1
0
mirror of https://github.com/git/git.git synced 2024-11-18 02:04:08 +01:00
git/refs.h
Rafael Ascensão 65516f586b log: add option to choose which refs to decorate
When `log --decorate` is used, git will decorate commits with all
available refs. While in most cases this may give the desired effect,
under some conditions it can lead to excessively verbose output.

Introduce two command line options, `--decorate-refs=<pattern>` and
`--decorate-refs-exclude=<pattern>` to allow the user to select which
refs are used in decoration.

When "--decorate-refs=<pattern>" is given, only the refs that match the
pattern are used in decoration. The refs that match the pattern when
"--decorate-refs-exclude=<pattern>" is given, are never used in
decoration.

These options follow the same convention for mixing negative and
positive patterns across the system, assuming that the inclusive default
is to match all refs available.

 (1) if there is no positive pattern given, pretend as if an
     inclusive default positive pattern was given;

 (2) for each candidate, reject it if it matches no positive
     pattern, or if it matches any one of the negative patterns.

The rules for what is considered a match are slightly different from the
rules used elsewhere.

Commands like `log --glob` assume a trailing '/*' when glob chars are
not present in the pattern. This makes it difficult to specify a single
ref.  On the other hand, commands like `describe --match --all` allow
specifying exact refs, but do not have the convenience of allowing
"shorthand refs" like 'refs/heads' or 'heads' to refer to
'refs/heads/*'.

The commands introduced in this patch consider a match if:

  (a) the pattern contains globs chars,
	and regular pattern matching returns a match.

  (b) the pattern does not contain glob chars,
         and ref '<pattern>' exists, or if ref exists under '<pattern>/'

This allows both behaviours (allowing single refs and shorthand refs)
yet remaining compatible with existent commands.

Helped-by: Kevin Daudt <me@ikke.info>
Helped-by: Junio C Hamano <gitster@pobox.com>
Signed-off-by: Rafael Ascensão <rafa.almas@gmail.com>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2017-11-22 13:18:59 +09:00

776 lines
29 KiB
C

#ifndef REFS_H
#define REFS_H
struct object_id;
struct ref_store;
struct strbuf;
struct string_list;
struct worktree;
/*
* Resolve a reference, recursively following symbolic refererences.
*
* Return the name of the non-symbolic reference that ultimately pointed
* at the resolved object name. The return value, if not NULL, is a
* pointer into either a static buffer or the input ref.
*
* If oid is non-NULL, store the referred-to object's name in it.
*
* If the reference cannot be resolved to an object, the behavior
* depends on the RESOLVE_REF_READING flag:
*
* - If RESOLVE_REF_READING is set, return NULL.
*
* - If RESOLVE_REF_READING is not set, clear oid and return the name of
* the last reference name in the chain, which will either be a non-symbolic
* reference or an undefined reference. If this is a prelude to
* "writing" to the ref, the return value is the name of the ref
* that will actually be created or changed.
*
* If the RESOLVE_REF_NO_RECURSE flag is passed, only resolves one
* level of symbolic reference. The value stored in oid for a symbolic
* reference will always be null_oid in this case, and the return
* value is the reference that the symref refers to directly.
*
* If flags is non-NULL, set the value that it points to the
* combination of REF_ISPACKED (if the reference was found among the
* packed references), REF_ISSYMREF (if the initial reference was a
* symbolic reference), REF_BAD_NAME (if the reference name is ill
* formed --- see RESOLVE_REF_ALLOW_BAD_NAME below), and REF_ISBROKEN
* (if the ref is malformed or has a bad name). See refs.h for more detail
* on each flag.
*
* If ref is not a properly-formatted, normalized reference, return
* NULL. If more than MAXDEPTH recursive symbolic lookups are needed,
* give up and return NULL.
*
* RESOLVE_REF_ALLOW_BAD_NAME allows resolving refs even when their
* name is invalid according to git-check-ref-format(1). If the name
* is bad then the value stored in oid will be null_oid and the two
* flags REF_ISBROKEN and REF_BAD_NAME will be set.
*
* Even with RESOLVE_REF_ALLOW_BAD_NAME, names that escape the refs/
* directory and do not consist of all caps and underscores cannot be
* resolved. The function returns NULL for such ref names.
* Caps and underscores refers to the special refs, such as HEAD,
* FETCH_HEAD and friends, that all live outside of the refs/ directory.
*/
#define RESOLVE_REF_READING 0x01
#define RESOLVE_REF_NO_RECURSE 0x02
#define RESOLVE_REF_ALLOW_BAD_NAME 0x04
const char *refs_resolve_ref_unsafe(struct ref_store *refs,
const char *refname,
int resolve_flags,
struct object_id *oid,
int *flags);
const char *resolve_ref_unsafe(const char *refname, int resolve_flags,
struct object_id *oid, int *flags);
char *refs_resolve_refdup(struct ref_store *refs,
const char *refname, int resolve_flags,
struct object_id *oid, int *flags);
char *resolve_refdup(const char *refname, int resolve_flags,
struct object_id *oid, int *flags);
int refs_read_ref_full(struct ref_store *refs, const char *refname,
int resolve_flags, struct object_id *oid, int *flags);
int read_ref_full(const char *refname, int resolve_flags,
struct object_id *oid, int *flags);
int read_ref(const char *refname, struct object_id *oid);
/*
* Return 0 if a reference named refname could be created without
* conflicting with the name of an existing reference. Otherwise,
* return a negative value and write an explanation to err. If extras
* is non-NULL, it is a list of additional refnames with which refname
* is not allowed to conflict. If skip is non-NULL, ignore potential
* conflicts with refs in skip (e.g., because they are scheduled for
* deletion in the same operation). Behavior is undefined if the same
* name is listed in both extras and skip.
*
* Two reference names conflict if one of them exactly matches the
* leading components of the other; e.g., "foo/bar" conflicts with
* both "foo" and with "foo/bar/baz" but not with "foo/bar" or
* "foo/barbados".
*
* extras and skip must be sorted.
*/
int refs_verify_refname_available(struct ref_store *refs,
const char *refname,
const struct string_list *extras,
const struct string_list *skip,
struct strbuf *err);
int ref_exists(const char *refname);
int should_autocreate_reflog(const char *refname);
int is_branch(const char *refname);
extern int refs_init_db(struct strbuf *err);
/*
* If refname is a non-symbolic reference that refers to a tag object,
* and the tag can be (recursively) dereferenced to a non-tag object,
* store the object ID of the referred-to object to oid and return 0.
* If any of these conditions are not met, return a non-zero value.
* Symbolic references are considered unpeelable, even if they
* ultimately resolve to a peelable tag.
*/
int refs_peel_ref(struct ref_store *refs, const char *refname,
struct object_id *oid);
int peel_ref(const char *refname, struct object_id *oid);
/**
* Resolve refname in the nested "gitlink" repository in the specified
* submodule (which must be non-NULL). If the resolution is
* successful, return 0 and set oid to the name of the object;
* otherwise, return a non-zero value.
*/
int resolve_gitlink_ref(const char *submodule, const char *refname,
struct object_id *oid);
/*
* Return true iff abbrev_name is a possible abbreviation for
* full_name according to the rules defined by ref_rev_parse_rules in
* refs.c.
*/
int refname_match(const char *abbrev_name, const char *full_name);
int expand_ref(const char *str, int len, struct object_id *oid, char **ref);
int dwim_ref(const char *str, int len, struct object_id *oid, char **ref);
int dwim_log(const char *str, int len, struct object_id *oid, char **ref);
/*
* A ref_transaction represents a collection of reference updates that
* should succeed or fail together.
*
* Calling sequence
* ----------------
*
* - Allocate and initialize a `struct ref_transaction` by calling
* `ref_transaction_begin()`.
*
* - Specify the intended ref updates by calling one or more of the
* following functions:
* - `ref_transaction_update()`
* - `ref_transaction_create()`
* - `ref_transaction_delete()`
* - `ref_transaction_verify()`
*
* - Then either:
*
* - Optionally call `ref_transaction_prepare()` to prepare the
* transaction. This locks all references, checks preconditions,
* etc. but doesn't finalize anything. If this step fails, the
* transaction has been closed and can only be freed. If this step
* succeeds, then `ref_transaction_commit()` is almost certain to
* succeed. However, you can still call `ref_transaction_abort()`
* if you decide not to commit the transaction after all.
*
* - Call `ref_transaction_commit()` to execute the transaction,
* make the changes permanent, and release all locks. If you
* haven't already called `ref_transaction_prepare()`, then
* `ref_transaction_commit()` calls it for you.
*
* Or
*
* - Call `initial_ref_transaction_commit()` if the ref database is
* known to be empty and have no other writers (e.g. during
* clone). This is likely to be much faster than
* `ref_transaction_commit()`. `ref_transaction_prepare()` should
* *not* be called before `initial_ref_transaction_commit()`.
*
* - Then finally, call `ref_transaction_free()` to free the
* `ref_transaction` data structure.
*
* At any time before calling `ref_transaction_commit()`, you can call
* `ref_transaction_abort()` to abort the transaction, rollback any
* locks, and free any associated resources (including the
* `ref_transaction` data structure).
*
* Putting it all together, a complete reference update looks like
*
* struct ref_transaction *transaction;
* struct strbuf err = STRBUF_INIT;
* int ret = 0;
*
* transaction = ref_store_transaction_begin(refs, &err);
* if (!transaction ||
* ref_transaction_update(...) ||
* ref_transaction_create(...) ||
* ...etc... ||
* ref_transaction_commit(transaction, &err)) {
* error("%s", err.buf);
* ret = -1;
* }
* ref_transaction_free(transaction);
* strbuf_release(&err);
* return ret;
*
* Error handling
* --------------
*
* On error, transaction functions append a message about what
* went wrong to the 'err' argument. The message mentions what
* ref was being updated (if any) when the error occurred so it
* can be passed to 'die' or 'error' as-is.
*
* The message is appended to err without first clearing err.
* err will not be '\n' terminated.
*
* Caveats
* -------
*
* Note that no locks are taken, and no refs are read, until
* `ref_transaction_prepare()` or `ref_transaction_commit()` is
* called. So, for example, `ref_transaction_verify()` won't report a
* verification failure until the commit is attempted.
*/
struct ref_transaction;
/*
* Bit values set in the flags argument passed to each_ref_fn() and
* stored in ref_iterator::flags. Other bits are for internal use
* only:
*/
/* Reference is a symbolic reference. */
#define REF_ISSYMREF 0x01
/* Reference is a packed reference. */
#define REF_ISPACKED 0x02
/*
* Reference cannot be resolved to an object name: dangling symbolic
* reference (directly or indirectly), corrupt reference file,
* reference exists but name is bad, or symbolic reference refers to
* ill-formatted reference name.
*/
#define REF_ISBROKEN 0x04
/*
* Reference name is not well formed.
*
* See git-check-ref-format(1) for the definition of well formed ref names.
*/
#define REF_BAD_NAME 0x08
/*
* The signature for the callback function for the for_each_*()
* functions below. The memory pointed to by the refname and oid
* arguments is only guaranteed to be valid for the duration of a
* single callback invocation.
*/
typedef int each_ref_fn(const char *refname,
const struct object_id *oid, int flags, void *cb_data);
/*
* The following functions invoke the specified callback function for
* each reference indicated. If the function ever returns a nonzero
* value, stop the iteration and return that value. Please note that
* it is not safe to modify references while an iteration is in
* progress, unless the same callback function invocation that
* modifies the reference also returns a nonzero value to immediately
* stop the iteration. Returned references are sorted.
*/
int refs_head_ref(struct ref_store *refs,
each_ref_fn fn, void *cb_data);
int refs_for_each_ref(struct ref_store *refs,
each_ref_fn fn, void *cb_data);
int refs_for_each_ref_in(struct ref_store *refs, const char *prefix,
each_ref_fn fn, void *cb_data);
int refs_for_each_tag_ref(struct ref_store *refs,
each_ref_fn fn, void *cb_data);
int refs_for_each_branch_ref(struct ref_store *refs,
each_ref_fn fn, void *cb_data);
int refs_for_each_remote_ref(struct ref_store *refs,
each_ref_fn fn, void *cb_data);
int head_ref(each_ref_fn fn, void *cb_data);
int for_each_ref(each_ref_fn fn, void *cb_data);
int for_each_ref_in(const char *prefix, each_ref_fn fn, void *cb_data);
int refs_for_each_fullref_in(struct ref_store *refs, const char *prefix,
each_ref_fn fn, void *cb_data,
unsigned int broken);
int for_each_fullref_in(const char *prefix, each_ref_fn fn, void *cb_data,
unsigned int broken);
int for_each_tag_ref(each_ref_fn fn, void *cb_data);
int for_each_branch_ref(each_ref_fn fn, void *cb_data);
int for_each_remote_ref(each_ref_fn fn, void *cb_data);
int for_each_replace_ref(each_ref_fn fn, void *cb_data);
int for_each_glob_ref(each_ref_fn fn, const char *pattern, void *cb_data);
int for_each_glob_ref_in(each_ref_fn fn, const char *pattern,
const char *prefix, void *cb_data);
int head_ref_namespaced(each_ref_fn fn, void *cb_data);
int for_each_namespaced_ref(each_ref_fn fn, void *cb_data);
/* can be used to learn about broken ref and symref */
int refs_for_each_rawref(struct ref_store *refs, each_ref_fn fn, void *cb_data);
int for_each_rawref(each_ref_fn fn, void *cb_data);
/*
* Normalizes partial refs to their fully qualified form.
* Will prepend <prefix> to the <pattern> if it doesn't start with 'refs/'.
* <prefix> will default to 'refs/' if NULL.
*
* item.string will be set to the result.
* item.util will be set to NULL if <pattern> contains glob characters, or
* non-NULL if it doesn't.
*/
void normalize_glob_ref(struct string_list_item *item, const char *prefix,
const char *pattern);
/*
* Returns 0 if refname matches any of the exclude_patterns, or if it doesn't
* match any of the include_patterns. Returns 1 otherwise.
*
* If pattern list is NULL or empty, matching against that list is skipped.
* This has the effect of matching everything by default, unless the user
* specifies rules otherwise.
*/
int ref_filter_match(const char *refname,
const struct string_list *include_patterns,
const struct string_list *exclude_patterns);
static inline const char *has_glob_specials(const char *pattern)
{
return strpbrk(pattern, "?*[");
}
void warn_dangling_symref(FILE *fp, const char *msg_fmt, const char *refname);
void warn_dangling_symrefs(FILE *fp, const char *msg_fmt,
const struct string_list *refnames);
/*
* Flags for controlling behaviour of pack_refs()
* PACK_REFS_PRUNE: Prune loose refs after packing
* PACK_REFS_ALL: Pack _all_ refs, not just tags and already packed refs
*/
#define PACK_REFS_PRUNE 0x0001
#define PACK_REFS_ALL 0x0002
/*
* Write a packed-refs file for the current repository.
* flags: Combination of the above PACK_REFS_* flags.
*/
int refs_pack_refs(struct ref_store *refs, unsigned int flags);
/*
* Setup reflog before using. Fill in err and return -1 on failure.
*/
int refs_create_reflog(struct ref_store *refs, const char *refname,
int force_create, struct strbuf *err);
int safe_create_reflog(const char *refname, int force_create, struct strbuf *err);
/** Reads log for the value of ref during at_time. **/
int read_ref_at(const char *refname, unsigned int flags,
timestamp_t at_time, int cnt,
struct object_id *oid, char **msg,
timestamp_t *cutoff_time, int *cutoff_tz, int *cutoff_cnt);
/** Check if a particular reflog exists */
int refs_reflog_exists(struct ref_store *refs, const char *refname);
int reflog_exists(const char *refname);
/*
* Delete the specified reference. If old_oid is non-NULL, then
* verify that the current value of the reference is old_oid before
* deleting it. If old_oid is NULL, delete the reference if it
* exists, regardless of its old value. It is an error for old_oid to
* be null_oid. msg and flags are passed through to
* ref_transaction_delete().
*/
int refs_delete_ref(struct ref_store *refs, const char *msg,
const char *refname,
const struct object_id *old_oid,
unsigned int flags);
int delete_ref(const char *msg, const char *refname,
const struct object_id *old_oid, unsigned int flags);
/*
* Delete the specified references. If there are any problems, emit
* errors but attempt to keep going (i.e., the deletes are not done in
* an all-or-nothing transaction). msg and flags are passed through to
* ref_transaction_delete().
*/
int refs_delete_refs(struct ref_store *refs, const char *msg,
struct string_list *refnames, unsigned int flags);
int delete_refs(const char *msg, struct string_list *refnames,
unsigned int flags);
/** Delete a reflog */
int refs_delete_reflog(struct ref_store *refs, const char *refname);
int delete_reflog(const char *refname);
/* iterate over reflog entries */
typedef int each_reflog_ent_fn(
struct object_id *old_oid, struct object_id *new_oid,
const char *committer, timestamp_t timestamp,
int tz, const char *msg, void *cb_data);
int refs_for_each_reflog_ent(struct ref_store *refs, const char *refname,
each_reflog_ent_fn fn, void *cb_data);
int refs_for_each_reflog_ent_reverse(struct ref_store *refs,
const char *refname,
each_reflog_ent_fn fn,
void *cb_data);
int for_each_reflog_ent(const char *refname, each_reflog_ent_fn fn, void *cb_data);
int for_each_reflog_ent_reverse(const char *refname, each_reflog_ent_fn fn, void *cb_data);
/*
* Calls the specified function for each reflog file until it returns nonzero,
* and returns the value. Reflog file order is unspecified.
*/
int refs_for_each_reflog(struct ref_store *refs, each_ref_fn fn, void *cb_data);
int for_each_reflog(each_ref_fn fn, void *cb_data);
#define REFNAME_ALLOW_ONELEVEL 1
#define REFNAME_REFSPEC_PATTERN 2
/*
* Return 0 iff refname has the correct format for a refname according
* to the rules described in Documentation/git-check-ref-format.txt.
* If REFNAME_ALLOW_ONELEVEL is set in flags, then accept one-level
* reference names. If REFNAME_REFSPEC_PATTERN is set in flags, then
* allow a single "*" wildcard character in the refspec. No leading or
* repeated slashes are accepted.
*/
int check_refname_format(const char *refname, int flags);
const char *prettify_refname(const char *refname);
char *shorten_unambiguous_ref(const char *refname, int strict);
/** rename ref, return 0 on success **/
int refs_rename_ref(struct ref_store *refs, const char *oldref,
const char *newref, const char *logmsg);
int rename_ref(const char *oldref, const char *newref,
const char *logmsg);
/** copy ref, return 0 on success **/
int refs_copy_existing_ref(struct ref_store *refs, const char *oldref,
const char *newref, const char *logmsg);
int copy_existing_ref(const char *oldref, const char *newref,
const char *logmsg);
int refs_create_symref(struct ref_store *refs, const char *refname,
const char *target, const char *logmsg);
int create_symref(const char *refname, const char *target, const char *logmsg);
enum action_on_err {
UPDATE_REFS_MSG_ON_ERR,
UPDATE_REFS_DIE_ON_ERR,
UPDATE_REFS_QUIET_ON_ERR
};
/*
* Begin a reference transaction. The reference transaction must
* be freed by calling ref_transaction_free().
*/
struct ref_transaction *ref_store_transaction_begin(struct ref_store *refs,
struct strbuf *err);
struct ref_transaction *ref_transaction_begin(struct strbuf *err);
/*
* Reference transaction updates
*
* The following four functions add a reference check or update to a
* ref_transaction. They have some common similar parameters:
*
* transaction -- a pointer to an open ref_transaction, obtained
* from ref_transaction_begin().
*
* refname -- the name of the reference to be affected.
*
* new_oid -- the object ID that should be set to be the new value
* of the reference. Some functions allow this parameter to be
* NULL, meaning that the reference is not changed, or
* null_oid, meaning that the reference should be deleted. A
* copy of this value is made in the transaction.
*
* old_oid -- the object ID that the reference must have before
* the update. Some functions allow this parameter to be NULL,
* meaning that the old value of the reference is not checked,
* or null_oid, meaning that the reference must not exist
* before the update. A copy of this value is made in the
* transaction.
*
* flags -- flags affecting the update, passed to
* update_ref_lock(). Possible flags: REF_NO_DEREF,
* REF_FORCE_CREATE_REFLOG. See those constants for more
* information.
*
* msg -- a message describing the change (for the reflog).
*
* err -- a strbuf for receiving a description of any error that
* might have occurred.
*
* The functions make internal copies of refname and msg, so the
* caller retains ownership of these parameters.
*
* The functions return 0 on success and non-zero on failure. A
* failure means that the transaction as a whole has failed and needs
* to be rolled back.
*/
/*
* The following flags can be passed to ref_transaction_update() etc.
* Internally, they are stored in `ref_update::flags`, along with some
* internal flags.
*/
/*
* Act on the ref directly; i.e., without dereferencing symbolic refs.
* If this flag is not specified, then symbolic references are
* dereferenced and the update is applied to the referent.
*/
#define REF_NO_DEREF (1 << 0)
/*
* Force the creation of a reflog for this reference, even if it
* didn't previously have a reflog.
*/
#define REF_FORCE_CREATE_REFLOG (1 << 1)
/*
* Bitmask of all of the flags that are allowed to be passed in to
* ref_transaction_update() and friends:
*/
#define REF_TRANSACTION_UPDATE_ALLOWED_FLAGS \
(REF_NO_DEREF | REF_FORCE_CREATE_REFLOG)
/*
* Add a reference update to transaction. `new_oid` is the value that
* the reference should have after the update, or `null_oid` if it
* should be deleted. If `new_oid` is NULL, then the reference is not
* changed at all. `old_oid` is the value that the reference must have
* before the update, or `null_oid` if it must not have existed
* beforehand. The old value is checked after the lock is taken to
* prevent races. If the old value doesn't agree with old_oid, the
* whole transaction fails. If old_oid is NULL, then the previous
* value is not checked.
*
* See the above comment "Reference transaction updates" for more
* information.
*/
int ref_transaction_update(struct ref_transaction *transaction,
const char *refname,
const struct object_id *new_oid,
const struct object_id *old_oid,
unsigned int flags, const char *msg,
struct strbuf *err);
/*
* Add a reference creation to transaction. new_oid is the value that
* the reference should have after the update; it must not be
* null_oid. It is verified that the reference does not exist
* already.
*
* See the above comment "Reference transaction updates" for more
* information.
*/
int ref_transaction_create(struct ref_transaction *transaction,
const char *refname,
const struct object_id *new_oid,
unsigned int flags, const char *msg,
struct strbuf *err);
/*
* Add a reference deletion to transaction. If old_oid is non-NULL,
* then it holds the value that the reference should have had before
* the update (which must not be null_oid).
*
* See the above comment "Reference transaction updates" for more
* information.
*/
int ref_transaction_delete(struct ref_transaction *transaction,
const char *refname,
const struct object_id *old_oid,
unsigned int flags, const char *msg,
struct strbuf *err);
/*
* Verify, within a transaction, that refname has the value old_oid,
* or, if old_oid is null_oid, then verify that the reference
* doesn't exist. old_oid must be non-NULL.
*
* See the above comment "Reference transaction updates" for more
* information.
*/
int ref_transaction_verify(struct ref_transaction *transaction,
const char *refname,
const struct object_id *old_oid,
unsigned int flags,
struct strbuf *err);
/* Naming conflict (for example, the ref names A and A/B conflict). */
#define TRANSACTION_NAME_CONFLICT -1
/* All other errors. */
#define TRANSACTION_GENERIC_ERROR -2
/*
* Perform the preparatory stages of committing `transaction`. Acquire
* any needed locks, check preconditions, etc.; basically, do as much
* as possible to ensure that the transaction will be able to go
* through, stopping just short of making any irrevocable or
* user-visible changes. The updates that this function prepares can
* be finished up by calling `ref_transaction_commit()` or rolled back
* by calling `ref_transaction_abort()`.
*
* On success, return 0 and leave the transaction in "prepared" state.
* On failure, abort the transaction, write an error message to `err`,
* and return one of the `TRANSACTION_*` constants.
*
* Callers who don't need such fine-grained control over committing
* reference transactions should just call `ref_transaction_commit()`.
*/
int ref_transaction_prepare(struct ref_transaction *transaction,
struct strbuf *err);
/*
* Commit all of the changes that have been queued in transaction, as
* atomically as possible. On success, return 0 and leave the
* transaction in "closed" state. On failure, roll back the
* transaction, write an error message to `err`, and return one of the
* `TRANSACTION_*` constants
*/
int ref_transaction_commit(struct ref_transaction *transaction,
struct strbuf *err);
/*
* Abort `transaction`, which has been begun and possibly prepared,
* but not yet committed.
*/
int ref_transaction_abort(struct ref_transaction *transaction,
struct strbuf *err);
/*
* Like ref_transaction_commit(), but optimized for creating
* references when originally initializing a repository (e.g., by "git
* clone"). It writes the new references directly to packed-refs
* without locking the individual references.
*
* It is a bug to call this function when there might be other
* processes accessing the repository or if there are existing
* references that might conflict with the ones being created. All
* old_oid values must either be absent or null_oid.
*/
int initial_ref_transaction_commit(struct ref_transaction *transaction,
struct strbuf *err);
/*
* Free `*transaction` and all associated data.
*/
void ref_transaction_free(struct ref_transaction *transaction);
/**
* Lock, update, and unlock a single reference. This function
* basically does a transaction containing a single call to
* ref_transaction_update(). The parameters to this function have the
* same meaning as the corresponding parameters to
* ref_transaction_update(). Handle errors as requested by the `onerr`
* argument.
*/
int refs_update_ref(struct ref_store *refs, const char *msg, const char *refname,
const struct object_id *new_oid, const struct object_id *old_oid,
unsigned int flags, enum action_on_err onerr);
int update_ref(const char *msg, const char *refname,
const struct object_id *new_oid, const struct object_id *old_oid,
unsigned int flags, enum action_on_err onerr);
int parse_hide_refs_config(const char *var, const char *value, const char *);
/*
* Check whether a ref is hidden. If no namespace is set, both the first and
* the second parameter point to the full ref name. If a namespace is set and
* the ref is inside that namespace, the first parameter is a pointer to the
* name of the ref with the namespace prefix removed. If a namespace is set and
* the ref is outside that namespace, the first parameter is NULL. The second
* parameter always points to the full ref name.
*/
int ref_is_hidden(const char *, const char *);
enum ref_type {
REF_TYPE_PER_WORKTREE,
REF_TYPE_PSEUDOREF,
REF_TYPE_NORMAL,
};
enum ref_type ref_type(const char *refname);
enum expire_reflog_flags {
EXPIRE_REFLOGS_DRY_RUN = 1 << 0,
EXPIRE_REFLOGS_UPDATE_REF = 1 << 1,
EXPIRE_REFLOGS_VERBOSE = 1 << 2,
EXPIRE_REFLOGS_REWRITE = 1 << 3
};
/*
* The following interface is used for reflog expiration. The caller
* calls reflog_expire(), supplying it with three callback functions,
* of the following types. The callback functions define the
* expiration policy that is desired.
*
* reflog_expiry_prepare_fn -- Called once after the reference is
* locked.
*
* reflog_expiry_should_prune_fn -- Called once for each entry in the
* existing reflog. It should return true iff that entry should be
* pruned.
*
* reflog_expiry_cleanup_fn -- Called once before the reference is
* unlocked again.
*/
typedef void reflog_expiry_prepare_fn(const char *refname,
const struct object_id *oid,
void *cb_data);
typedef int reflog_expiry_should_prune_fn(struct object_id *ooid,
struct object_id *noid,
const char *email,
timestamp_t timestamp, int tz,
const char *message, void *cb_data);
typedef void reflog_expiry_cleanup_fn(void *cb_data);
/*
* Expire reflog entries for the specified reference. oid is the old
* value of the reference. flags is a combination of the constants in
* enum expire_reflog_flags. The three function pointers are described
* above. On success, return zero.
*/
int refs_reflog_expire(struct ref_store *refs,
const char *refname,
const struct object_id *oid,
unsigned int flags,
reflog_expiry_prepare_fn prepare_fn,
reflog_expiry_should_prune_fn should_prune_fn,
reflog_expiry_cleanup_fn cleanup_fn,
void *policy_cb_data);
int reflog_expire(const char *refname, const struct object_id *oid,
unsigned int flags,
reflog_expiry_prepare_fn prepare_fn,
reflog_expiry_should_prune_fn should_prune_fn,
reflog_expiry_cleanup_fn cleanup_fn,
void *policy_cb_data);
int ref_storage_backend_exists(const char *name);
struct ref_store *get_main_ref_store(void);
/*
* Return the ref_store instance for the specified submodule. For the
* main repository, use submodule==NULL; such a call cannot fail. For
* a submodule, the submodule must exist and be a nonbare repository,
* otherwise return NULL. If the requested reference store has not yet
* been initialized, initialize it first.
*
* For backwards compatibility, submodule=="" is treated the same as
* submodule==NULL.
*/
struct ref_store *get_submodule_ref_store(const char *submodule);
struct ref_store *get_worktree_ref_store(const struct worktree *wt);
#endif /* REFS_H */