1
0
Fork 0
mirror of https://github.com/git/git.git synced 2024-05-19 12:56:08 +02:00
git/refs/reftable-backend.c
Patrick Steinhardt 59c50a96c5 refs: stop resolving ref corresponding to reflogs
The reflog iterator tries to resolve the corresponding ref for every
reflog that it is about to yield. Historically, this was done due to
multiple reasons:

  - It ensures that the refname is safe because we end up calling
    `check_refname_format()`. Also, non-conformant refnames are skipped
    altogether.

  - The iterator used to yield the resolved object ID as well as its
    flags to the callback. This info was never used though, and the
    corresponding parameters were dropped in the preceding commit.

  - When a ref is corrupt then the reflog is not emitted at all.

We're about to introduce a new `git reflog list` subcommand that will
print all reflogs that the refdb knows about. Skipping over reflogs
whose refs are corrupted would be quite counterproductive in this case
as the user would have no way to learn about reflogs which may still
exist in their repository to help and rescue such a corrupted ref. Thus,
the only remaining reason for why we'd want to resolve the ref is to
verify its refname.

Refactor the code to call `check_refname_format()` directly instead of
trying to resolve the ref. This is significantly more efficient given
that we don't have to hit the object database anymore to list reflogs.
And second, it ensures that we end up showing reflogs of broken refs,
which will help to make the reflog more useful.

Note that this really only impacts the case where the corresponding ref
is corrupt. Reflogs for nonexistent refs would have been returned to the
caller beforehand already as we did not pass `RESOLVE_REF_READING` to
the function, and thus `refs_resolve_ref_unsafe()` would have returned
successfully in that case.

Signed-off-by: Patrick Steinhardt <ps@pks.im>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2024-02-21 09:58:06 -08:00

2247 lines
62 KiB
C

#include "../git-compat-util.h"
#include "../abspath.h"
#include "../chdir-notify.h"
#include "../environment.h"
#include "../gettext.h"
#include "../hash.h"
#include "../hex.h"
#include "../iterator.h"
#include "../ident.h"
#include "../lockfile.h"
#include "../object.h"
#include "../path.h"
#include "../refs.h"
#include "../reftable/reftable-stack.h"
#include "../reftable/reftable-record.h"
#include "../reftable/reftable-error.h"
#include "../reftable/reftable-iterator.h"
#include "../reftable/reftable-merged.h"
#include "../setup.h"
#include "../strmap.h"
#include "refs-internal.h"
/*
* Used as a flag in ref_update::flags when the ref_update was via an
* update to HEAD.
*/
#define REF_UPDATE_VIA_HEAD (1 << 8)
struct reftable_ref_store {
struct ref_store base;
/*
* The main stack refers to the common dir and thus contains common
* refs as well as refs of the main repository.
*/
struct reftable_stack *main_stack;
/*
* The worktree stack refers to the gitdir in case the refdb is opened
* via a worktree. It thus contains the per-worktree refs.
*/
struct reftable_stack *worktree_stack;
/*
* Map of worktree stacks by their respective worktree names. The map
* is populated lazily when we try to resolve `worktrees/$worktree` refs.
*/
struct strmap worktree_stacks;
struct reftable_write_options write_options;
unsigned int store_flags;
int err;
};
/*
* Downcast ref_store to reftable_ref_store. Die if ref_store is not a
* reftable_ref_store. required_flags is compared with ref_store's store_flags
* to ensure the ref_store has all required capabilities. "caller" is used in
* any necessary error messages.
*/
static struct reftable_ref_store *reftable_be_downcast(struct ref_store *ref_store,
unsigned int required_flags,
const char *caller)
{
struct reftable_ref_store *refs;
if (ref_store->be != &refs_be_reftable)
BUG("ref_store is type \"%s\" not \"reftables\" in %s",
ref_store->be->name, caller);
refs = (struct reftable_ref_store *)ref_store;
if ((refs->store_flags & required_flags) != required_flags)
BUG("operation %s requires abilities 0x%x, but only have 0x%x",
caller, required_flags, refs->store_flags);
return refs;
}
/*
* Some refs are global to the repository (refs/heads/{*}), while others are
* local to the worktree (eg. HEAD, refs/bisect/{*}). We solve this by having
* multiple separate databases (ie. multiple reftable/ directories), one for
* the shared refs, one for the current worktree refs, and one for each
* additional worktree. For reading, we merge the view of both the shared and
* the current worktree's refs, when necessary.
*
* This function also optionally assigns the rewritten reference name that is
* local to the stack. This translation is required when using worktree refs
* like `worktrees/$worktree/refs/heads/foo` as worktree stacks will store
* those references in their normalized form.
*/
static struct reftable_stack *stack_for(struct reftable_ref_store *store,
const char *refname,
const char **rewritten_ref)
{
const char *wtname;
int wtname_len;
if (!refname)
return store->main_stack;
switch (parse_worktree_ref(refname, &wtname, &wtname_len, rewritten_ref)) {
case REF_WORKTREE_OTHER: {
static struct strbuf wtname_buf = STRBUF_INIT;
struct strbuf wt_dir = STRBUF_INIT;
struct reftable_stack *stack;
/*
* We're using a static buffer here so that we don't need to
* allocate the worktree name whenever we look up a reference.
* This could be avoided if the strmap interface knew how to
* handle keys with a length.
*/
strbuf_reset(&wtname_buf);
strbuf_add(&wtname_buf, wtname, wtname_len);
/*
* There is an edge case here: when the worktree references the
* current worktree, then we set up the stack once via
* `worktree_stacks` and once via `worktree_stack`. This is
* wasteful, but in the reading case it shouldn't matter. And
* in the writing case we would notice that the stack is locked
* already and error out when trying to write a reference via
* both stacks.
*/
stack = strmap_get(&store->worktree_stacks, wtname_buf.buf);
if (!stack) {
strbuf_addf(&wt_dir, "%s/worktrees/%s/reftable",
store->base.repo->commondir, wtname_buf.buf);
store->err = reftable_new_stack(&stack, wt_dir.buf,
store->write_options);
assert(store->err != REFTABLE_API_ERROR);
strmap_put(&store->worktree_stacks, wtname_buf.buf, stack);
}
strbuf_release(&wt_dir);
return stack;
}
case REF_WORKTREE_CURRENT:
/*
* If there is no worktree stack then we're currently in the
* main worktree. We thus return the main stack in that case.
*/
if (!store->worktree_stack)
return store->main_stack;
return store->worktree_stack;
case REF_WORKTREE_MAIN:
case REF_WORKTREE_SHARED:
return store->main_stack;
default:
BUG("unhandled worktree reference type");
}
}
static int should_write_log(struct ref_store *refs, const char *refname)
{
if (log_all_ref_updates == LOG_REFS_UNSET)
log_all_ref_updates = is_bare_repository() ? LOG_REFS_NONE : LOG_REFS_NORMAL;
switch (log_all_ref_updates) {
case LOG_REFS_NONE:
return refs_reflog_exists(refs, refname);
case LOG_REFS_ALWAYS:
return 1;
case LOG_REFS_NORMAL:
if (should_autocreate_reflog(refname))
return 1;
return refs_reflog_exists(refs, refname);
default:
BUG("unhandled core.logAllRefUpdates value %d", log_all_ref_updates);
}
}
static void clear_reftable_log_record(struct reftable_log_record *log)
{
switch (log->value_type) {
case REFTABLE_LOG_UPDATE:
/*
* When we write log records, the hashes are owned by the
* caller and thus shouldn't be free'd.
*/
log->value.update.old_hash = NULL;
log->value.update.new_hash = NULL;
break;
case REFTABLE_LOG_DELETION:
break;
}
reftable_log_record_release(log);
}
static void fill_reftable_log_record(struct reftable_log_record *log)
{
const char *info = git_committer_info(0);
struct ident_split split = {0};
int sign = 1;
if (split_ident_line(&split, info, strlen(info)))
BUG("failed splitting committer info");
reftable_log_record_release(log);
log->value_type = REFTABLE_LOG_UPDATE;
log->value.update.name =
xstrndup(split.name_begin, split.name_end - split.name_begin);
log->value.update.email =
xstrndup(split.mail_begin, split.mail_end - split.mail_begin);
log->value.update.time = atol(split.date_begin);
if (*split.tz_begin == '-') {
sign = -1;
split.tz_begin++;
}
if (*split.tz_begin == '+') {
sign = 1;
split.tz_begin++;
}
log->value.update.tz_offset = sign * atoi(split.tz_begin);
}
static int read_ref_without_reload(struct reftable_stack *stack,
const char *refname,
struct object_id *oid,
struct strbuf *referent,
unsigned int *type)
{
struct reftable_ref_record ref = {0};
int ret;
ret = reftable_stack_read_ref(stack, refname, &ref);
if (ret)
goto done;
if (ref.value_type == REFTABLE_REF_SYMREF) {
strbuf_reset(referent);
strbuf_addstr(referent, ref.value.symref);
*type |= REF_ISSYMREF;
} else if (reftable_ref_record_val1(&ref)) {
oidread(oid, reftable_ref_record_val1(&ref));
} else {
/* We got a tombstone, which should not happen. */
BUG("unhandled reference value type %d", ref.value_type);
}
done:
assert(ret != REFTABLE_API_ERROR);
reftable_ref_record_release(&ref);
return ret;
}
static struct ref_store *reftable_be_init(struct repository *repo,
const char *gitdir,
unsigned int store_flags)
{
struct reftable_ref_store *refs = xcalloc(1, sizeof(*refs));
struct strbuf path = STRBUF_INIT;
int is_worktree;
mode_t mask;
mask = umask(0);
umask(mask);
base_ref_store_init(&refs->base, repo, gitdir, &refs_be_reftable);
strmap_init(&refs->worktree_stacks);
refs->store_flags = store_flags;
refs->write_options.block_size = 4096;
refs->write_options.hash_id = repo->hash_algo->format_id;
refs->write_options.default_permissions = calc_shared_perm(0666 & ~mask);
/*
* Set up the main reftable stack that is hosted in GIT_COMMON_DIR.
* This stack contains both the shared and the main worktree refs.
*
* Note that we don't try to resolve the path in case we have a
* worktree because `get_common_dir_noenv()` already does it for us.
*/
is_worktree = get_common_dir_noenv(&path, gitdir);
if (!is_worktree) {
strbuf_reset(&path);
strbuf_realpath(&path, gitdir, 0);
}
strbuf_addstr(&path, "/reftable");
refs->err = reftable_new_stack(&refs->main_stack, path.buf,
refs->write_options);
if (refs->err)
goto done;
/*
* If we're in a worktree we also need to set up the worktree reftable
* stack that is contained in the per-worktree GIT_DIR.
*
* Ideally, we would also add the stack to our worktree stack map. But
* we have no way to figure out the worktree name here and thus can't
* do it efficiently.
*/
if (is_worktree) {
strbuf_reset(&path);
strbuf_addf(&path, "%s/reftable", gitdir);
refs->err = reftable_new_stack(&refs->worktree_stack, path.buf,
refs->write_options);
if (refs->err)
goto done;
}
chdir_notify_reparent("reftables-backend $GIT_DIR", &refs->base.gitdir);
done:
assert(refs->err != REFTABLE_API_ERROR);
strbuf_release(&path);
return &refs->base;
}
static int reftable_be_init_db(struct ref_store *ref_store,
int flags UNUSED,
struct strbuf *err UNUSED)
{
struct reftable_ref_store *refs =
reftable_be_downcast(ref_store, REF_STORE_WRITE, "init_db");
struct strbuf sb = STRBUF_INIT;
strbuf_addf(&sb, "%s/reftable", refs->base.gitdir);
safe_create_dir(sb.buf, 1);
strbuf_reset(&sb);
strbuf_addf(&sb, "%s/HEAD", refs->base.gitdir);
write_file(sb.buf, "ref: refs/heads/.invalid");
adjust_shared_perm(sb.buf);
strbuf_reset(&sb);
strbuf_addf(&sb, "%s/refs", refs->base.gitdir);
safe_create_dir(sb.buf, 1);
strbuf_reset(&sb);
strbuf_addf(&sb, "%s/refs/heads", refs->base.gitdir);
write_file(sb.buf, "this repository uses the reftable format");
adjust_shared_perm(sb.buf);
strbuf_release(&sb);
return 0;
}
struct reftable_ref_iterator {
struct ref_iterator base;
struct reftable_ref_store *refs;
struct reftable_iterator iter;
struct reftable_ref_record ref;
struct object_id oid;
const char *prefix;
unsigned int flags;
int err;
};
static int reftable_ref_iterator_advance(struct ref_iterator *ref_iterator)
{
struct reftable_ref_iterator *iter =
(struct reftable_ref_iterator *)ref_iterator;
struct reftable_ref_store *refs = iter->refs;
while (!iter->err) {
int flags = 0;
iter->err = reftable_iterator_next_ref(&iter->iter, &iter->ref);
if (iter->err)
break;
/*
* The files backend only lists references contained in
* "refs/". We emulate the same behaviour here and thus skip
* all references that don't start with this prefix.
*/
if (!starts_with(iter->ref.refname, "refs/"))
continue;
if (iter->prefix &&
strncmp(iter->prefix, iter->ref.refname, strlen(iter->prefix))) {
iter->err = 1;
break;
}
if (iter->flags & DO_FOR_EACH_PER_WORKTREE_ONLY &&
parse_worktree_ref(iter->ref.refname, NULL, NULL, NULL) !=
REF_WORKTREE_CURRENT)
continue;
switch (iter->ref.value_type) {
case REFTABLE_REF_VAL1:
oidread(&iter->oid, iter->ref.value.val1);
break;
case REFTABLE_REF_VAL2:
oidread(&iter->oid, iter->ref.value.val2.value);
break;
case REFTABLE_REF_SYMREF:
if (!refs_resolve_ref_unsafe(&iter->refs->base, iter->ref.refname,
RESOLVE_REF_READING, &iter->oid, &flags))
oidclr(&iter->oid);
break;
default:
BUG("unhandled reference value type %d", iter->ref.value_type);
}
if (is_null_oid(&iter->oid))
flags |= REF_ISBROKEN;
if (check_refname_format(iter->ref.refname, REFNAME_ALLOW_ONELEVEL)) {
if (!refname_is_safe(iter->ref.refname))
die(_("refname is dangerous: %s"), iter->ref.refname);
oidclr(&iter->oid);
flags |= REF_BAD_NAME | REF_ISBROKEN;
}
if (iter->flags & DO_FOR_EACH_OMIT_DANGLING_SYMREFS &&
flags & REF_ISSYMREF &&
flags & REF_ISBROKEN)
continue;
if (!(iter->flags & DO_FOR_EACH_INCLUDE_BROKEN) &&
!ref_resolves_to_object(iter->ref.refname, refs->base.repo,
&iter->oid, flags))
continue;
iter->base.refname = iter->ref.refname;
iter->base.oid = &iter->oid;
iter->base.flags = flags;
break;
}
if (iter->err > 0) {
if (ref_iterator_abort(ref_iterator) != ITER_DONE)
return ITER_ERROR;
return ITER_DONE;
}
if (iter->err < 0) {
ref_iterator_abort(ref_iterator);
return ITER_ERROR;
}
return ITER_OK;
}
static int reftable_ref_iterator_peel(struct ref_iterator *ref_iterator,
struct object_id *peeled)
{
struct reftable_ref_iterator *iter =
(struct reftable_ref_iterator *)ref_iterator;
if (iter->ref.value_type == REFTABLE_REF_VAL2) {
oidread(peeled, iter->ref.value.val2.target_value);
return 0;
}
return -1;
}
static int reftable_ref_iterator_abort(struct ref_iterator *ref_iterator)
{
struct reftable_ref_iterator *iter =
(struct reftable_ref_iterator *)ref_iterator;
reftable_ref_record_release(&iter->ref);
reftable_iterator_destroy(&iter->iter);
free(iter);
return ITER_DONE;
}
static struct ref_iterator_vtable reftable_ref_iterator_vtable = {
.advance = reftable_ref_iterator_advance,
.peel = reftable_ref_iterator_peel,
.abort = reftable_ref_iterator_abort
};
static struct reftable_ref_iterator *ref_iterator_for_stack(struct reftable_ref_store *refs,
struct reftable_stack *stack,
const char *prefix,
int flags)
{
struct reftable_merged_table *merged_table;
struct reftable_ref_iterator *iter;
int ret;
iter = xcalloc(1, sizeof(*iter));
base_ref_iterator_init(&iter->base, &reftable_ref_iterator_vtable);
iter->prefix = prefix;
iter->base.oid = &iter->oid;
iter->flags = flags;
iter->refs = refs;
ret = refs->err;
if (ret)
goto done;
ret = reftable_stack_reload(stack);
if (ret)
goto done;
merged_table = reftable_stack_merged_table(stack);
ret = reftable_merged_table_seek_ref(merged_table, &iter->iter, prefix);
if (ret)
goto done;
done:
iter->err = ret;
return iter;
}
static struct ref_iterator *reftable_be_iterator_begin(struct ref_store *ref_store,
const char *prefix,
const char **exclude_patterns,
unsigned int flags)
{
struct reftable_ref_iterator *main_iter, *worktree_iter;
struct reftable_ref_store *refs;
unsigned int required_flags = REF_STORE_READ;
if (!(flags & DO_FOR_EACH_INCLUDE_BROKEN))
required_flags |= REF_STORE_ODB;
refs = reftable_be_downcast(ref_store, required_flags, "ref_iterator_begin");
main_iter = ref_iterator_for_stack(refs, refs->main_stack, prefix, flags);
/*
* The worktree stack is only set when we're in an actual worktree
* right now. If we aren't, then we return the common reftable
* iterator, only.
*/
if (!refs->worktree_stack)
return &main_iter->base;
/*
* Otherwise we merge both the common and the per-worktree refs into a
* single iterator.
*/
worktree_iter = ref_iterator_for_stack(refs, refs->worktree_stack, prefix, flags);
return merge_ref_iterator_begin(&worktree_iter->base, &main_iter->base,
ref_iterator_select, NULL);
}
static int reftable_be_read_raw_ref(struct ref_store *ref_store,
const char *refname,
struct object_id *oid,
struct strbuf *referent,
unsigned int *type,
int *failure_errno)
{
struct reftable_ref_store *refs =
reftable_be_downcast(ref_store, REF_STORE_READ, "read_raw_ref");
struct reftable_stack *stack = stack_for(refs, refname, &refname);
int ret;
if (refs->err < 0)
return refs->err;
ret = reftable_stack_reload(stack);
if (ret)
return ret;
ret = read_ref_without_reload(stack, refname, oid, referent, type);
if (ret < 0)
return ret;
if (ret > 0) {
*failure_errno = ENOENT;
return -1;
}
return 0;
}
static int reftable_be_read_symbolic_ref(struct ref_store *ref_store,
const char *refname,
struct strbuf *referent)
{
struct reftable_ref_store *refs =
reftable_be_downcast(ref_store, REF_STORE_READ, "read_symbolic_ref");
struct reftable_stack *stack = stack_for(refs, refname, &refname);
struct reftable_ref_record ref = {0};
int ret;
ret = reftable_stack_reload(stack);
if (ret)
return ret;
ret = reftable_stack_read_ref(stack, refname, &ref);
if (ret == 0 && ref.value_type == REFTABLE_REF_SYMREF)
strbuf_addstr(referent, ref.value.symref);
else
ret = -1;
reftable_ref_record_release(&ref);
return ret;
}
/*
* Return the refname under which update was originally requested.
*/
static const char *original_update_refname(struct ref_update *update)
{
while (update->parent_update)
update = update->parent_update;
return update->refname;
}
struct reftable_transaction_update {
struct ref_update *update;
struct object_id current_oid;
};
struct write_transaction_table_arg {
struct reftable_ref_store *refs;
struct reftable_stack *stack;
struct reftable_addition *addition;
struct reftable_transaction_update *updates;
size_t updates_nr;
size_t updates_alloc;
size_t updates_expected;
};
struct reftable_transaction_data {
struct write_transaction_table_arg *args;
size_t args_nr, args_alloc;
};
static void free_transaction_data(struct reftable_transaction_data *tx_data)
{
if (!tx_data)
return;
for (size_t i = 0; i < tx_data->args_nr; i++) {
reftable_addition_destroy(tx_data->args[i].addition);
free(tx_data->args[i].updates);
}
free(tx_data->args);
free(tx_data);
}
/*
* Prepare transaction update for the given reference update. This will cause
* us to lock the corresponding reftable stack for concurrent modification.
*/
static int prepare_transaction_update(struct write_transaction_table_arg **out,
struct reftable_ref_store *refs,
struct reftable_transaction_data *tx_data,
struct ref_update *update,
struct strbuf *err)
{
struct reftable_stack *stack = stack_for(refs, update->refname, NULL);
struct write_transaction_table_arg *arg = NULL;
size_t i;
int ret;
/*
* Search for a preexisting stack update. If there is one then we add
* the update to it, otherwise we set up a new stack update.
*/
for (i = 0; !arg && i < tx_data->args_nr; i++)
if (tx_data->args[i].stack == stack)
arg = &tx_data->args[i];
if (!arg) {
struct reftable_addition *addition;
ret = reftable_stack_reload(stack);
if (ret)
return ret;
ret = reftable_stack_new_addition(&addition, stack);
if (ret) {
if (ret == REFTABLE_LOCK_ERROR)
strbuf_addstr(err, "cannot lock references");
return ret;
}
ALLOC_GROW(tx_data->args, tx_data->args_nr + 1,
tx_data->args_alloc);
arg = &tx_data->args[tx_data->args_nr++];
arg->refs = refs;
arg->stack = stack;
arg->addition = addition;
arg->updates = NULL;
arg->updates_nr = 0;
arg->updates_alloc = 0;
arg->updates_expected = 0;
}
arg->updates_expected++;
if (out)
*out = arg;
return 0;
}
/*
* Queue a reference update for the correct stack. We potentially need to
* handle multiple stack updates in a single transaction when it spans across
* multiple worktrees.
*/
static int queue_transaction_update(struct reftable_ref_store *refs,
struct reftable_transaction_data *tx_data,
struct ref_update *update,
struct object_id *current_oid,
struct strbuf *err)
{
struct write_transaction_table_arg *arg = NULL;
int ret;
if (update->backend_data)
BUG("reference update queued more than once");
ret = prepare_transaction_update(&arg, refs, tx_data, update, err);
if (ret < 0)
return ret;
ALLOC_GROW(arg->updates, arg->updates_nr + 1,
arg->updates_alloc);
arg->updates[arg->updates_nr].update = update;
oidcpy(&arg->updates[arg->updates_nr].current_oid, current_oid);
update->backend_data = &arg->updates[arg->updates_nr++];
return 0;
}
static int reftable_be_transaction_prepare(struct ref_store *ref_store,
struct ref_transaction *transaction,
struct strbuf *err)
{
struct reftable_ref_store *refs =
reftable_be_downcast(ref_store, REF_STORE_WRITE|REF_STORE_MAIN, "ref_transaction_prepare");
struct strbuf referent = STRBUF_INIT, head_referent = STRBUF_INIT;
struct string_list affected_refnames = STRING_LIST_INIT_NODUP;
struct reftable_transaction_data *tx_data = NULL;
struct object_id head_oid;
unsigned int head_type = 0;
size_t i;
int ret;
ret = refs->err;
if (ret < 0)
goto done;
tx_data = xcalloc(1, sizeof(*tx_data));
/*
* Preprocess all updates. For one we check that there are no duplicate
* reference updates in this transaction. Second, we lock all stacks
* that will be modified during the transaction.
*/
for (i = 0; i < transaction->nr; i++) {
ret = prepare_transaction_update(NULL, refs, tx_data,
transaction->updates[i], err);
if (ret)
goto done;
string_list_append(&affected_refnames,
transaction->updates[i]->refname);
}
/*
* Now that we have counted updates per stack we can preallocate their
* arrays. This avoids having to reallocate many times.
*/
for (i = 0; i < tx_data->args_nr; i++) {
CALLOC_ARRAY(tx_data->args[i].updates, tx_data->args[i].updates_expected);
tx_data->args[i].updates_alloc = tx_data->args[i].updates_expected;
}
/*
* Fail if a refname appears more than once in the transaction.
* This code is taken from the files backend and is a good candidate to
* be moved into the generic layer.
*/
string_list_sort(&affected_refnames);
if (ref_update_reject_duplicates(&affected_refnames, err)) {
ret = TRANSACTION_GENERIC_ERROR;
goto done;
}
ret = read_ref_without_reload(stack_for(refs, "HEAD", NULL), "HEAD", &head_oid,
&head_referent, &head_type);
if (ret < 0)
goto done;
for (i = 0; i < transaction->nr; i++) {
struct ref_update *u = transaction->updates[i];
struct object_id current_oid = {0};
struct reftable_stack *stack;
const char *rewritten_ref;
stack = stack_for(refs, u->refname, &rewritten_ref);
/* Verify that the new object ID is valid. */
if ((u->flags & REF_HAVE_NEW) && !is_null_oid(&u->new_oid) &&
!(u->flags & REF_SKIP_OID_VERIFICATION) &&
!(u->flags & REF_LOG_ONLY)) {
struct object *o = parse_object(refs->base.repo, &u->new_oid);
if (!o) {
strbuf_addf(err,
_("trying to write ref '%s' with nonexistent object %s"),
u->refname, oid_to_hex(&u->new_oid));
ret = -1;
goto done;
}
if (o->type != OBJ_COMMIT && is_branch(u->refname)) {
strbuf_addf(err, _("trying to write non-commit object %s to branch '%s'"),
oid_to_hex(&u->new_oid), u->refname);
ret = -1;
goto done;
}
}
/*
* When we update the reference that HEAD points to we enqueue
* a second log-only update for HEAD so that its reflog is
* updated accordingly.
*/
if (head_type == REF_ISSYMREF &&
!(u->flags & REF_LOG_ONLY) &&
!(u->flags & REF_UPDATE_VIA_HEAD) &&
!strcmp(rewritten_ref, head_referent.buf)) {
struct ref_update *new_update;
/*
* First make sure that HEAD is not already in the
* transaction. This check is O(lg N) in the transaction
* size, but it happens at most once per transaction.
*/
if (string_list_has_string(&affected_refnames, "HEAD")) {
/* An entry already existed */
strbuf_addf(err,
_("multiple updates for 'HEAD' (including one "
"via its referent '%s') are not allowed"),
u->refname);
ret = TRANSACTION_NAME_CONFLICT;
goto done;
}
new_update = ref_transaction_add_update(
transaction, "HEAD",
u->flags | REF_LOG_ONLY | REF_NO_DEREF,
&u->new_oid, &u->old_oid, u->msg);
string_list_insert(&affected_refnames, new_update->refname);
}
ret = read_ref_without_reload(stack, rewritten_ref,
&current_oid, &referent, &u->type);
if (ret < 0)
goto done;
if (ret > 0 && (!(u->flags & REF_HAVE_OLD) || is_null_oid(&u->old_oid))) {
/*
* The reference does not exist, and we either have no
* old object ID or expect the reference to not exist.
* We can thus skip below safety checks as well as the
* symref splitting. But we do want to verify that
* there is no conflicting reference here so that we
* can output a proper error message instead of failing
* at a later point.
*/
ret = refs_verify_refname_available(ref_store, u->refname,
&affected_refnames, NULL, err);
if (ret < 0)
goto done;
/*
* There is no need to write the reference deletion
* when the reference in question doesn't exist.
*/
if (u->flags & REF_HAVE_NEW && !is_null_oid(&u->new_oid)) {
ret = queue_transaction_update(refs, tx_data, u,
&current_oid, err);
if (ret)
goto done;
}
continue;
}
if (ret > 0) {
/* The reference does not exist, but we expected it to. */
strbuf_addf(err, _("cannot lock ref '%s': "
"unable to resolve reference '%s'"),
original_update_refname(u), u->refname);
ret = -1;
goto done;
}
if (u->type & REF_ISSYMREF) {
/*
* The reftable stack is locked at this point already,
* so it is safe to call `refs_resolve_ref_unsafe()`
* here without causing races.
*/
const char *resolved = refs_resolve_ref_unsafe(&refs->base, u->refname, 0,
&current_oid, NULL);
if (u->flags & REF_NO_DEREF) {
if (u->flags & REF_HAVE_OLD && !resolved) {
strbuf_addf(err, _("cannot lock ref '%s': "
"error reading reference"), u->refname);
ret = -1;
goto done;
}
} else {
struct ref_update *new_update;
int new_flags;
new_flags = u->flags;
if (!strcmp(rewritten_ref, "HEAD"))
new_flags |= REF_UPDATE_VIA_HEAD;
/*
* If we are updating a symref (eg. HEAD), we should also
* update the branch that the symref points to.
*
* This is generic functionality, and would be better
* done in refs.c, but the current implementation is
* intertwined with the locking in files-backend.c.
*/
new_update = ref_transaction_add_update(
transaction, referent.buf, new_flags,
&u->new_oid, &u->old_oid, u->msg);
new_update->parent_update = u;
/*
* Change the symbolic ref update to log only. Also, it
* doesn't need to check its old OID value, as that will be
* done when new_update is processed.
*/
u->flags |= REF_LOG_ONLY | REF_NO_DEREF;
u->flags &= ~REF_HAVE_OLD;
if (string_list_has_string(&affected_refnames, new_update->refname)) {
strbuf_addf(err,
_("multiple updates for '%s' (including one "
"via symref '%s') are not allowed"),
referent.buf, u->refname);
ret = TRANSACTION_NAME_CONFLICT;
goto done;
}
string_list_insert(&affected_refnames, new_update->refname);
}
}
/*
* Verify that the old object matches our expectations. Note
* that the error messages here do not make a lot of sense in
* the context of the reftable backend as we never lock
* individual refs. But the error messages match what the files
* backend returns, which keeps our tests happy.
*/
if (u->flags & REF_HAVE_OLD && !oideq(&current_oid, &u->old_oid)) {
if (is_null_oid(&u->old_oid))
strbuf_addf(err, _("cannot lock ref '%s': "
"reference already exists"),
original_update_refname(u));
else if (is_null_oid(&current_oid))
strbuf_addf(err, _("cannot lock ref '%s': "
"reference is missing but expected %s"),
original_update_refname(u),
oid_to_hex(&u->old_oid));
else
strbuf_addf(err, _("cannot lock ref '%s': "
"is at %s but expected %s"),
original_update_refname(u),
oid_to_hex(&current_oid),
oid_to_hex(&u->old_oid));
ret = -1;
goto done;
}
/*
* If all of the following conditions are true:
*
* - We're not about to write a symref.
* - We're not about to write a log-only entry.
* - Old and new object ID are different.
*
* Then we're essentially doing a no-op update that can be
* skipped. This is not only for the sake of efficiency, but
* also skips writing unneeded reflog entries.
*/
if ((u->type & REF_ISSYMREF) ||
(u->flags & REF_LOG_ONLY) ||
(u->flags & REF_HAVE_NEW && !oideq(&current_oid, &u->new_oid))) {
ret = queue_transaction_update(refs, tx_data, u,
&current_oid, err);
if (ret)
goto done;
}
}
transaction->backend_data = tx_data;
transaction->state = REF_TRANSACTION_PREPARED;
done:
assert(ret != REFTABLE_API_ERROR);
if (ret < 0) {
free_transaction_data(tx_data);
transaction->state = REF_TRANSACTION_CLOSED;
if (!err->len)
strbuf_addf(err, _("reftable: transaction prepare: %s"),
reftable_error_str(ret));
}
string_list_clear(&affected_refnames, 0);
strbuf_release(&referent);
strbuf_release(&head_referent);
return ret;
}
static int reftable_be_transaction_abort(struct ref_store *ref_store,
struct ref_transaction *transaction,
struct strbuf *err)
{
struct reftable_transaction_data *tx_data = transaction->backend_data;
free_transaction_data(tx_data);
transaction->state = REF_TRANSACTION_CLOSED;
return 0;
}
static int transaction_update_cmp(const void *a, const void *b)
{
return strcmp(((struct reftable_transaction_update *)a)->update->refname,
((struct reftable_transaction_update *)b)->update->refname);
}
static int write_transaction_table(struct reftable_writer *writer, void *cb_data)
{
struct write_transaction_table_arg *arg = cb_data;
struct reftable_merged_table *mt =
reftable_stack_merged_table(arg->stack);
uint64_t ts = reftable_stack_next_update_index(arg->stack);
struct reftable_log_record *logs = NULL;
size_t logs_nr = 0, logs_alloc = 0, i;
int ret = 0;
QSORT(arg->updates, arg->updates_nr, transaction_update_cmp);
reftable_writer_set_limits(writer, ts, ts);
for (i = 0; i < arg->updates_nr; i++) {
struct reftable_transaction_update *tx_update = &arg->updates[i];
struct ref_update *u = tx_update->update;
/*
* Write a reflog entry when updating a ref to point to
* something new in either of the following cases:
*
* - The reference is about to be deleted. We always want to
* delete the reflog in that case.
* - REF_FORCE_CREATE_REFLOG is set, asking us to always create
* the reflog entry.
* - `core.logAllRefUpdates` tells us to create the reflog for
* the given ref.
*/
if (u->flags & REF_HAVE_NEW && !(u->type & REF_ISSYMREF) && is_null_oid(&u->new_oid)) {
struct reftable_log_record log = {0};
struct reftable_iterator it = {0};
/*
* When deleting refs we also delete all reflog entries
* with them. While it is not strictly required to
* delete reflogs together with their refs, this
* matches the behaviour of the files backend.
*
* Unfortunately, we have no better way than to delete
* all reflog entries one by one.
*/
ret = reftable_merged_table_seek_log(mt, &it, u->refname);
while (ret == 0) {
struct reftable_log_record *tombstone;
ret = reftable_iterator_next_log(&it, &log);
if (ret < 0)
break;
if (ret > 0 || strcmp(log.refname, u->refname)) {
ret = 0;
break;
}
ALLOC_GROW(logs, logs_nr + 1, logs_alloc);
tombstone = &logs[logs_nr++];
tombstone->refname = xstrdup(u->refname);
tombstone->value_type = REFTABLE_LOG_DELETION;
tombstone->update_index = log.update_index;
}
reftable_log_record_release(&log);
reftable_iterator_destroy(&it);
if (ret)
goto done;
} else if (u->flags & REF_HAVE_NEW &&
(u->flags & REF_FORCE_CREATE_REFLOG ||
should_write_log(&arg->refs->base, u->refname))) {
struct reftable_log_record *log;
ALLOC_GROW(logs, logs_nr + 1, logs_alloc);
log = &logs[logs_nr++];
memset(log, 0, sizeof(*log));
fill_reftable_log_record(log);
log->update_index = ts;
log->refname = xstrdup(u->refname);
log->value.update.new_hash = u->new_oid.hash;
log->value.update.old_hash = tx_update->current_oid.hash;
log->value.update.message =
xstrndup(u->msg, arg->refs->write_options.block_size / 2);
}
if (u->flags & REF_LOG_ONLY)
continue;
if (u->flags & REF_HAVE_NEW && is_null_oid(&u->new_oid)) {
struct reftable_ref_record ref = {
.refname = (char *)u->refname,
.update_index = ts,
.value_type = REFTABLE_REF_DELETION,
};
ret = reftable_writer_add_ref(writer, &ref);
if (ret < 0)
goto done;
} else if (u->flags & REF_HAVE_NEW) {
struct reftable_ref_record ref = {0};
struct object_id peeled;
int peel_error;
ref.refname = (char *)u->refname;
ref.update_index = ts;
peel_error = peel_object(&u->new_oid, &peeled);
if (!peel_error) {
ref.value_type = REFTABLE_REF_VAL2;
memcpy(ref.value.val2.target_value, peeled.hash, GIT_MAX_RAWSZ);
memcpy(ref.value.val2.value, u->new_oid.hash, GIT_MAX_RAWSZ);
} else if (!is_null_oid(&u->new_oid)) {
ref.value_type = REFTABLE_REF_VAL1;
memcpy(ref.value.val1, u->new_oid.hash, GIT_MAX_RAWSZ);
}
ret = reftable_writer_add_ref(writer, &ref);
if (ret < 0)
goto done;
}
}
/*
* Logs are written at the end so that we do not have intermixed ref
* and log blocks.
*/
if (logs) {
ret = reftable_writer_add_logs(writer, logs, logs_nr);
if (ret < 0)
goto done;
}
done:
assert(ret != REFTABLE_API_ERROR);
for (i = 0; i < logs_nr; i++)
clear_reftable_log_record(&logs[i]);
free(logs);
return ret;
}
static int reftable_be_transaction_finish(struct ref_store *ref_store,
struct ref_transaction *transaction,
struct strbuf *err)
{
struct reftable_transaction_data *tx_data = transaction->backend_data;
int ret = 0;
for (size_t i = 0; i < tx_data->args_nr; i++) {
ret = reftable_addition_add(tx_data->args[i].addition,
write_transaction_table, &tx_data->args[i]);
if (ret < 0)
goto done;
ret = reftable_addition_commit(tx_data->args[i].addition);
if (ret < 0)
goto done;
}
done:
assert(ret != REFTABLE_API_ERROR);
free_transaction_data(tx_data);
transaction->state = REF_TRANSACTION_CLOSED;
if (ret) {
strbuf_addf(err, _("reftable: transaction failure: %s"),
reftable_error_str(ret));
return -1;
}
return ret;
}
static int reftable_be_initial_transaction_commit(struct ref_store *ref_store UNUSED,
struct ref_transaction *transaction,
struct strbuf *err)
{
return ref_transaction_commit(transaction, err);
}
static int reftable_be_pack_refs(struct ref_store *ref_store,
struct pack_refs_opts *opts)
{
struct reftable_ref_store *refs =
reftable_be_downcast(ref_store, REF_STORE_WRITE | REF_STORE_ODB, "pack_refs");
struct reftable_stack *stack;
int ret;
if (refs->err)
return refs->err;
stack = refs->worktree_stack;
if (!stack)
stack = refs->main_stack;
ret = reftable_stack_compact_all(stack, NULL);
if (ret)
goto out;
ret = reftable_stack_clean(stack);
if (ret)
goto out;
out:
return ret;
}
struct write_create_symref_arg {
struct reftable_ref_store *refs;
struct reftable_stack *stack;
const char *refname;
const char *target;
const char *logmsg;
};
static int write_create_symref_table(struct reftable_writer *writer, void *cb_data)
{
struct write_create_symref_arg *create = cb_data;
uint64_t ts = reftable_stack_next_update_index(create->stack);
struct reftable_ref_record ref = {
.refname = (char *)create->refname,
.value_type = REFTABLE_REF_SYMREF,
.value.symref = (char *)create->target,
.update_index = ts,
};
struct reftable_log_record log = {0};
struct object_id new_oid;
struct object_id old_oid;
int ret;
reftable_writer_set_limits(writer, ts, ts);
ret = reftable_writer_add_ref(writer, &ref);
if (ret)
return ret;
/*
* Note that it is important to try and resolve the reference before we
* write the log entry. This is because `should_write_log()` will munge
* `core.logAllRefUpdates`, which is undesirable when we create a new
* repository because it would be written into the config. As HEAD will
* not resolve for new repositories this ordering will ensure that this
* never happens.
*/
if (!create->logmsg ||
!refs_resolve_ref_unsafe(&create->refs->base, create->target,
RESOLVE_REF_READING, &new_oid, NULL) ||
!should_write_log(&create->refs->base, create->refname))
return 0;
fill_reftable_log_record(&log);
log.refname = xstrdup(create->refname);
log.update_index = ts;
log.value.update.message = xstrndup(create->logmsg,
create->refs->write_options.block_size / 2);
log.value.update.new_hash = new_oid.hash;
if (refs_resolve_ref_unsafe(&create->refs->base, create->refname,
RESOLVE_REF_READING, &old_oid, NULL))
log.value.update.old_hash = old_oid.hash;
ret = reftable_writer_add_log(writer, &log);
clear_reftable_log_record(&log);
return ret;
}
static int reftable_be_create_symref(struct ref_store *ref_store,
const char *refname,
const char *target,
const char *logmsg)
{
struct reftable_ref_store *refs =
reftable_be_downcast(ref_store, REF_STORE_WRITE, "create_symref");
struct reftable_stack *stack = stack_for(refs, refname, &refname);
struct write_create_symref_arg arg = {
.refs = refs,
.stack = stack,
.refname = refname,
.target = target,
.logmsg = logmsg,
};
int ret;
ret = refs->err;
if (ret < 0)
goto done;
ret = reftable_stack_reload(stack);
if (ret)
goto done;
ret = reftable_stack_add(stack, &write_create_symref_table, &arg);
done:
assert(ret != REFTABLE_API_ERROR);
if (ret)
error("unable to write symref for %s: %s", refname,
reftable_error_str(ret));
return ret;
}
struct write_copy_arg {
struct reftable_ref_store *refs;
struct reftable_stack *stack;
const char *oldname;
const char *newname;
const char *logmsg;
int delete_old;
};
static int write_copy_table(struct reftable_writer *writer, void *cb_data)
{
struct write_copy_arg *arg = cb_data;
uint64_t deletion_ts, creation_ts;
struct reftable_merged_table *mt = reftable_stack_merged_table(arg->stack);
struct reftable_ref_record old_ref = {0}, refs[2] = {0};
struct reftable_log_record old_log = {0}, *logs = NULL;
struct reftable_iterator it = {0};
struct string_list skip = STRING_LIST_INIT_NODUP;
struct strbuf errbuf = STRBUF_INIT;
size_t logs_nr = 0, logs_alloc = 0, i;
int ret;
if (reftable_stack_read_ref(arg->stack, arg->oldname, &old_ref)) {
ret = error(_("refname %s not found"), arg->oldname);
goto done;
}
if (old_ref.value_type == REFTABLE_REF_SYMREF) {
ret = error(_("refname %s is a symbolic ref, copying it is not supported"),
arg->oldname);
goto done;
}
/*
* There's nothing to do in case the old and new name are the same, so
* we exit early in that case.
*/
if (!strcmp(arg->oldname, arg->newname)) {
ret = 0;
goto done;
}
/*
* Verify that the new refname is available.
*/
string_list_insert(&skip, arg->oldname);
ret = refs_verify_refname_available(&arg->refs->base, arg->newname,
NULL, &skip, &errbuf);
if (ret < 0) {
error("%s", errbuf.buf);
goto done;
}
/*
* When deleting the old reference we have to use two update indices:
* once to delete the old ref and its reflog, and once to create the
* new ref and its reflog. They need to be staged with two separate
* indices because the new reflog needs to encode both the deletion of
* the old branch and the creation of the new branch, and we cannot do
* two changes to a reflog in a single update.
*/
deletion_ts = creation_ts = reftable_stack_next_update_index(arg->stack);
if (arg->delete_old)
creation_ts++;
reftable_writer_set_limits(writer, deletion_ts, creation_ts);
/*
* Add the new reference. If this is a rename then we also delete the
* old reference.
*/
refs[0] = old_ref;
refs[0].refname = (char *)arg->newname;
refs[0].update_index = creation_ts;
if (arg->delete_old) {
refs[1].refname = (char *)arg->oldname;
refs[1].value_type = REFTABLE_REF_DELETION;
refs[1].update_index = deletion_ts;
}
ret = reftable_writer_add_refs(writer, refs, arg->delete_old ? 2 : 1);
if (ret < 0)
goto done;
/*
* When deleting the old branch we need to create a reflog entry on the
* new branch name that indicates that the old branch has been deleted
* and then recreated. This is a tad weird, but matches what the files
* backend does.
*/
if (arg->delete_old) {
struct strbuf head_referent = STRBUF_INIT;
struct object_id head_oid;
int append_head_reflog;
unsigned head_type = 0;
ALLOC_GROW(logs, logs_nr + 1, logs_alloc);
memset(&logs[logs_nr], 0, sizeof(logs[logs_nr]));
fill_reftable_log_record(&logs[logs_nr]);
logs[logs_nr].refname = (char *)arg->newname;
logs[logs_nr].update_index = deletion_ts;
logs[logs_nr].value.update.message =
xstrndup(arg->logmsg, arg->refs->write_options.block_size / 2);
logs[logs_nr].value.update.old_hash = old_ref.value.val1;
logs_nr++;
ret = read_ref_without_reload(arg->stack, "HEAD", &head_oid, &head_referent, &head_type);
if (ret < 0)
goto done;
append_head_reflog = (head_type & REF_ISSYMREF) && !strcmp(head_referent.buf, arg->oldname);
strbuf_release(&head_referent);
/*
* The files backend uses `refs_delete_ref()` to delete the old
* branch name, which will append a reflog entry for HEAD in
* case it points to the old branch.
*/
if (append_head_reflog) {
ALLOC_GROW(logs, logs_nr + 1, logs_alloc);
logs[logs_nr] = logs[logs_nr - 1];
logs[logs_nr].refname = "HEAD";
logs_nr++;
}
}
/*
* Create the reflog entry for the newly created branch.
*/
ALLOC_GROW(logs, logs_nr + 1, logs_alloc);
memset(&logs[logs_nr], 0, sizeof(logs[logs_nr]));
fill_reftable_log_record(&logs[logs_nr]);
logs[logs_nr].refname = (char *)arg->newname;
logs[logs_nr].update_index = creation_ts;
logs[logs_nr].value.update.message =
xstrndup(arg->logmsg, arg->refs->write_options.block_size / 2);
logs[logs_nr].value.update.new_hash = old_ref.value.val1;
logs_nr++;
/*
* In addition to writing the reflog entry for the new branch, we also
* copy over all log entries from the old reflog. Last but not least,
* when renaming we also have to delete all the old reflog entries.
*/
ret = reftable_merged_table_seek_log(mt, &it, arg->oldname);
if (ret < 0)
goto done;
while (1) {
ret = reftable_iterator_next_log(&it, &old_log);
if (ret < 0)
goto done;
if (ret > 0 || strcmp(old_log.refname, arg->oldname)) {
ret = 0;
break;
}
free(old_log.refname);
/*
* Copy over the old reflog entry with the new refname.
*/
ALLOC_GROW(logs, logs_nr + 1, logs_alloc);
logs[logs_nr] = old_log;
logs[logs_nr].refname = (char *)arg->newname;
logs_nr++;
/*
* Delete the old reflog entry in case we are renaming.
*/
if (arg->delete_old) {
ALLOC_GROW(logs, logs_nr + 1, logs_alloc);
memset(&logs[logs_nr], 0, sizeof(logs[logs_nr]));
logs[logs_nr].refname = (char *)arg->oldname;
logs[logs_nr].value_type = REFTABLE_LOG_DELETION;
logs[logs_nr].update_index = old_log.update_index;
logs_nr++;
}
/*
* Transfer ownership of the log record we're iterating over to
* the array of log records. Otherwise, the pointers would get
* free'd or reallocated by the iterator.
*/
memset(&old_log, 0, sizeof(old_log));
}
ret = reftable_writer_add_logs(writer, logs, logs_nr);
if (ret < 0)
goto done;
done:
assert(ret != REFTABLE_API_ERROR);
reftable_iterator_destroy(&it);
string_list_clear(&skip, 0);
strbuf_release(&errbuf);
for (i = 0; i < logs_nr; i++) {
if (!strcmp(logs[i].refname, "HEAD"))
continue;
if (logs[i].value.update.old_hash == old_ref.value.val1)
logs[i].value.update.old_hash = NULL;
if (logs[i].value.update.new_hash == old_ref.value.val1)
logs[i].value.update.new_hash = NULL;
logs[i].refname = NULL;
reftable_log_record_release(&logs[i]);
}
free(logs);
reftable_ref_record_release(&old_ref);
reftable_log_record_release(&old_log);
return ret;
}
static int reftable_be_rename_ref(struct ref_store *ref_store,
const char *oldrefname,
const char *newrefname,
const char *logmsg)
{
struct reftable_ref_store *refs =
reftable_be_downcast(ref_store, REF_STORE_WRITE, "rename_ref");
struct reftable_stack *stack = stack_for(refs, newrefname, &newrefname);
struct write_copy_arg arg = {
.refs = refs,
.stack = stack,
.oldname = oldrefname,
.newname = newrefname,
.logmsg = logmsg,
.delete_old = 1,
};
int ret;
ret = refs->err;
if (ret < 0)
goto done;
ret = reftable_stack_reload(stack);
if (ret)
goto done;
ret = reftable_stack_add(stack, &write_copy_table, &arg);
done:
assert(ret != REFTABLE_API_ERROR);
return ret;
}
static int reftable_be_copy_ref(struct ref_store *ref_store,
const char *oldrefname,
const char *newrefname,
const char *logmsg)
{
struct reftable_ref_store *refs =
reftable_be_downcast(ref_store, REF_STORE_WRITE, "copy_ref");
struct reftable_stack *stack = stack_for(refs, newrefname, &newrefname);
struct write_copy_arg arg = {
.refs = refs,
.stack = stack,
.oldname = oldrefname,
.newname = newrefname,
.logmsg = logmsg,
};
int ret;
ret = refs->err;
if (ret < 0)
goto done;
ret = reftable_stack_reload(stack);
if (ret)
goto done;
ret = reftable_stack_add(stack, &write_copy_table, &arg);
done:
assert(ret != REFTABLE_API_ERROR);
return ret;
}
struct reftable_reflog_iterator {
struct ref_iterator base;
struct reftable_ref_store *refs;
struct reftable_iterator iter;
struct reftable_log_record log;
char *last_name;
int err;
};
static int reftable_reflog_iterator_advance(struct ref_iterator *ref_iterator)
{
struct reftable_reflog_iterator *iter =
(struct reftable_reflog_iterator *)ref_iterator;
while (!iter->err) {
iter->err = reftable_iterator_next_log(&iter->iter, &iter->log);
if (iter->err)
break;
/*
* We want the refnames that we have reflogs for, so we skip if
* we've already produced this name. This could be faster by
* seeking directly to reflog@update_index==0.
*/
if (iter->last_name && !strcmp(iter->log.refname, iter->last_name))
continue;
if (check_refname_format(iter->log.refname,
REFNAME_ALLOW_ONELEVEL))
continue;
free(iter->last_name);
iter->last_name = xstrdup(iter->log.refname);
iter->base.refname = iter->log.refname;
break;
}
if (iter->err > 0) {
if (ref_iterator_abort(ref_iterator) != ITER_DONE)
return ITER_ERROR;
return ITER_DONE;
}
if (iter->err < 0) {
ref_iterator_abort(ref_iterator);
return ITER_ERROR;
}
return ITER_OK;
}
static int reftable_reflog_iterator_peel(struct ref_iterator *ref_iterator,
struct object_id *peeled)
{
BUG("reftable reflog iterator cannot be peeled");
return -1;
}
static int reftable_reflog_iterator_abort(struct ref_iterator *ref_iterator)
{
struct reftable_reflog_iterator *iter =
(struct reftable_reflog_iterator *)ref_iterator;
reftable_log_record_release(&iter->log);
reftable_iterator_destroy(&iter->iter);
free(iter->last_name);
free(iter);
return ITER_DONE;
}
static struct ref_iterator_vtable reftable_reflog_iterator_vtable = {
.advance = reftable_reflog_iterator_advance,
.peel = reftable_reflog_iterator_peel,
.abort = reftable_reflog_iterator_abort
};
static struct reftable_reflog_iterator *reflog_iterator_for_stack(struct reftable_ref_store *refs,
struct reftable_stack *stack)
{
struct reftable_merged_table *merged_table;
struct reftable_reflog_iterator *iter;
int ret;
iter = xcalloc(1, sizeof(*iter));
base_ref_iterator_init(&iter->base, &reftable_reflog_iterator_vtable);
iter->refs = refs;
ret = refs->err;
if (ret)
goto done;
ret = reftable_stack_reload(refs->main_stack);
if (ret < 0)
goto done;
merged_table = reftable_stack_merged_table(stack);
ret = reftable_merged_table_seek_log(merged_table, &iter->iter, "");
if (ret < 0)
goto done;
done:
iter->err = ret;
return iter;
}
static struct ref_iterator *reftable_be_reflog_iterator_begin(struct ref_store *ref_store)
{
struct reftable_ref_store *refs =
reftable_be_downcast(ref_store, REF_STORE_READ, "reflog_iterator_begin");
struct reftable_reflog_iterator *main_iter, *worktree_iter;
main_iter = reflog_iterator_for_stack(refs, refs->main_stack);
if (!refs->worktree_stack)
return &main_iter->base;
worktree_iter = reflog_iterator_for_stack(refs, refs->worktree_stack);
return merge_ref_iterator_begin(&worktree_iter->base, &main_iter->base,
ref_iterator_select, NULL);
}
static int yield_log_record(struct reftable_log_record *log,
each_reflog_ent_fn fn,
void *cb_data)
{
struct object_id old_oid, new_oid;
const char *full_committer;
oidread(&old_oid, log->value.update.old_hash);
oidread(&new_oid, log->value.update.new_hash);
/*
* When both the old object ID and the new object ID are null
* then this is the reflog existence marker. The caller must
* not be aware of it.
*/
if (is_null_oid(&old_oid) && is_null_oid(&new_oid))
return 0;
full_committer = fmt_ident(log->value.update.name, log->value.update.email,
WANT_COMMITTER_IDENT, NULL, IDENT_NO_DATE);
return fn(&old_oid, &new_oid, full_committer,
log->value.update.time, log->value.update.tz_offset,
log->value.update.message, cb_data);
}
static int reftable_be_for_each_reflog_ent_reverse(struct ref_store *ref_store,
const char *refname,
each_reflog_ent_fn fn,
void *cb_data)
{
struct reftable_ref_store *refs =
reftable_be_downcast(ref_store, REF_STORE_READ, "for_each_reflog_ent_reverse");
struct reftable_stack *stack = stack_for(refs, refname, &refname);
struct reftable_merged_table *mt = NULL;
struct reftable_log_record log = {0};
struct reftable_iterator it = {0};
int ret;
if (refs->err < 0)
return refs->err;
mt = reftable_stack_merged_table(stack);
ret = reftable_merged_table_seek_log(mt, &it, refname);
while (!ret) {
ret = reftable_iterator_next_log(&it, &log);
if (ret < 0)
break;
if (ret > 0 || strcmp(log.refname, refname)) {
ret = 0;
break;
}
ret = yield_log_record(&log, fn, cb_data);
if (ret)
break;
}
reftable_log_record_release(&log);
reftable_iterator_destroy(&it);
return ret;
}
static int reftable_be_for_each_reflog_ent(struct ref_store *ref_store,
const char *refname,
each_reflog_ent_fn fn,
void *cb_data)
{
struct reftable_ref_store *refs =
reftable_be_downcast(ref_store, REF_STORE_READ, "for_each_reflog_ent");
struct reftable_stack *stack = stack_for(refs, refname, &refname);
struct reftable_merged_table *mt = NULL;
struct reftable_log_record *logs = NULL;
struct reftable_iterator it = {0};
size_t logs_alloc = 0, logs_nr = 0, i;
int ret;
if (refs->err < 0)
return refs->err;
mt = reftable_stack_merged_table(stack);
ret = reftable_merged_table_seek_log(mt, &it, refname);
while (!ret) {
struct reftable_log_record log = {0};
ret = reftable_iterator_next_log(&it, &log);
if (ret < 0)
goto done;
if (ret > 0 || strcmp(log.refname, refname)) {
reftable_log_record_release(&log);
ret = 0;
break;
}
ALLOC_GROW(logs, logs_nr + 1, logs_alloc);
logs[logs_nr++] = log;
}
for (i = logs_nr; i--;) {
ret = yield_log_record(&logs[i], fn, cb_data);
if (ret)
goto done;
}
done:
reftable_iterator_destroy(&it);
for (i = 0; i < logs_nr; i++)
reftable_log_record_release(&logs[i]);
free(logs);
return ret;
}
static int reftable_be_reflog_exists(struct ref_store *ref_store,
const char *refname)
{
struct reftable_ref_store *refs =
reftable_be_downcast(ref_store, REF_STORE_READ, "reflog_exists");
struct reftable_stack *stack = stack_for(refs, refname, &refname);
struct reftable_merged_table *mt = reftable_stack_merged_table(stack);
struct reftable_log_record log = {0};
struct reftable_iterator it = {0};
int ret;
ret = refs->err;
if (ret < 0)
goto done;
ret = reftable_stack_reload(stack);
if (ret < 0)
goto done;
ret = reftable_merged_table_seek_log(mt, &it, refname);
if (ret < 0)
goto done;
/*
* Check whether we get at least one log record for the given ref name.
* If so, the reflog exists, otherwise it doesn't.
*/
ret = reftable_iterator_next_log(&it, &log);
if (ret < 0)
goto done;
if (ret > 0) {
ret = 0;
goto done;
}
ret = strcmp(log.refname, refname) == 0;
done:
reftable_iterator_destroy(&it);
reftable_log_record_release(&log);
if (ret < 0)
ret = 0;
return ret;
}
struct write_reflog_existence_arg {
struct reftable_ref_store *refs;
const char *refname;
struct reftable_stack *stack;
};
static int write_reflog_existence_table(struct reftable_writer *writer,
void *cb_data)
{
struct write_reflog_existence_arg *arg = cb_data;
uint64_t ts = reftable_stack_next_update_index(arg->stack);
struct reftable_log_record log = {0};
int ret;
ret = reftable_stack_read_log(arg->stack, arg->refname, &log);
if (ret <= 0)
goto done;
reftable_writer_set_limits(writer, ts, ts);
/*
* The existence entry has both old and new object ID set to the the
* null object ID. Our iterators are aware of this and will not present
* them to their callers.
*/
log.refname = xstrdup(arg->refname);
log.update_index = ts;
log.value_type = REFTABLE_LOG_UPDATE;
ret = reftable_writer_add_log(writer, &log);
done:
assert(ret != REFTABLE_API_ERROR);
reftable_log_record_release(&log);
return ret;
}
static int reftable_be_create_reflog(struct ref_store *ref_store,
const char *refname,
struct strbuf *errmsg)
{
struct reftable_ref_store *refs =
reftable_be_downcast(ref_store, REF_STORE_WRITE, "create_reflog");
struct reftable_stack *stack = stack_for(refs, refname, &refname);
struct write_reflog_existence_arg arg = {
.refs = refs,
.stack = stack,
.refname = refname,
};
int ret;
ret = refs->err;
if (ret < 0)
goto done;
ret = reftable_stack_reload(stack);
if (ret)
goto done;
ret = reftable_stack_add(stack, &write_reflog_existence_table, &arg);
done:
return ret;
}
struct write_reflog_delete_arg {
struct reftable_stack *stack;
const char *refname;
};
static int write_reflog_delete_table(struct reftable_writer *writer, void *cb_data)
{
struct write_reflog_delete_arg *arg = cb_data;
struct reftable_merged_table *mt =
reftable_stack_merged_table(arg->stack);
struct reftable_log_record log = {0}, tombstone = {0};
struct reftable_iterator it = {0};
uint64_t ts = reftable_stack_next_update_index(arg->stack);
int ret;
reftable_writer_set_limits(writer, ts, ts);
/*
* In order to delete a table we need to delete all reflog entries one
* by one. This is inefficient, but the reftable format does not have a
* better marker right now.
*/
ret = reftable_merged_table_seek_log(mt, &it, arg->refname);
while (ret == 0) {
ret = reftable_iterator_next_log(&it, &log);
if (ret < 0)
break;
if (ret > 0 || strcmp(log.refname, arg->refname)) {
ret = 0;
break;
}
tombstone.refname = (char *)arg->refname;
tombstone.value_type = REFTABLE_LOG_DELETION;
tombstone.update_index = log.update_index;
ret = reftable_writer_add_log(writer, &tombstone);
}
reftable_log_record_release(&log);
reftable_iterator_destroy(&it);
return ret;
}
static int reftable_be_delete_reflog(struct ref_store *ref_store,
const char *refname)
{
struct reftable_ref_store *refs =
reftable_be_downcast(ref_store, REF_STORE_WRITE, "delete_reflog");
struct reftable_stack *stack = stack_for(refs, refname, &refname);
struct write_reflog_delete_arg arg = {
.stack = stack,
.refname = refname,
};
int ret;
ret = reftable_stack_reload(stack);
if (ret)
return ret;
ret = reftable_stack_add(stack, &write_reflog_delete_table, &arg);
assert(ret != REFTABLE_API_ERROR);
return ret;
}
struct reflog_expiry_arg {
struct reftable_stack *stack;
struct reftable_log_record *records;
struct object_id update_oid;
const char *refname;
size_t len;
};
static int write_reflog_expiry_table(struct reftable_writer *writer, void *cb_data)
{
struct reflog_expiry_arg *arg = cb_data;
uint64_t ts = reftable_stack_next_update_index(arg->stack);
uint64_t live_records = 0;
size_t i;
int ret;
for (i = 0; i < arg->len; i++)
if (arg->records[i].value_type == REFTABLE_LOG_UPDATE)
live_records++;
reftable_writer_set_limits(writer, ts, ts);
if (!is_null_oid(&arg->update_oid)) {
struct reftable_ref_record ref = {0};
struct object_id peeled;
ref.refname = (char *)arg->refname;
ref.update_index = ts;
if (!peel_object(&arg->update_oid, &peeled)) {
ref.value_type = REFTABLE_REF_VAL2;
memcpy(ref.value.val2.target_value, peeled.hash, GIT_MAX_RAWSZ);
memcpy(ref.value.val2.value, arg->update_oid.hash, GIT_MAX_RAWSZ);
} else {
ref.value_type = REFTABLE_REF_VAL1;
memcpy(ref.value.val1, arg->update_oid.hash, GIT_MAX_RAWSZ);
}
ret = reftable_writer_add_ref(writer, &ref);
if (ret < 0)
return ret;
}
/*
* When there are no more entries left in the reflog we empty it
* completely, but write a placeholder reflog entry that indicates that
* the reflog still exists.
*/
if (!live_records) {
struct reftable_log_record log = {
.refname = (char *)arg->refname,
.value_type = REFTABLE_LOG_UPDATE,
.update_index = ts,
};
ret = reftable_writer_add_log(writer, &log);
if (ret)
return ret;
}
for (i = 0; i < arg->len; i++) {
ret = reftable_writer_add_log(writer, &arg->records[i]);
if (ret)
return ret;
}
return 0;
}
static int reftable_be_reflog_expire(struct ref_store *ref_store,
const char *refname,
unsigned int flags,
reflog_expiry_prepare_fn prepare_fn,
reflog_expiry_should_prune_fn should_prune_fn,
reflog_expiry_cleanup_fn cleanup_fn,
void *policy_cb_data)
{
/*
* For log expiry, we write tombstones for every single reflog entry
* that is to be expired. This means that the entries are still
* retrievable by delving into the stack, and expiring entries
* paradoxically takes extra memory. This memory is only reclaimed when
* compacting the reftable stack.
*
* It would be better if the refs backend supported an API that sets a
* criterion for all refs, passing the criterion to pack_refs().
*
* On the plus side, because we do the expiration per ref, we can easily
* insert the reflog existence dummies.
*/
struct reftable_ref_store *refs =
reftable_be_downcast(ref_store, REF_STORE_WRITE, "reflog_expire");
struct reftable_stack *stack = stack_for(refs, refname, &refname);
struct reftable_merged_table *mt = reftable_stack_merged_table(stack);
struct reftable_log_record *logs = NULL;
struct reftable_log_record *rewritten = NULL;
struct reftable_ref_record ref_record = {0};
struct reftable_iterator it = {0};
struct reftable_addition *add = NULL;
struct reflog_expiry_arg arg = {0};
struct object_id oid = {0};
uint8_t *last_hash = NULL;
size_t logs_nr = 0, logs_alloc = 0, i;
int ret;
if (refs->err < 0)
return refs->err;
ret = reftable_stack_reload(stack);
if (ret < 0)
goto done;
ret = reftable_merged_table_seek_log(mt, &it, refname);
if (ret < 0)
goto done;
ret = reftable_stack_new_addition(&add, stack);
if (ret < 0)
goto done;
ret = reftable_stack_read_ref(stack, refname, &ref_record);
if (ret < 0)
goto done;
if (reftable_ref_record_val1(&ref_record))
oidread(&oid, reftable_ref_record_val1(&ref_record));
prepare_fn(refname, &oid, policy_cb_data);
while (1) {
struct reftable_log_record log = {0};
struct object_id old_oid, new_oid;
ret = reftable_iterator_next_log(&it, &log);
if (ret < 0)
goto done;
if (ret > 0 || strcmp(log.refname, refname)) {
reftable_log_record_release(&log);
break;
}
oidread(&old_oid, log.value.update.old_hash);
oidread(&new_oid, log.value.update.new_hash);
/*
* Skip over the reflog existence marker. We will add it back
* in when there are no live reflog records.
*/
if (is_null_oid(&old_oid) && is_null_oid(&new_oid)) {
reftable_log_record_release(&log);
continue;
}
ALLOC_GROW(logs, logs_nr + 1, logs_alloc);
logs[logs_nr++] = log;
}
/*
* We need to rewrite all reflog entries according to the pruning
* callback function:
*
* - If a reflog entry shall be pruned we mark the record for
* deletion.
*
* - Otherwise we may have to rewrite the chain of reflog entries so
* that gaps created by just-deleted records get backfilled.
*/
CALLOC_ARRAY(rewritten, logs_nr);
for (i = logs_nr; i--;) {
struct reftable_log_record *dest = &rewritten[i];
struct object_id old_oid, new_oid;
*dest = logs[i];
oidread(&old_oid, logs[i].value.update.old_hash);
oidread(&new_oid, logs[i].value.update.new_hash);
if (should_prune_fn(&old_oid, &new_oid, logs[i].value.update.email,
(timestamp_t)logs[i].value.update.time,
logs[i].value.update.tz_offset,
logs[i].value.update.message,
policy_cb_data)) {
dest->value_type = REFTABLE_LOG_DELETION;
} else {
if ((flags & EXPIRE_REFLOGS_REWRITE) && last_hash)
dest->value.update.old_hash = last_hash;
last_hash = logs[i].value.update.new_hash;
}
}
if (flags & EXPIRE_REFLOGS_UPDATE_REF && last_hash &&
reftable_ref_record_val1(&ref_record))
oidread(&arg.update_oid, last_hash);
arg.records = rewritten;
arg.len = logs_nr;
arg.stack = stack,
arg.refname = refname,
ret = reftable_addition_add(add, &write_reflog_expiry_table, &arg);
if (ret < 0)
goto done;
/*
* Future improvement: we could skip writing records that were
* not changed.
*/
if (!(flags & EXPIRE_REFLOGS_DRY_RUN))
ret = reftable_addition_commit(add);
done:
if (add)
cleanup_fn(policy_cb_data);
assert(ret != REFTABLE_API_ERROR);
reftable_ref_record_release(&ref_record);
reftable_iterator_destroy(&it);
reftable_addition_destroy(add);
for (i = 0; i < logs_nr; i++)
reftable_log_record_release(&logs[i]);
free(logs);
free(rewritten);
return ret;
}
struct ref_storage_be refs_be_reftable = {
.name = "reftable",
.init = reftable_be_init,
.init_db = reftable_be_init_db,
.transaction_prepare = reftable_be_transaction_prepare,
.transaction_finish = reftable_be_transaction_finish,
.transaction_abort = reftable_be_transaction_abort,
.initial_transaction_commit = reftable_be_initial_transaction_commit,
.pack_refs = reftable_be_pack_refs,
.create_symref = reftable_be_create_symref,
.rename_ref = reftable_be_rename_ref,
.copy_ref = reftable_be_copy_ref,
.iterator_begin = reftable_be_iterator_begin,
.read_raw_ref = reftable_be_read_raw_ref,
.read_symbolic_ref = reftable_be_read_symbolic_ref,
.reflog_iterator_begin = reftable_be_reflog_iterator_begin,
.for_each_reflog_ent = reftable_be_for_each_reflog_ent,
.for_each_reflog_ent_reverse = reftable_be_for_each_reflog_ent_reverse,
.reflog_exists = reftable_be_reflog_exists,
.create_reflog = reftable_be_create_reflog,
.delete_reflog = reftable_be_delete_reflog,
.reflog_expire = reftable_be_reflog_expire,
};