mirror of
https://github.com/git/git.git
synced 2024-11-08 14:09:26 +01:00
e7da938570
Use of the `the_repository` variable is deprecated nowadays, and we slowly but steadily convert the codebase to not use it anymore. Instead, callers should be passing down the repository to work on via parameters. It is hard though to prove that a given code unit does not use this variable anymore. The most trivial case, merely demonstrating that there is no direct use of `the_repository`, is already a bit of a pain during code reviews as the reviewer needs to manually verify claims made by the patch author. The bigger problem though is that we have many interfaces that implicitly rely on `the_repository`. Introduce a new `USE_THE_REPOSITORY_VARIABLE` macro that allows code units to opt into usage of `the_repository`. The intent of this macro is to demonstrate that a certain code unit does not use this variable anymore, and to keep it from new dependencies on it in future changes, be it explicit or implicit For now, the macro only guards `the_repository` itself as well as `the_hash_algo`. There are many more known interfaces where we have an implicit dependency on `the_repository`, but those are not guarded at the current point in time. Over time though, we should start to add guards as required (or even better, just remove them). Define the macro as required in our code units. As expected, most of our code still relies on the global variable. Nearly all of our builtins rely on the variable as there is no way yet to pass `the_repository` to their entry point. For now, declare the macro in "biultin.h" to keep the required changes at least a little bit more contained. Signed-off-by: Patrick Steinhardt <ps@pks.im> Signed-off-by: Junio C Hamano <gitster@pobox.com>
318 lines
9.4 KiB
C
318 lines
9.4 KiB
C
/*
|
|
* Copyright (C) 2005 Junio C Hamano
|
|
*/
|
|
|
|
#define USE_THE_REPOSITORY_VARIABLE
|
|
|
|
#include "git-compat-util.h"
|
|
#include "diffcore.h"
|
|
#include "hash.h"
|
|
#include "object.h"
|
|
#include "promisor-remote.h"
|
|
|
|
static int should_break(struct repository *r,
|
|
struct diff_filespec *src,
|
|
struct diff_filespec *dst,
|
|
int break_score,
|
|
int *merge_score_p)
|
|
{
|
|
/* dst is recorded as a modification of src. Are they so
|
|
* different that we are better off recording this as a pair
|
|
* of delete and create?
|
|
*
|
|
* There are two criteria used in this algorithm. For the
|
|
* purposes of helping later rename/copy, we take both delete
|
|
* and insert into account and estimate the amount of "edit".
|
|
* If the edit is very large, we break this pair so that
|
|
* rename/copy can pick the pieces up to match with other
|
|
* files.
|
|
*
|
|
* On the other hand, we would want to ignore inserts for the
|
|
* pure "complete rewrite" detection. As long as most of the
|
|
* existing contents were removed from the file, it is a
|
|
* complete rewrite, and if sizable chunk from the original
|
|
* still remains in the result, it is not a rewrite. It does
|
|
* not matter how much or how little new material is added to
|
|
* the file.
|
|
*
|
|
* The score we leave for such a broken filepair uses the
|
|
* latter definition so that later clean-up stage can find the
|
|
* pieces that should not have been broken according to the
|
|
* latter definition after rename/copy runs, and merge the
|
|
* broken pair that have a score lower than given criteria
|
|
* back together. The break operation itself happens
|
|
* according to the former definition.
|
|
*
|
|
* The minimum_edit parameter tells us when to break (the
|
|
* amount of "edit" required for us to consider breaking the
|
|
* pair). We leave the amount of deletion in *merge_score_p
|
|
* when we return.
|
|
*
|
|
* The value we return is 1 if we want the pair to be broken,
|
|
* or 0 if we do not.
|
|
*/
|
|
unsigned long delta_size, max_size;
|
|
unsigned long src_copied, literal_added, src_removed;
|
|
|
|
struct diff_populate_filespec_options options = { 0 };
|
|
|
|
*merge_score_p = 0; /* assume no deletion --- "do not break"
|
|
* is the default.
|
|
*/
|
|
|
|
if (S_ISREG(src->mode) != S_ISREG(dst->mode)) {
|
|
*merge_score_p = (int)MAX_SCORE;
|
|
return 1; /* even their types are different */
|
|
}
|
|
|
|
if (src->oid_valid && dst->oid_valid &&
|
|
oideq(&src->oid, &dst->oid))
|
|
return 0; /* they are the same */
|
|
|
|
if (r == the_repository && repo_has_promisor_remote(the_repository)) {
|
|
options.missing_object_cb = diff_queued_diff_prefetch;
|
|
options.missing_object_data = r;
|
|
}
|
|
|
|
if (diff_populate_filespec(r, src, &options) ||
|
|
diff_populate_filespec(r, dst, &options))
|
|
return 0; /* error but caught downstream */
|
|
|
|
max_size = ((src->size > dst->size) ? src->size : dst->size);
|
|
if (max_size < MINIMUM_BREAK_SIZE)
|
|
return 0; /* we do not break too small filepair */
|
|
|
|
if (!src->size)
|
|
return 0; /* we do not let empty files get renamed */
|
|
|
|
if (diffcore_count_changes(r, src, dst,
|
|
&src->cnt_data, &dst->cnt_data,
|
|
&src_copied, &literal_added))
|
|
return 0;
|
|
|
|
/* sanity */
|
|
if (src->size < src_copied)
|
|
src_copied = src->size;
|
|
if (dst->size < literal_added + src_copied) {
|
|
if (src_copied < dst->size)
|
|
literal_added = dst->size - src_copied;
|
|
else
|
|
literal_added = 0;
|
|
}
|
|
src_removed = src->size - src_copied;
|
|
|
|
/* Compute merge-score, which is "how much is removed
|
|
* from the source material". The clean-up stage will
|
|
* merge the surviving pair together if the score is
|
|
* less than the minimum, after rename/copy runs.
|
|
*/
|
|
*merge_score_p = (int)(src_removed * MAX_SCORE / src->size);
|
|
if (*merge_score_p > break_score)
|
|
return 1;
|
|
|
|
/* Extent of damage, which counts both inserts and
|
|
* deletes.
|
|
*/
|
|
delta_size = src_removed + literal_added;
|
|
if (delta_size * MAX_SCORE / max_size < break_score)
|
|
return 0;
|
|
|
|
/* If you removed a lot without adding new material, that is
|
|
* not really a rewrite.
|
|
*/
|
|
if ((src->size * break_score < src_removed * MAX_SCORE) &&
|
|
(literal_added * 20 < src_removed) &&
|
|
(literal_added * 20 < src_copied))
|
|
return 0;
|
|
|
|
return 1;
|
|
}
|
|
|
|
void diffcore_break(struct repository *r, int break_score)
|
|
{
|
|
struct diff_queue_struct *q = &diff_queued_diff;
|
|
struct diff_queue_struct outq;
|
|
|
|
/* When the filepair has this much edit (insert and delete),
|
|
* it is first considered to be a rewrite and broken into a
|
|
* create and delete filepair. This is to help breaking a
|
|
* file that had too much new stuff added, possibly from
|
|
* moving contents from another file, so that rename/copy can
|
|
* match it with the other file.
|
|
*
|
|
* int break_score; we reuse incoming parameter for this.
|
|
*/
|
|
|
|
/* After a pair is broken according to break_score and
|
|
* subjected to rename/copy, both of them may survive intact,
|
|
* due to lack of suitable rename/copy peer. Or, the caller
|
|
* may be calling us without using rename/copy. When that
|
|
* happens, we merge the broken pieces back into one
|
|
* modification together if the pair did not have more than
|
|
* this much delete. For this computation, we do not take
|
|
* insert into account at all. If you start from a 100-line
|
|
* file and delete 97 lines of it, it does not matter if you
|
|
* add 27 lines to it to make a new 30-line file or if you add
|
|
* 997 lines to it to make a 1000-line file. Either way what
|
|
* you did was a rewrite of 97%. On the other hand, if you
|
|
* delete 3 lines, keeping 97 lines intact, it does not matter
|
|
* if you add 3 lines to it to make a new 100-line file or if
|
|
* you add 903 lines to it to make a new 1000-line file.
|
|
* Either way you did a lot of additions and not a rewrite.
|
|
* This merge happens to catch the latter case. A merge_score
|
|
* of 80% would be a good default value (a broken pair that
|
|
* has score lower than merge_score will be merged back
|
|
* together).
|
|
*/
|
|
int merge_score;
|
|
int i;
|
|
|
|
/* See comment on DEFAULT_BREAK_SCORE and
|
|
* DEFAULT_MERGE_SCORE in diffcore.h
|
|
*/
|
|
merge_score = (break_score >> 16) & 0xFFFF;
|
|
break_score = (break_score & 0xFFFF);
|
|
|
|
if (!break_score)
|
|
break_score = DEFAULT_BREAK_SCORE;
|
|
if (!merge_score)
|
|
merge_score = DEFAULT_MERGE_SCORE;
|
|
|
|
DIFF_QUEUE_CLEAR(&outq);
|
|
|
|
for (i = 0; i < q->nr; i++) {
|
|
struct diff_filepair *p = q->queue[i];
|
|
int score;
|
|
|
|
/*
|
|
* We deal only with in-place edit of blobs.
|
|
* We do not break anything else.
|
|
*/
|
|
if (DIFF_FILE_VALID(p->one) && DIFF_FILE_VALID(p->two) &&
|
|
object_type(p->one->mode) == OBJ_BLOB &&
|
|
object_type(p->two->mode) == OBJ_BLOB &&
|
|
!strcmp(p->one->path, p->two->path)) {
|
|
if (should_break(r, p->one, p->two,
|
|
break_score, &score)) {
|
|
/* Split this into delete and create */
|
|
struct diff_filespec *null_one, *null_two;
|
|
struct diff_filepair *dp;
|
|
|
|
/* Set score to 0 for the pair that
|
|
* needs to be merged back together
|
|
* should they survive rename/copy.
|
|
* Also we do not want to break very
|
|
* small files.
|
|
*/
|
|
if (score < merge_score)
|
|
score = 0;
|
|
|
|
/* deletion of one */
|
|
null_one = alloc_filespec(p->one->path);
|
|
dp = diff_queue(&outq, p->one, null_one);
|
|
dp->score = score;
|
|
dp->broken_pair = 1;
|
|
|
|
/* creation of two */
|
|
null_two = alloc_filespec(p->two->path);
|
|
dp = diff_queue(&outq, null_two, p->two);
|
|
dp->score = score;
|
|
dp->broken_pair = 1;
|
|
|
|
diff_free_filespec_blob(p->one);
|
|
diff_free_filespec_blob(p->two);
|
|
free(p); /* not diff_free_filepair(), we are
|
|
* reusing one and two here.
|
|
*/
|
|
continue;
|
|
}
|
|
}
|
|
diff_free_filespec_data(p->one);
|
|
diff_free_filespec_data(p->two);
|
|
diff_q(&outq, p);
|
|
}
|
|
free(q->queue);
|
|
*q = outq;
|
|
|
|
return;
|
|
}
|
|
|
|
static void merge_broken(struct diff_filepair *p,
|
|
struct diff_filepair *pp,
|
|
struct diff_queue_struct *outq)
|
|
{
|
|
/* p and pp are broken pairs we want to merge */
|
|
struct diff_filepair *c = p, *d = pp, *dp;
|
|
if (DIFF_FILE_VALID(p->one)) {
|
|
/* this must be a delete half */
|
|
d = p; c = pp;
|
|
}
|
|
/* Sanity check */
|
|
if (!DIFF_FILE_VALID(d->one))
|
|
die("internal error in merge #1");
|
|
if (DIFF_FILE_VALID(d->two))
|
|
die("internal error in merge #2");
|
|
if (DIFF_FILE_VALID(c->one))
|
|
die("internal error in merge #3");
|
|
if (!DIFF_FILE_VALID(c->two))
|
|
die("internal error in merge #4");
|
|
|
|
dp = diff_queue(outq, d->one, c->two);
|
|
dp->score = p->score;
|
|
/*
|
|
* We will be one extra user of the same src side of the
|
|
* broken pair, if it was used as the rename source for other
|
|
* paths elsewhere. Increment to mark that the path stays
|
|
* in the resulting tree.
|
|
*/
|
|
d->one->rename_used++;
|
|
diff_free_filespec_data(d->two);
|
|
diff_free_filespec_data(c->one);
|
|
free(d);
|
|
free(c);
|
|
}
|
|
|
|
void diffcore_merge_broken(void)
|
|
{
|
|
struct diff_queue_struct *q = &diff_queued_diff;
|
|
struct diff_queue_struct outq;
|
|
int i, j;
|
|
|
|
DIFF_QUEUE_CLEAR(&outq);
|
|
|
|
for (i = 0; i < q->nr; i++) {
|
|
struct diff_filepair *p = q->queue[i];
|
|
if (!p)
|
|
/* we already merged this with its peer */
|
|
continue;
|
|
else if (p->broken_pair &&
|
|
!strcmp(p->one->path, p->two->path)) {
|
|
/* If the peer also survived rename/copy, then
|
|
* we merge them back together.
|
|
*/
|
|
for (j = i + 1; j < q->nr; j++) {
|
|
struct diff_filepair *pp = q->queue[j];
|
|
if (pp->broken_pair &&
|
|
!strcmp(pp->one->path, pp->two->path) &&
|
|
!strcmp(p->one->path, pp->two->path)) {
|
|
/* Peer survived. Merge them */
|
|
merge_broken(p, pp, &outq);
|
|
q->queue[j] = NULL;
|
|
goto next;
|
|
}
|
|
}
|
|
/* The peer did not survive, so we keep
|
|
* it in the output.
|
|
*/
|
|
diff_q(&outq, p);
|
|
}
|
|
else
|
|
diff_q(&outq, p);
|
|
next:;
|
|
}
|
|
free(q->queue);
|
|
*q = outq;
|
|
|
|
return;
|
|
}
|