1
0
Fork 0
mirror of https://github.com/git/git.git synced 2024-05-21 13:56:11 +02:00
git/object.h
Jeff King 6cd05e768b upload-pack: free tree buffers after parsing
When a client sends us a "want" or "have" line, we call parse_object()
to get an object struct. If the object is a tree, then the parsed state
means that tree->buffer points to the uncompressed contents of the tree.
But we don't really care about it. We only really need to parse commits
and tags; for trees and blobs, the important output is just a "struct
object" with the correct type.

But much worse, we do not ever free that tree buffer. It's not leaked in
the traditional sense, in that we still have a pointer to it from the
global object hash. But if the client requests many trees, we'll hold
all of their contents in memory at the same time.

Nobody really noticed because it's rare for clients to directly request
a tree. It might happen for a lightweight tag pointing straight at a
tree, or it might happen for a "tree:depth" partial clone filling in
missing trees.

But it's also possible for a malicious client to request a lot of trees,
causing upload-pack's memory to balloon. For example, without this
patch, requesting every tree in git.git like:

  pktline() {
    local msg="$*"
    printf "%04x%s\n" $((1+4+${#msg})) "$msg"
  }

  want_trees() {
    pktline command=fetch
    printf 0001
    git cat-file --batch-all-objects --batch-check='%(objectname) %(objecttype)' |
      while read oid type; do
        test "$type" = "tree" || continue
        pktline want $oid
      done
      pktline done
      printf 0000
  }

  want_trees | GIT_PROTOCOL=version=2 valgrind --tool=massif ./git upload-pack . >/dev/null

shows a peak heap usage of ~3.7GB. Which is just about the sum of the
sizes of all of the uncompressed trees. For linux.git, it's closer to
17GB.

So the obvious thing to do is to call free_tree_buffer() after we
realize that we've parsed a tree. We know that upload-pack won't need it
later. But let's push the logic into parse_object_with_flags(), telling
it to discard the tree buffer immediately. There are two reasons for
this. One, all of the relevant call-sites already call the with_options
variant to pass the SKIP_HASH flag. So it actually ends up as less code
than manually free-ing in each spot. And two, it enables an extra
optimization that I'll discuss below.

I've touched all of the sites that currently use SKIP_HASH in
upload-pack. That drops the peak heap of the upload-pack invocation
above from 3.7GB to ~24MB.

I've also modified the caller in get_reference(); a partial clone
benefits from its use in pack-objects for the reasons given in
0bc2557951 (upload-pack: skip parse-object re-hashing of "want" objects,
2022-09-06), where we were measuring blob requests. But note that the
results of get_reference() are used for traversing, as well; so we
really would _eventually_ use the tree contents. That makes this at
first glance a space/time tradeoff: we won't hold all of the trees in
memory at once, but we'll have to reload them each when it comes time to
traverse.

And here's where our extra optimization comes in. If the caller is not
going to immediately look at the tree contents, and it doesn't care
about checking the hash, then parse_object() can simply skip loading the
tree entirely, just like we do for blobs! And now it's not a space/time
tradeoff in get_reference() anymore. It's just a lazy-load: we're
delaying reading the tree contents until it's time to actually traverse
them one by one.

And of course for upload-pack, this optimization means we never load the
trees at all, saving lots of CPU time. Timing the "every tree from
git.git" request above shows upload-pack dropping from 32 seconds of CPU
to 19 (the remainder is mostly due to pack-objects actually sending the
pack; timing just the upload-pack portion shows we go from 13s to
~0.28s).

These are all highly gamed numbers, of course. For real-world
partial-clone requests we're saving only a small bit of time in
practice. But it does help harden upload-pack against malicious
denial-of-service attacks.

Signed-off-by: Jeff King <peff@peff.net>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2024-02-28 14:42:01 -08:00

291 lines
8.8 KiB
C

#ifndef OBJECT_H
#define OBJECT_H
#include "hash-ll.h"
struct buffer_slab;
struct repository;
struct parsed_object_pool {
struct object **obj_hash;
int nr_objs, obj_hash_size;
/* TODO: migrate alloc_states to mem-pool? */
struct alloc_state *blob_state;
struct alloc_state *tree_state;
struct alloc_state *commit_state;
struct alloc_state *tag_state;
struct alloc_state *object_state;
/* parent substitutions from .git/info/grafts and .git/shallow */
struct commit_graft **grafts;
int grafts_alloc, grafts_nr;
int is_shallow;
struct stat_validity *shallow_stat;
char *alternate_shallow_file;
int commit_graft_prepared;
int substituted_parent;
struct buffer_slab *buffer_slab;
};
struct parsed_object_pool *parsed_object_pool_new(void);
void parsed_object_pool_clear(struct parsed_object_pool *o);
struct object_list {
struct object *item;
struct object_list *next;
};
struct object_array {
unsigned int nr;
unsigned int alloc;
struct object_array_entry {
struct object *item;
/*
* name or NULL. If non-NULL, the memory pointed to
* is owned by this object *except* if it points at
* object_array_slopbuf, which is a static copy of the
* empty string.
*/
char *name;
char *path;
unsigned mode;
} *objects;
};
#define OBJECT_ARRAY_INIT { 0 }
void object_array_init(struct object_array *array);
/*
* object flag allocation:
* revision.h: 0---------10 15 23------27
* fetch-pack.c: 01 67
* negotiator/default.c: 2--5
* walker.c: 0-2
* upload-pack.c: 4 11-----14 16-----19
* builtin/blame.c: 12-13
* bisect.c: 16
* bundle.c: 16
* http-push.c: 11-----14
* commit-graph.c: 15
* commit-reach.c: 16-----19
* sha1-name.c: 20
* list-objects-filter.c: 21
* builtin/fsck.c: 0--3
* builtin/gc.c: 0
* builtin/index-pack.c: 2021
* reflog.c: 10--12
* builtin/show-branch.c: 0-------------------------------------------26
* builtin/unpack-objects.c: 2021
*/
#define FLAG_BITS 28
#define TYPE_BITS 3
/*
* Values in this enum (except those outside the 3 bit range) are part
* of pack file format. See gitformat-pack(5) for more information.
*/
enum object_type {
OBJ_BAD = -1,
OBJ_NONE = 0,
OBJ_COMMIT = 1,
OBJ_TREE = 2,
OBJ_BLOB = 3,
OBJ_TAG = 4,
/* 5 for future expansion */
OBJ_OFS_DELTA = 6,
OBJ_REF_DELTA = 7,
OBJ_ANY,
OBJ_MAX
};
/* unknown mode (impossible combination S_IFIFO|S_IFCHR) */
#define S_IFINVALID 0030000
/*
* A "directory link" is a link to another git directory.
*
* The value 0160000 is not normally a valid mode, and
* also just happens to be S_IFDIR + S_IFLNK
*/
#define S_IFGITLINK 0160000
#define S_ISGITLINK(m) (((m) & S_IFMT) == S_IFGITLINK)
#define S_ISSPARSEDIR(m) ((m) == S_IFDIR)
static inline enum object_type object_type(unsigned int mode)
{
return S_ISDIR(mode) ? OBJ_TREE :
S_ISGITLINK(mode) ? OBJ_COMMIT :
OBJ_BLOB;
}
#define ce_permissions(mode) (((mode) & 0100) ? 0755 : 0644)
static inline unsigned int create_ce_mode(unsigned int mode)
{
if (S_ISLNK(mode))
return S_IFLNK;
if (S_ISSPARSEDIR(mode))
return S_IFDIR;
if (S_ISDIR(mode) || S_ISGITLINK(mode))
return S_IFGITLINK;
return S_IFREG | ce_permissions(mode);
}
static inline unsigned int canon_mode(unsigned int mode)
{
if (S_ISREG(mode))
return S_IFREG | ce_permissions(mode);
if (S_ISLNK(mode))
return S_IFLNK;
if (S_ISDIR(mode))
return S_IFDIR;
return S_IFGITLINK;
}
/*
* The object type is stored in 3 bits.
*/
struct object {
unsigned parsed : 1;
unsigned type : TYPE_BITS;
unsigned flags : FLAG_BITS;
struct object_id oid;
};
const char *type_name(unsigned int type);
int type_from_string_gently(const char *str, ssize_t, int gentle);
#define type_from_string(str) type_from_string_gently(str, -1, 0)
/*
* Return the current number of buckets in the object hashmap.
*/
unsigned int get_max_object_index(void);
/*
* Return the object from the specified bucket in the object hashmap.
*/
struct object *get_indexed_object(unsigned int);
/*
* This can be used to see if we have heard of the object before, but
* it can return "yes we have, and here is a half-initialised object"
* for an object that we haven't loaded/parsed yet.
*
* When parsing a commit to create an in-core commit object, its
* parents list holds commit objects that represent its parents, but
* they are expected to be lazily initialized and do not know what
* their trees or parents are yet. When this function returns such a
* half-initialised objects, the caller is expected to initialize them
* by calling parse_object() on them.
*/
struct object *lookup_object(struct repository *r, const struct object_id *oid);
void *create_object(struct repository *r, const struct object_id *oid, void *obj);
void *object_as_type(struct object *obj, enum object_type type, int quiet);
/*
* Returns the object, having parsed it to find out what it is.
*
* Returns NULL if the object is missing or corrupt.
*/
enum parse_object_flags {
PARSE_OBJECT_SKIP_HASH_CHECK = 1 << 0,
PARSE_OBJECT_DISCARD_TREE = 1 << 1,
};
struct object *parse_object(struct repository *r, const struct object_id *oid);
struct object *parse_object_with_flags(struct repository *r,
const struct object_id *oid,
enum parse_object_flags flags);
/*
* Like parse_object, but will die() instead of returning NULL. If the
* "name" parameter is not NULL, it is included in the error message
* (otherwise, the hex object ID is given).
*/
struct object *parse_object_or_die(const struct object_id *oid, const char *name);
/* Given the result of read_sha1_file(), returns the object after
* parsing it. eaten_p indicates if the object has a borrowed copy
* of buffer and the caller should not free() it.
*/
struct object *parse_object_buffer(struct repository *r, const struct object_id *oid, enum object_type type, unsigned long size, void *buffer, int *eaten_p);
/*
* Allocate and return an object struct, even if you do not know the type of
* the object. The returned object may have its "type" field set to a real type
* (if somebody previously called lookup_blob(), etc), or it may be set to
* OBJ_NONE. In the latter case, subsequent calls to lookup_blob(), etc, will
* set the type field as appropriate.
*
* Use this when you do not know the expected type of an object and want to
* avoid parsing it for efficiency reasons. Try to avoid it otherwise; it
* may allocate excess memory, since the returned object must be as large as
* the maximum struct of any type.
*/
struct object *lookup_unknown_object(struct repository *r, const struct object_id *oid);
/*
* Dispatch to the appropriate lookup_blob(), lookup_commit(), etc, based on
* "type".
*/
struct object *lookup_object_by_type(struct repository *r, const struct object_id *oid,
enum object_type type);
struct object_list *object_list_insert(struct object *item,
struct object_list **list_p);
int object_list_contains(struct object_list *list, struct object *obj);
void object_list_free(struct object_list **list);
/* Object array handling .. */
void add_object_array(struct object *obj, const char *name, struct object_array *array);
void add_object_array_with_path(struct object *obj, const char *name, struct object_array *array, unsigned mode, const char *path);
/*
* Returns NULL if the array is empty. Otherwise, returns the last object
* after removing its entry from the array. Other resources associated
* with that object are left in an unspecified state and should not be
* examined.
*/
struct object *object_array_pop(struct object_array *array);
typedef int (*object_array_each_func_t)(struct object_array_entry *, void *);
/*
* Apply want to each entry in array, retaining only the entries for
* which the function returns true. Preserve the order of the entries
* that are retained.
*/
void object_array_filter(struct object_array *array,
object_array_each_func_t want, void *cb_data);
/*
* Remove from array all but the first entry with a given name.
* Warning: this function uses an O(N^2) algorithm.
*/
void object_array_remove_duplicates(struct object_array *array);
/*
* Remove any objects from the array, freeing all used memory; afterwards
* the array is ready to store more objects with add_object_array().
*/
void object_array_clear(struct object_array *array);
void clear_object_flags(unsigned flags);
/*
* Clear the specified object flags from all in-core commit objects from
* the specified repository.
*/
void repo_clear_commit_marks(struct repository *r, unsigned int flags);
#endif /* OBJECT_H */