1
0
Fork 0
mirror of https://github.com/git/git.git synced 2024-05-06 01:46:12 +02:00

Document levenshtein.c

Signed-off-by: Johannes Schindelin <johannes.schindelin@gmx.de>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
This commit is contained in:
Johannes Schindelin 2008-11-20 14:27:27 +01:00 committed by Junio C Hamano
parent 13c6bcd49f
commit 850fb6ff81

View File

@ -1,6 +1,43 @@
#include "cache.h"
#include "levenshtein.h"
/*
* This function implements the Damerau-Levenshtein algorithm to
* calculate a distance between strings.
*
* Basically, it says how many letters need to be swapped, substituted,
* deleted from, or added to string1, at least, to get string2.
*
* The idea is to build a distance matrix for the substrings of both
* strings. To avoid a large space complexity, only the last three rows
* are kept in memory (if swaps had the same or higher cost as one deletion
* plus one insertion, only two rows would be needed).
*
* At any stage, "i + 1" denotes the length of the current substring of
* string1 that the distance is calculated for.
*
* row2 holds the current row, row1 the previous row (i.e. for the substring
* of string1 of length "i"), and row0 the row before that.
*
* In other words, at the start of the big loop, row2[j + 1] contains the
* Damerau-Levenshtein distance between the substring of string1 of length
* "i" and the substring of string2 of length "j + 1".
*
* All the big loop does is determine the partial minimum-cost paths.
*
* It does so by calculating the costs of the path ending in characters
* i (in string1) and j (in string2), respectively, given that the last
* operation is a substition, a swap, a deletion, or an insertion.
*
* This implementation allows the costs to be weighted:
*
* - w (as in "sWap")
* - s (as in "Substitution")
* - a (for insertion, AKA "Add")
* - d (as in "Deletion")
*
* Note that this algorithm calculates a distance _iff_ d == a.
*/
int levenshtein(const char *string1, const char *string2,
int w, int s, int a, int d)
{