at https://github.com/pruzko/hakuin/tree/main/hakuin/data/models

New BSQLI framework Hakuin

• Available at https://github.com/pruzko/hakuin

Further Reading

Read our paper published at WOOT 23 - Hakuin: Optimizing Blind SQL Injection with Probabilistic Language Models

Conclusion

BSQLI is slow but can be optimized.

Language-aware and statistics-aware optimizations matter. 

Future Work & Conclusion

https://github.com/pruzko/hakuin/tree/main/hakuin/data/corpora
https://github.com/pruzko/hakuin/tree/main/hakuin/data/models
https://github.com/pruzko/hakuin
https://wootconference.org/papers/woot23-paper17.pdf


THANK
YOU!

18


	Slide 1: Hakuin: Injecting Brain into Blind SQL Injection
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18: THANK YOU!

