1
0
Fork 0
mirror of https://github.com/git/git.git synced 2024-05-09 04:26:08 +02:00
git/hash-lookup.c
Elijah Newren d1cbe1e6d8 hash-ll.h: split out of hash.h to remove dependency on repository.h
hash.h depends upon and includes repository.h, due to the definition and
use of the_hash_algo (defined as the_repository->hash_algo).  However,
most headers trying to include hash.h are only interested in the layout
of the structs like object_id.  Move the parts of hash.h that do not
depend upon repository.h into a new file hash-ll.h (the "low level"
parts of hash.h), and adjust other files to use this new header where
the convenience inline functions aren't needed.

This allows hash.h and object.h to be fairly small, minimal headers.  It
also exposes a lot of hidden dependencies on both path.h (which was
brought in by repository.h) and repository.h (which was previously
implicitly brought in by object.h), so also adjust other files to be
more explicit about what they depend upon.

Signed-off-by: Elijah Newren <newren@gmail.com>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2023-04-24 12:47:32 -07:00

131 lines
3.2 KiB
C

#include "cache.h"
#include "hash.h"
#include "hash-lookup.h"
static uint32_t take2(const struct object_id *oid, size_t ofs)
{
return ((oid->hash[ofs] << 8) | oid->hash[ofs + 1]);
}
/*
* Conventional binary search loop looks like this:
*
* do {
* int mi = lo + (hi - lo) / 2;
* int cmp = "entry pointed at by mi" minus "target";
* if (!cmp)
* return (mi is the wanted one)
* if (cmp > 0)
* hi = mi; "mi is larger than target"
* else
* lo = mi+1; "mi is smaller than target"
* } while (lo < hi);
*
* The invariants are:
*
* - When entering the loop, lo points at a slot that is never
* above the target (it could be at the target), hi points at a
* slot that is guaranteed to be above the target (it can never
* be at the target).
*
* - We find a point 'mi' between lo and hi (mi could be the same
* as lo, but never can be the same as hi), and check if it hits
* the target. There are three cases:
*
* - if it is a hit, we are happy.
*
* - if it is strictly higher than the target, we update hi with
* it.
*
* - if it is strictly lower than the target, we update lo to be
* one slot after it, because we allow lo to be at the target.
*
* When choosing 'mi', we do not have to take the "middle" but
* anywhere in between lo and hi, as long as lo <= mi < hi is
* satisfied. When we somehow know that the distance between the
* target and lo is much shorter than the target and hi, we could
* pick mi that is much closer to lo than the midway.
*/
/*
* The table should contain "nr" elements.
* The oid of element i (between 0 and nr - 1) should be returned
* by "fn(i, table)".
*/
int oid_pos(const struct object_id *oid, const void *table, size_t nr,
oid_access_fn fn)
{
size_t hi = nr;
size_t lo = 0;
size_t mi = 0;
if (!nr)
return -1;
if (nr != 1) {
size_t lov, hiv, miv, ofs;
for (ofs = 0; ofs < the_hash_algo->rawsz - 2; ofs += 2) {
lov = take2(fn(0, table), ofs);
hiv = take2(fn(nr - 1, table), ofs);
miv = take2(oid, ofs);
if (miv < lov)
return -1;
if (hiv < miv)
return index_pos_to_insert_pos(nr);
if (lov != hiv) {
/*
* At this point miv could be equal
* to hiv (but hash could still be higher);
* the invariant of (mi < hi) should be
* kept.
*/
mi = (nr - 1) * (miv - lov) / (hiv - lov);
if (lo <= mi && mi < hi)
break;
BUG("assertion failed in binary search");
}
}
}
do {
int cmp;
cmp = oidcmp(fn(mi, table), oid);
if (!cmp)
return mi;
if (cmp > 0)
hi = mi;
else
lo = mi + 1;
mi = lo + (hi - lo) / 2;
} while (lo < hi);
return index_pos_to_insert_pos(lo);
}
int bsearch_hash(const unsigned char *hash, const uint32_t *fanout_nbo,
const unsigned char *table, size_t stride, uint32_t *result)
{
uint32_t hi, lo;
hi = ntohl(fanout_nbo[*hash]);
lo = ((*hash == 0x0) ? 0 : ntohl(fanout_nbo[*hash - 1]));
while (lo < hi) {
unsigned mi = lo + (hi - lo) / 2;
int cmp = hashcmp(table + mi * stride, hash);
if (!cmp) {
if (result)
*result = mi;
return 1;
}
if (cmp > 0)
hi = mi;
else
lo = mi + 1;
}
if (result)
*result = lo;
return 0;
}