#include "cache.h" #include "dir.h" #include "pathspec.h" /* * Finds which of the given pathspecs match items in the index. * * For each pathspec, sets the corresponding entry in the seen[] array * (which should be specs items long, i.e. the same size as pathspec) * to the nature of the "closest" (i.e. most specific) match found for * that pathspec in the index, if it was a closer type of match than * the existing entry. As an optimization, matching is skipped * altogether if seen[] already only contains non-zero entries. * * If seen[] has not already been written to, it may make sense * to use find_used_pathspec() instead. */ void fill_pathspec_matches(const char **pathspec, char *seen, int specs) { int num_unmatched = 0, i; /* * Since we are walking the index as if we were walking the directory, * we have to mark the matched pathspec as seen; otherwise we will * mistakenly think that the user gave a pathspec that did not match * anything. */ for (i = 0; i < specs; i++) if (!seen[i]) num_unmatched++; if (!num_unmatched) return; for (i = 0; i < active_nr; i++) { struct cache_entry *ce = active_cache[i]; match_pathspec(pathspec, ce->name, ce_namelen(ce), 0, seen); } } /* * Finds which of the given pathspecs match items in the index. * * This is a one-shot wrapper around fill_pathspec_matches() which * allocates, populates, and returns a seen[] array indicating the * nature of the "closest" (i.e. most specific) matches which each of * the given pathspecs achieves against all items in the index. */ char *find_used_pathspec(const char **pathspec) { char *seen; int i; for (i = 0; pathspec[i]; i++) ; /* just counting */ seen = xcalloc(i, 1); fill_pathspec_matches(pathspec, seen, i); return seen; }