1
0
Fork 0
mirror of https://github.com/git/git.git synced 2024-05-13 01:46:08 +02:00
git/builtin/fsmonitor--daemon.c

1590 lines
44 KiB
C
Raw Normal View History

#include "builtin.h"
#include "alloc.h"
#include "config.h"
#include "parse-options.h"
#include "fsmonitor.h"
#include "fsmonitor-ipc.h"
fsmonitor: deal with synthetic firmlinks on macOS Starting with macOS 10.15 (Catalina), Apple introduced a new feature called 'firmlinks' in order to separate the boot volume into two volumes, one read-only and one writable but still present them to the user as a single volume. Along with this change, Apple removed the ability to create symlinks in the root directory and replaced them with 'synthetic firmlinks'. See 'man synthetic.conf' When FSEevents reports the path of changed files, if the path involves a synthetic firmlink, the path is reported from the point of the synthetic firmlink and not the real path. For example: Real path: /System/Volumes/Data/network/working/directory/foo.txt Synthetic firmlink: /network -> /System/Volumes/Data/network FSEvents path: /network/working/directory/foo.txt This causes the FSEvents path to not match against the worktree directory. There are several ways in which synthetic firmlinks can be created: they can be defined in /etc/synthetic.conf, the automounter can create them, and there may be other means. Simply reading /etc/synthetic.conf is insufficient. No matter what process creates synthetic firmlinks, they all get created in the root directory. Therefore, in order to deal with synthetic firmlinks, the root directory is scanned and the first possible synthetic firmink that, when resolved, is a prefix of the worktree is used to map FSEvents paths to worktree paths. Signed-off-by: Eric DeCosta <edecosta@mathworks.com> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2022-10-04 19:32:29 +02:00
#include "fsmonitor-path-utils.h"
fsmonitor--daemon: stub in health thread Create another thread to watch over the daemon process and automatically shut it down if necessary. This commit creates the basic framework for a "health" thread to monitor the daemon and/or the file system. Later commits will add platform-specific code to do the actual work. The "health" thread is intended to monitor conditions that would be difficult to track inside the IPC thread pool and/or the file system listener threads. For example, when there are file system events outside of the watched worktree root or if we want to have an idle-timeout auto-shutdown feature. This commit creates the health thread itself, defines the thread-proc and sets up the thread's event loop. It integrates this new thread into the existing IPC and Listener thread models. This commit defines the API to the platform-specific code where all of the monitoring will actually happen. The platform-specific code for MacOS is just stubs. Meaning that the health thread will immediately exit on MacOS, but that is OK and expected. Future work can define MacOS-specific monitoring. The platform-specific code for Windows sets up enough of the WaitForMultipleObjects() machinery to watch for system and/or custom events. Currently, the set of wait handles only includes our custom shutdown event (sent from our other theads). Later commits in this series will extend the set of wait handles to monitor other conditions. Signed-off-by: Jeff Hostetler <jeffhost@microsoft.com> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2022-05-26 23:47:10 +02:00
#include "compat/fsmonitor/fsm-health.h"
#include "compat/fsmonitor/fsm-listen.h"
#include "fsmonitor--daemon.h"
#include "simple-ipc.h"
#include "khash.h"
#include "pkt-line.h"
static const char * const builtin_fsmonitor__daemon_usage[] = {
N_("git fsmonitor--daemon start [<options>]"),
N_("git fsmonitor--daemon run [<options>]"),
"git fsmonitor--daemon stop",
"git fsmonitor--daemon status",
NULL
};
#ifdef HAVE_FSMONITOR_DAEMON_BACKEND
/*
* Global state loaded from config.
*/
#define FSMONITOR__IPC_THREADS "fsmonitor.ipcthreads"
static int fsmonitor__ipc_threads = 8;
#define FSMONITOR__START_TIMEOUT "fsmonitor.starttimeout"
static int fsmonitor__start_timeout_sec = 60;
#define FSMONITOR__ANNOUNCE_STARTUP "fsmonitor.announcestartup"
static int fsmonitor__announce_startup = 0;
static int fsmonitor_config(const char *var, const char *value, void *cb)
{
if (!strcmp(var, FSMONITOR__IPC_THREADS)) {
int i = git_config_int(var, value);
if (i < 1)
return error(_("value of '%s' out of range: %d"),
FSMONITOR__IPC_THREADS, i);
fsmonitor__ipc_threads = i;
return 0;
}
if (!strcmp(var, FSMONITOR__START_TIMEOUT)) {
int i = git_config_int(var, value);
if (i < 0)
return error(_("value of '%s' out of range: %d"),
FSMONITOR__START_TIMEOUT, i);
fsmonitor__start_timeout_sec = i;
return 0;
}
if (!strcmp(var, FSMONITOR__ANNOUNCE_STARTUP)) {
int is_bool;
int i = git_config_bool_or_int(var, value, &is_bool);
if (i < 0)
return error(_("value of '%s' not bool or int: %d"),
var, i);
fsmonitor__announce_startup = i;
return 0;
}
return git_default_config(var, value, cb);
}
/*
* Acting as a CLIENT.
*
* Send a "quit" command to the `git-fsmonitor--daemon` (if running)
* and wait for it to shutdown.
*/
static int do_as_client__send_stop(void)
{
struct strbuf answer = STRBUF_INIT;
int ret;
ret = fsmonitor_ipc__send_command("quit", &answer);
/* The quit command does not return any response data. */
strbuf_release(&answer);
if (ret)
return ret;
trace2_region_enter("fsm_client", "polling-for-daemon-exit", NULL);
while (fsmonitor_ipc__get_state() == IPC_STATE__LISTENING)
sleep_millisec(50);
trace2_region_leave("fsm_client", "polling-for-daemon-exit", NULL);
return 0;
}
static int do_as_client__status(void)
{
enum ipc_active_state state = fsmonitor_ipc__get_state();
switch (state) {
case IPC_STATE__LISTENING:
printf(_("fsmonitor-daemon is watching '%s'\n"),
the_repository->worktree);
return 0;
default:
printf(_("fsmonitor-daemon is not watching '%s'\n"),
the_repository->worktree);
return 1;
}
}
enum fsmonitor_cookie_item_result {
FCIR_ERROR = -1, /* could not create cookie file ? */
FCIR_INIT,
FCIR_SEEN,
FCIR_ABORT,
};
struct fsmonitor_cookie_item {
struct hashmap_entry entry;
char *name;
enum fsmonitor_cookie_item_result result;
};
static int cookies_cmp(const void *data, const struct hashmap_entry *he1,
const struct hashmap_entry *he2, const void *keydata)
{
const struct fsmonitor_cookie_item *a =
container_of(he1, const struct fsmonitor_cookie_item, entry);
const struct fsmonitor_cookie_item *b =
container_of(he2, const struct fsmonitor_cookie_item, entry);
return strcmp(a->name, keydata ? keydata : b->name);
}
static enum fsmonitor_cookie_item_result with_lock__wait_for_cookie(
struct fsmonitor_daemon_state *state)
{
/* assert current thread holding state->main_lock */
int fd;
struct fsmonitor_cookie_item *cookie;
struct strbuf cookie_pathname = STRBUF_INIT;
struct strbuf cookie_filename = STRBUF_INIT;
enum fsmonitor_cookie_item_result result;
int my_cookie_seq;
CALLOC_ARRAY(cookie, 1);
my_cookie_seq = state->cookie_seq++;
strbuf_addf(&cookie_filename, "%i-%i", getpid(), my_cookie_seq);
strbuf_addbuf(&cookie_pathname, &state->path_cookie_prefix);
strbuf_addbuf(&cookie_pathname, &cookie_filename);
cookie->name = strbuf_detach(&cookie_filename, NULL);
cookie->result = FCIR_INIT;
hashmap_entry_init(&cookie->entry, strhash(cookie->name));
hashmap_add(&state->cookies, &cookie->entry);
trace_printf_key(&trace_fsmonitor, "cookie-wait: '%s' '%s'",
cookie->name, cookie_pathname.buf);
/*
* Create the cookie file on disk and then wait for a notification
* that the listener thread has seen it.
*/
fd = open(cookie_pathname.buf, O_WRONLY | O_CREAT | O_EXCL, 0600);
if (fd < 0) {
error_errno(_("could not create fsmonitor cookie '%s'"),
cookie->name);
cookie->result = FCIR_ERROR;
goto done;
}
/*
* Technically, close() and unlink() can fail, but we don't
* care here. We only created the file to trigger a watch
* event from the FS to know that when we're up to date.
*/
close(fd);
unlink(cookie_pathname.buf);
/*
* Technically, this is an infinite wait (well, unless another
* thread sends us an abort). I'd like to change this to
* use `pthread_cond_timedwait()` and return an error/timeout
* and let the caller do the trivial response thing, but we
* don't have that routine in our thread-utils.
*
* After extensive beta testing I'm not really worried about
* this. Also note that the above open() and unlink() calls
* will cause at least two FS events on that path, so the odds
* of getting stuck are pretty slim.
*/
while (cookie->result == FCIR_INIT)
pthread_cond_wait(&state->cookies_cond,
&state->main_lock);
done:
hashmap_remove(&state->cookies, &cookie->entry, NULL);
result = cookie->result;
free(cookie->name);
free(cookie);
strbuf_release(&cookie_pathname);
return result;
}
/*
* Mark these cookies as _SEEN and wake up the corresponding client threads.
*/
static void with_lock__mark_cookies_seen(struct fsmonitor_daemon_state *state,
const struct string_list *cookie_names)
{
/* assert current thread holding state->main_lock */
int k;
int nr_seen = 0;
for (k = 0; k < cookie_names->nr; k++) {
struct fsmonitor_cookie_item key;
struct fsmonitor_cookie_item *cookie;
key.name = cookie_names->items[k].string;
hashmap_entry_init(&key.entry, strhash(key.name));
cookie = hashmap_get_entry(&state->cookies, &key, entry, NULL);
if (cookie) {
trace_printf_key(&trace_fsmonitor, "cookie-seen: '%s'",
cookie->name);
cookie->result = FCIR_SEEN;
nr_seen++;
}
}
if (nr_seen)
pthread_cond_broadcast(&state->cookies_cond);
}
/*
* Set _ABORT on all pending cookies and wake up all client threads.
*/
static void with_lock__abort_all_cookies(struct fsmonitor_daemon_state *state)
{
/* assert current thread holding state->main_lock */
struct hashmap_iter iter;
struct fsmonitor_cookie_item *cookie;
int nr_aborted = 0;
hashmap_for_each_entry(&state->cookies, &iter, cookie, entry) {
trace_printf_key(&trace_fsmonitor, "cookie-abort: '%s'",
cookie->name);
cookie->result = FCIR_ABORT;
nr_aborted++;
}
if (nr_aborted)
pthread_cond_broadcast(&state->cookies_cond);
}
/*
* Requests to and from a FSMonitor Protocol V2 provider use an opaque
* "token" as a virtual timestamp. Clients can request a summary of all
* created/deleted/modified files relative to a token. In the response,
* clients receive a new token for the next (relative) request.
*
*
* Token Format
* ============
*
* The contents of the token are private and provider-specific.
*
* For the built-in fsmonitor--daemon, we define a token as follows:
*
* "builtin" ":" <token_id> ":" <sequence_nr>
*
* The "builtin" prefix is used as a namespace to avoid conflicts
* with other providers (such as Watchman).
*
* The <token_id> is an arbitrary OPAQUE string, such as a GUID,
* UUID, or {timestamp,pid}. It is used to group all filesystem
* events that happened while the daemon was monitoring (and in-sync
* with the filesystem).
*
* Unlike FSMonitor Protocol V1, it is not defined as a timestamp
* and does not define less-than/greater-than relationships.
* (There are too many race conditions to rely on file system
* event timestamps.)
*
* The <sequence_nr> is a simple integer incremented whenever the
* daemon needs to make its state public. For example, if 1000 file
* system events come in, but no clients have requested the data,
* the daemon can continue to accumulate file changes in the same
* bin and does not need to advance the sequence number. However,
* as soon as a client does arrive, the daemon needs to start a new
* bin and increment the sequence number.
*
* The sequence number serves as the boundary between 2 sets
* of bins -- the older ones that the client has already seen
* and the newer ones that it hasn't.
*
* When a new <token_id> is created, the <sequence_nr> is reset to
* zero.
*
*
* About Token Ids
* ===============
*
* A new token_id is created:
*
* [1] each time the daemon is started.
*
* [2] any time that the daemon must re-sync with the filesystem
* (such as when the kernel drops or we miss events on a very
* active volume).
*
* [3] in response to a client "flush" command (for dropped event
* testing).
*
* When a new token_id is created, the daemon is free to discard all
* cached filesystem events associated with any previous token_ids.
* Events associated with a non-current token_id will never be sent
* to a client. A token_id change implicitly means that the daemon
* has gap in its event history.
*
* Therefore, clients that present a token with a stale (non-current)
* token_id will always be given a trivial response.
*/
struct fsmonitor_token_data {
struct strbuf token_id;
struct fsmonitor_batch *batch_head;
struct fsmonitor_batch *batch_tail;
uint64_t client_ref_count;
};
struct fsmonitor_batch {
struct fsmonitor_batch *next;
uint64_t batch_seq_nr;
const char **interned_paths;
size_t nr, alloc;
time_t pinned_time;
};
static struct fsmonitor_token_data *fsmonitor_new_token_data(void)
{
static int test_env_value = -1;
static uint64_t flush_count = 0;
struct fsmonitor_token_data *token;
struct fsmonitor_batch *batch;
CALLOC_ARRAY(token, 1);
batch = fsmonitor_batch__new();
strbuf_init(&token->token_id, 0);
token->batch_head = batch;
token->batch_tail = batch;
token->client_ref_count = 0;
if (test_env_value < 0)
test_env_value = git_env_bool("GIT_TEST_FSMONITOR_TOKEN", 0);
if (!test_env_value) {
struct timeval tv;
struct tm tm;
time_t secs;
gettimeofday(&tv, NULL);
secs = tv.tv_sec;
gmtime_r(&secs, &tm);
strbuf_addf(&token->token_id,
"%"PRIu64".%d.%4d%02d%02dT%02d%02d%02d.%06ldZ",
flush_count++,
getpid(),
tm.tm_year + 1900, tm.tm_mon + 1, tm.tm_mday,
tm.tm_hour, tm.tm_min, tm.tm_sec,
(long)tv.tv_usec);
} else {
strbuf_addf(&token->token_id, "test_%08x", test_env_value++);
}
/*
* We created a new <token_id> and are starting a new series
* of tokens with a zero <seq_nr>.
*
* Since clients cannot guess our new (non test) <token_id>
* they will always receive a trivial response (because of the
* mismatch on the <token_id>). The trivial response will
* tell them our new <token_id> so that subsequent requests
* will be relative to our new series. (And when sending that
* response, we pin the current head of the batch list.)
*
* Even if the client correctly guesses the <token_id>, their
* request of "builtin:<token_id>:0" asks for all changes MORE
* RECENT than batch/bin 0.
*
* This implies that it is a waste to accumulate paths in the
* initial batch/bin (because they will never be transmitted).
*
* So the daemon could be running for days and watching the
* file system, but doesn't need to actually accumulate any
* paths UNTIL we need to set a reference point for a later
* relative request.
*
* However, it is very useful for testing to always have a
* reference point set. Pin batch 0 to force early file system
* events to accumulate.
*/
if (test_env_value)
batch->pinned_time = time(NULL);
return token;
}
struct fsmonitor_batch *fsmonitor_batch__new(void)
{
struct fsmonitor_batch *batch;
CALLOC_ARRAY(batch, 1);
return batch;
}
void fsmonitor_batch__free_list(struct fsmonitor_batch *batch)
{
while (batch) {
struct fsmonitor_batch *next = batch->next;
/*
* The actual strings within the array of this batch
* are interned, so we don't own them. We only own
* the array.
*/
free(batch->interned_paths);
free(batch);
batch = next;
}
}
void fsmonitor_batch__add_path(struct fsmonitor_batch *batch,
const char *path)
{
const char *interned_path = strintern(path);
trace_printf_key(&trace_fsmonitor, "event: %s", interned_path);
ALLOC_GROW(batch->interned_paths, batch->nr + 1, batch->alloc);
batch->interned_paths[batch->nr++] = interned_path;
}
static void fsmonitor_batch__combine(struct fsmonitor_batch *batch_dest,
const struct fsmonitor_batch *batch_src)
{
size_t k;
ALLOC_GROW(batch_dest->interned_paths,
batch_dest->nr + batch_src->nr + 1,
batch_dest->alloc);
for (k = 0; k < batch_src->nr; k++)
batch_dest->interned_paths[batch_dest->nr++] =
batch_src->interned_paths[k];
}
/*
* To keep the batch list from growing unbounded in response to filesystem
* activity, we try to truncate old batches from the end of the list as
* they become irrelevant.
*
* We assume that the .git/index will be updated with the most recent token
* any time the index is updated. And future commands will only ask for
* recent changes *since* that new token. So as tokens advance into the
* future, older batch items will never be requested/needed. So we can
* truncate them without loss of functionality.
*
* However, multiple commands may be talking to the daemon concurrently
* or perform a slow command, so a little "token skew" is possible.
* Therefore, we want this to be a little bit lazy and have a generous
* delay.
*
* The current reader thread walked backwards in time from `token->batch_head`
* back to `batch_marker` somewhere in the middle of the batch list.
*
* Let's walk backwards in time from that marker an arbitrary delay
* and truncate the list there. Note that these timestamps are completely
* artificial (based on when we pinned the batch item) and not on any
* filesystem activity.
*
* Return the obsolete portion of the list after we have removed it from
* the official list so that the caller can free it after leaving the lock.
*/
#define MY_TIME_DELAY_SECONDS (5 * 60) /* seconds */
static struct fsmonitor_batch *with_lock__truncate_old_batches(
struct fsmonitor_daemon_state *state,
const struct fsmonitor_batch *batch_marker)
{
/* assert current thread holding state->main_lock */
const struct fsmonitor_batch *batch;
struct fsmonitor_batch *remainder;
if (!batch_marker)
return NULL;
trace_printf_key(&trace_fsmonitor, "Truncate: mark (%"PRIu64",%"PRIu64")",
batch_marker->batch_seq_nr,
(uint64_t)batch_marker->pinned_time);
for (batch = batch_marker; batch; batch = batch->next) {
time_t t;
if (!batch->pinned_time) /* an overflow batch */
continue;
t = batch->pinned_time + MY_TIME_DELAY_SECONDS;
if (t > batch_marker->pinned_time) /* too close to marker */
continue;
goto truncate_past_here;
}
return NULL;
truncate_past_here:
state->current_token_data->batch_tail = (struct fsmonitor_batch *)batch;
remainder = ((struct fsmonitor_batch *)batch)->next;
((struct fsmonitor_batch *)batch)->next = NULL;
return remainder;
}
static void fsmonitor_free_token_data(struct fsmonitor_token_data *token)
{
if (!token)
return;
assert(token->client_ref_count == 0);
strbuf_release(&token->token_id);
fsmonitor_batch__free_list(token->batch_head);
free(token);
}
/*
* Flush all of our cached data about the filesystem. Call this if we
* lose sync with the filesystem and miss some notification events.
*
* [1] If we are missing events, then we no longer have a complete
* history of the directory (relative to our current start token).
* We should create a new token and start fresh (as if we just
* booted up).
*
* [2] Some of those lost events may have been for cookie files. We
* should assume the worst and abort them rather letting them starve.
*
* If there are no concurrent threads reading the current token data
* series, we can free it now. Otherwise, let the last reader free
* it.
*
* Either way, the old token data series is no longer associated with
* our state data.
*/
static void with_lock__do_force_resync(struct fsmonitor_daemon_state *state)
{
/* assert current thread holding state->main_lock */
struct fsmonitor_token_data *free_me = NULL;
struct fsmonitor_token_data *new_one = NULL;
new_one = fsmonitor_new_token_data();
if (state->current_token_data->client_ref_count == 0)
free_me = state->current_token_data;
state->current_token_data = new_one;
fsmonitor_free_token_data(free_me);
with_lock__abort_all_cookies(state);
}
void fsmonitor_force_resync(struct fsmonitor_daemon_state *state)
{
pthread_mutex_lock(&state->main_lock);
with_lock__do_force_resync(state);
pthread_mutex_unlock(&state->main_lock);
}
/*
* Format an opaque token string to send to the client.
*/
static void with_lock__format_response_token(
struct strbuf *response_token,
const struct strbuf *response_token_id,
const struct fsmonitor_batch *batch)
{
/* assert current thread holding state->main_lock */
strbuf_reset(response_token);
strbuf_addf(response_token, "builtin:%s:%"PRIu64,
response_token_id->buf, batch->batch_seq_nr);
}
/*
* Parse an opaque token from the client.
* Returns -1 on error.
*/
static int fsmonitor_parse_client_token(const char *buf_token,
struct strbuf *requested_token_id,
uint64_t *seq_nr)
{
const char *p;
char *p_end;
strbuf_reset(requested_token_id);
*seq_nr = 0;
if (!skip_prefix(buf_token, "builtin:", &p))
return -1;
while (*p && *p != ':')
strbuf_addch(requested_token_id, *p++);
if (!*p++)
return -1;
*seq_nr = (uint64_t)strtoumax(p, &p_end, 10);
if (*p_end)
return -1;
return 0;
}
KHASH_INIT(str, const char *, int, 0, kh_str_hash_func, kh_str_hash_equal)
static int do_handle_client(struct fsmonitor_daemon_state *state,
const char *command,
ipc_server_reply_cb *reply,
struct ipc_server_reply_data *reply_data)
{
struct fsmonitor_token_data *token_data = NULL;
struct strbuf response_token = STRBUF_INIT;
struct strbuf requested_token_id = STRBUF_INIT;
struct strbuf payload = STRBUF_INIT;
uint64_t requested_oldest_seq_nr = 0;
uint64_t total_response_len = 0;
const char *p;
const struct fsmonitor_batch *batch_head;
const struct fsmonitor_batch *batch;
struct fsmonitor_batch *remainder = NULL;
intmax_t count = 0, duplicates = 0;
kh_str_t *shown;
int hash_ret;
int do_trivial = 0;
int do_flush = 0;
int do_cookie = 0;
enum fsmonitor_cookie_item_result cookie_result;
/*
* We expect `command` to be of the form:
*
* <command> := quit NUL
* | flush NUL
* | <V1-time-since-epoch-ns> NUL
* | <V2-opaque-fsmonitor-token> NUL
*/
if (!strcmp(command, "quit")) {
/*
* A client has requested over the socket/pipe that the
* daemon shutdown.
*
* Tell the IPC thread pool to shutdown (which completes
* the await in the main thread (which can stop the
* fsmonitor listener thread)).
*
* There is no reply to the client.
*/
return SIMPLE_IPC_QUIT;
} else if (!strcmp(command, "flush")) {
/*
* Flush all of our cached data and generate a new token
* just like if we lost sync with the filesystem.
*
* Then send a trivial response using the new token.
*/
do_flush = 1;
do_trivial = 1;
} else if (!skip_prefix(command, "builtin:", &p)) {
/* assume V1 timestamp or garbage */
char *p_end;
strtoumax(command, &p_end, 10);
trace_printf_key(&trace_fsmonitor,
((*p_end) ?
"fsmonitor: invalid command line '%s'" :
"fsmonitor: unsupported V1 protocol '%s'"),
command);
do_trivial = 1;
fsmonitor: fix race seen in t7527 Fix racy tests in t7527 by forcing the use of cookie files during all types of queries. There were originaly observed on M1 macs with file system encryption enabled. There were a series of simple tests, such as "edit some files" and "create some files", that started the daemon with GIT_TRACE_FSMONITOR enabled so that the daemon would emit "event: <path>" messages to the trace log. The test would make worktree modifications and then grep the log file to confirm it contained the expected trace messages. The greps would occasionally racily-fail. The expected messages were always present in the log file, just not yet always present when the greps ran. NEEDSWORK: One could argue that the tests should use the `test-tool fsmonitor-client query` and search for the expected pathnames in the output rather than grepping the trace log, but I'll leave that for a later exercise. The racy tests called `test-tool fsmonitor-client query --token 0` before grepping the log file. (Presumably to introduce a small delay and/or to let the daemon sync with the file system following the last modification, but that was not always sufficient and hence the race.) When the query arg is just "0", the daemon treated it as a V1 (aka timestamp-relative request) and responded with a "trivial response" and a new token, but without trying to catch up to the the file system event stream. So the "event: <path>" messages may or may not yet be in the log file when the grep commands started. FWIW, if the tests had sent `--token builtin:0:0` instead, it would have forced a slightly different code path in the daemon that would cause the daemon to use a cookie file and let it catch up with the file system event stream. I did not see any test failures with this change. Instead of modifying the test, I updated the fsmonitor--daemon to always use a cookie file and catch up to the file system on any query operation, regardless of the format of the request token. This is safer. FWIW, I think the effect of the race was limited to the test. Commands like `git status` would always do a full scan when getting a trivial response. The fact that the daemon was slighly behind the file system when it generated the response token would cause a second `git status` to get a few extra paths that the client would have to examine, but it would not be missing paths. FWIW, I also think that an earlier version of the code always did the cookie file for all types of queries, but it was optimized out during a round of reviews or rework and we didn't notice the race. Signed-off-by: Jeff Hostetler <jeffhostetler@github.com> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2022-12-02 00:32:14 +01:00
do_cookie = 1;
} else {
/* We have "builtin:*" */
if (fsmonitor_parse_client_token(command, &requested_token_id,
&requested_oldest_seq_nr)) {
trace_printf_key(&trace_fsmonitor,
"fsmonitor: invalid V2 protocol token '%s'",
command);
do_trivial = 1;
fsmonitor: fix race seen in t7527 Fix racy tests in t7527 by forcing the use of cookie files during all types of queries. There were originaly observed on M1 macs with file system encryption enabled. There were a series of simple tests, such as "edit some files" and "create some files", that started the daemon with GIT_TRACE_FSMONITOR enabled so that the daemon would emit "event: <path>" messages to the trace log. The test would make worktree modifications and then grep the log file to confirm it contained the expected trace messages. The greps would occasionally racily-fail. The expected messages were always present in the log file, just not yet always present when the greps ran. NEEDSWORK: One could argue that the tests should use the `test-tool fsmonitor-client query` and search for the expected pathnames in the output rather than grepping the trace log, but I'll leave that for a later exercise. The racy tests called `test-tool fsmonitor-client query --token 0` before grepping the log file. (Presumably to introduce a small delay and/or to let the daemon sync with the file system following the last modification, but that was not always sufficient and hence the race.) When the query arg is just "0", the daemon treated it as a V1 (aka timestamp-relative request) and responded with a "trivial response" and a new token, but without trying to catch up to the the file system event stream. So the "event: <path>" messages may or may not yet be in the log file when the grep commands started. FWIW, if the tests had sent `--token builtin:0:0` instead, it would have forced a slightly different code path in the daemon that would cause the daemon to use a cookie file and let it catch up with the file system event stream. I did not see any test failures with this change. Instead of modifying the test, I updated the fsmonitor--daemon to always use a cookie file and catch up to the file system on any query operation, regardless of the format of the request token. This is safer. FWIW, I think the effect of the race was limited to the test. Commands like `git status` would always do a full scan when getting a trivial response. The fact that the daemon was slighly behind the file system when it generated the response token would cause a second `git status` to get a few extra paths that the client would have to examine, but it would not be missing paths. FWIW, I also think that an earlier version of the code always did the cookie file for all types of queries, but it was optimized out during a round of reviews or rework and we didn't notice the race. Signed-off-by: Jeff Hostetler <jeffhostetler@github.com> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2022-12-02 00:32:14 +01:00
do_cookie = 1;
} else {
/*
* We have a V2 valid token:
* "builtin:<token_id>:<seq_nr>"
*/
do_cookie = 1;
}
}
pthread_mutex_lock(&state->main_lock);
if (!state->current_token_data)
BUG("fsmonitor state does not have a current token");
/*
* Write a cookie file inside the directory being watched in
* an effort to flush out existing filesystem events that we
* actually care about. Suspend this client thread until we
* see the filesystem events for this cookie file.
*
* Creating the cookie lets us guarantee that our FS listener
* thread has drained the kernel queue and we are caught up
* with the kernel.
*
* If we cannot create the cookie (or otherwise guarantee that
* we are caught up), we send a trivial response. We have to
* assume that there might be some very, very recent activity
* on the FS still in flight.
*/
if (do_cookie) {
cookie_result = with_lock__wait_for_cookie(state);
if (cookie_result != FCIR_SEEN) {
error(_("fsmonitor: cookie_result '%d' != SEEN"),
cookie_result);
do_trivial = 1;
}
}
if (do_flush)
with_lock__do_force_resync(state);
/*
* We mark the current head of the batch list as "pinned" so
* that the listener thread will treat this item as read-only
* (and prevent any more paths from being added to it) from
* now on.
*/
token_data = state->current_token_data;
batch_head = token_data->batch_head;
((struct fsmonitor_batch *)batch_head)->pinned_time = time(NULL);
/*
* FSMonitor Protocol V2 requires that we send a response header
* with a "new current token" and then all of the paths that changed
* since the "requested token". We send the seq_nr of the just-pinned
* head batch so that future requests from a client will be relative
* to it.
*/
with_lock__format_response_token(&response_token,
&token_data->token_id, batch_head);
reply(reply_data, response_token.buf, response_token.len + 1);
total_response_len += response_token.len + 1;
trace2_data_string("fsmonitor", the_repository, "response/token",
response_token.buf);
trace_printf_key(&trace_fsmonitor, "response token: %s",
response_token.buf);
if (!do_trivial) {
if (strcmp(requested_token_id.buf, token_data->token_id.buf)) {
/*
* The client last spoke to a different daemon
* instance -OR- the daemon had to resync with
* the filesystem (and lost events), so reject.
*/
trace2_data_string("fsmonitor", the_repository,
"response/token", "different");
do_trivial = 1;
} else if (requested_oldest_seq_nr <
token_data->batch_tail->batch_seq_nr) {
/*
* The client wants older events than we have for
* this token_id. This means that the end of our
* batch list was truncated and we cannot give the
* client a complete snapshot relative to their
* request.
*/
trace_printf_key(&trace_fsmonitor,
"client requested truncated data");
do_trivial = 1;
}
}
if (do_trivial) {
pthread_mutex_unlock(&state->main_lock);
reply(reply_data, "/", 2);
trace2_data_intmax("fsmonitor", the_repository,
"response/trivial", 1);
goto cleanup;
}
/*
* We're going to hold onto a pointer to the current
* token-data while we walk the list of batches of files.
* During this time, we will NOT be under the lock.
* So we ref-count it.
*
* This allows the listener thread to continue prepending
* new batches of items to the token-data (which we'll ignore).
*
* AND it allows the listener thread to do a token-reset
* (and install a new `current_token_data`).
*/
token_data->client_ref_count++;
pthread_mutex_unlock(&state->main_lock);
/*
* The client request is relative to the token that they sent,
* so walk the batch list backwards from the current head back
* to the batch (sequence number) they named.
*
* We use khash to de-dup the list of pathnames.
*
* NEEDSWORK: each batch contains a list of interned strings,
* so we only need to do pointer comparisons here to build the
* hash table. Currently, we're still comparing the string
* values.
*/
shown = kh_init_str();
for (batch = batch_head;
batch && batch->batch_seq_nr > requested_oldest_seq_nr;
batch = batch->next) {
size_t k;
for (k = 0; k < batch->nr; k++) {
const char *s = batch->interned_paths[k];
size_t s_len;
if (kh_get_str(shown, s) != kh_end(shown))
duplicates++;
else {
kh_put_str(shown, s, &hash_ret);
trace_printf_key(&trace_fsmonitor,
"send[%"PRIuMAX"]: %s",
count, s);
/* Each path gets written with a trailing NUL */
s_len = strlen(s) + 1;
if (payload.len + s_len >=
LARGE_PACKET_DATA_MAX) {
reply(reply_data, payload.buf,
payload.len);
total_response_len += payload.len;
strbuf_reset(&payload);
}
strbuf_add(&payload, s, s_len);
count++;
}
}
}
if (payload.len) {
reply(reply_data, payload.buf, payload.len);
total_response_len += payload.len;
}
kh_release_str(shown);
pthread_mutex_lock(&state->main_lock);
if (token_data->client_ref_count > 0)
token_data->client_ref_count--;
if (token_data->client_ref_count == 0) {
if (token_data != state->current_token_data) {
/*
* The listener thread did a token-reset while we were
* walking the batch list. Therefore, this token is
* stale and can be discarded completely. If we are
* the last reader thread using this token, we own
* that work.
*/
fsmonitor_free_token_data(token_data);
} else if (batch) {
/*
* We are holding the lock and are the only
* reader of the ref-counted portion of the
* list, so we get the honor of seeing if the
* list can be truncated to save memory.
*
* The main loop did not walk to the end of the
* list, so this batch is the first item in the
* batch-list that is older than the requested
* end-point sequence number. See if the tail
* end of the list is obsolete.
*/
remainder = with_lock__truncate_old_batches(state,
batch);
}
}
pthread_mutex_unlock(&state->main_lock);
if (remainder)
fsmonitor_batch__free_list(remainder);
trace2_data_intmax("fsmonitor", the_repository, "response/length", total_response_len);
trace2_data_intmax("fsmonitor", the_repository, "response/count/files", count);
trace2_data_intmax("fsmonitor", the_repository, "response/count/duplicates", duplicates);
cleanup:
strbuf_release(&response_token);
strbuf_release(&requested_token_id);
strbuf_release(&payload);
return 0;
}
static ipc_server_application_cb handle_client;
static int handle_client(void *data,
const char *command, size_t command_len,
ipc_server_reply_cb *reply,
struct ipc_server_reply_data *reply_data)
{
struct fsmonitor_daemon_state *state = data;
int result;
/*
* The Simple IPC API now supports {char*, len} arguments, but
* FSMonitor always uses proper null-terminated strings, so
* we can ignore the command_len argument. (Trust, but verify.)
*/
if (command_len != strlen(command))
BUG("FSMonitor assumes text messages");
trace_printf_key(&trace_fsmonitor, "requested token: %s", command);
trace2_region_enter("fsmonitor", "handle_client", the_repository);
trace2_data_string("fsmonitor", the_repository, "request", command);
result = do_handle_client(state, command, reply, reply_data);
trace2_region_leave("fsmonitor", "handle_client", the_repository);
return result;
}
#define FSMONITOR_DIR "fsmonitor--daemon"
#define FSMONITOR_COOKIE_DIR "cookies"
#define FSMONITOR_COOKIE_PREFIX (FSMONITOR_DIR "/" FSMONITOR_COOKIE_DIR "/")
enum fsmonitor_path_type fsmonitor_classify_path_workdir_relative(
const char *rel)
{
if (fspathncmp(rel, ".git", 4))
return IS_WORKDIR_PATH;
rel += 4;
if (!*rel)
return IS_DOT_GIT;
if (*rel != '/')
return IS_WORKDIR_PATH; /* e.g. .gitignore */
rel++;
if (!fspathncmp(rel, FSMONITOR_COOKIE_PREFIX,
strlen(FSMONITOR_COOKIE_PREFIX)))
return IS_INSIDE_DOT_GIT_WITH_COOKIE_PREFIX;
return IS_INSIDE_DOT_GIT;
}
enum fsmonitor_path_type fsmonitor_classify_path_gitdir_relative(
const char *rel)
{
if (!fspathncmp(rel, FSMONITOR_COOKIE_PREFIX,
strlen(FSMONITOR_COOKIE_PREFIX)))
return IS_INSIDE_GITDIR_WITH_COOKIE_PREFIX;
return IS_INSIDE_GITDIR;
}
static enum fsmonitor_path_type try_classify_workdir_abs_path(
struct fsmonitor_daemon_state *state,
const char *path)
{
const char *rel;
if (fspathncmp(path, state->path_worktree_watch.buf,
state->path_worktree_watch.len))
return IS_OUTSIDE_CONE;
rel = path + state->path_worktree_watch.len;
if (!*rel)
return IS_WORKDIR_PATH; /* it is the root dir exactly */
if (*rel != '/')
return IS_OUTSIDE_CONE;
rel++;
return fsmonitor_classify_path_workdir_relative(rel);
}
enum fsmonitor_path_type fsmonitor_classify_path_absolute(
struct fsmonitor_daemon_state *state,
const char *path)
{
const char *rel;
enum fsmonitor_path_type t;
t = try_classify_workdir_abs_path(state, path);
if (state->nr_paths_watching == 1)
return t;
if (t != IS_OUTSIDE_CONE)
return t;
if (fspathncmp(path, state->path_gitdir_watch.buf,
state->path_gitdir_watch.len))
return IS_OUTSIDE_CONE;
rel = path + state->path_gitdir_watch.len;
if (!*rel)
return IS_GITDIR; /* it is the <gitdir> exactly */
if (*rel != '/')
return IS_OUTSIDE_CONE;
rel++;
return fsmonitor_classify_path_gitdir_relative(rel);
}
/*
* We try to combine small batches at the front of the batch-list to avoid
* having a long list. This hopefully makes it a little easier when we want
* to truncate and maintain the list. However, we don't want the paths array
* to just keep growing and growing with realloc, so we insert an arbitrary
* limit.
*/
#define MY_COMBINE_LIMIT (1024)
void fsmonitor_publish(struct fsmonitor_daemon_state *state,
struct fsmonitor_batch *batch,
const struct string_list *cookie_names)
{
if (!batch && !cookie_names->nr)
return;
pthread_mutex_lock(&state->main_lock);
if (batch) {
struct fsmonitor_batch *head;
head = state->current_token_data->batch_head;
if (!head) {
BUG("token does not have batch");
} else if (head->pinned_time) {
/*
* We cannot alter the current batch list
* because:
*
* [a] it is being transmitted to at least one
* client and the handle_client() thread has a
* ref-count, but not a lock on the batch list
* starting with this item.
*
* [b] it has been transmitted in the past to
* at least one client such that future
* requests are relative to this head batch.
*
* So, we can only prepend a new batch onto
* the front of the list.
*/
batch->batch_seq_nr = head->batch_seq_nr + 1;
batch->next = head;
state->current_token_data->batch_head = batch;
} else if (!head->batch_seq_nr) {
/*
* Batch 0 is unpinned. See the note in
* `fsmonitor_new_token_data()` about why we
* don't need to accumulate these paths.
*/
fsmonitor_batch__free_list(batch);
} else if (head->nr + batch->nr > MY_COMBINE_LIMIT) {
/*
* The head batch in the list has never been
* transmitted to a client, but folding the
* contents of the new batch onto it would
* exceed our arbitrary limit, so just prepend
* the new batch onto the list.
*/
batch->batch_seq_nr = head->batch_seq_nr + 1;
batch->next = head;
state->current_token_data->batch_head = batch;
} else {
/*
* We are free to add the paths in the given
* batch onto the end of the current head batch.
*/
fsmonitor_batch__combine(head, batch);
fsmonitor_batch__free_list(batch);
}
}
if (cookie_names->nr)
with_lock__mark_cookies_seen(state, cookie_names);
pthread_mutex_unlock(&state->main_lock);
}
fsmonitor--daemon: stub in health thread Create another thread to watch over the daemon process and automatically shut it down if necessary. This commit creates the basic framework for a "health" thread to monitor the daemon and/or the file system. Later commits will add platform-specific code to do the actual work. The "health" thread is intended to monitor conditions that would be difficult to track inside the IPC thread pool and/or the file system listener threads. For example, when there are file system events outside of the watched worktree root or if we want to have an idle-timeout auto-shutdown feature. This commit creates the health thread itself, defines the thread-proc and sets up the thread's event loop. It integrates this new thread into the existing IPC and Listener thread models. This commit defines the API to the platform-specific code where all of the monitoring will actually happen. The platform-specific code for MacOS is just stubs. Meaning that the health thread will immediately exit on MacOS, but that is OK and expected. Future work can define MacOS-specific monitoring. The platform-specific code for Windows sets up enough of the WaitForMultipleObjects() machinery to watch for system and/or custom events. Currently, the set of wait handles only includes our custom shutdown event (sent from our other theads). Later commits in this series will extend the set of wait handles to monitor other conditions. Signed-off-by: Jeff Hostetler <jeffhost@microsoft.com> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2022-05-26 23:47:10 +02:00
static void *fsm_health__thread_proc(void *_state)
{
struct fsmonitor_daemon_state *state = _state;
trace2_thread_start("fsm-health");
fsm_health__loop(state);
trace2_thread_exit();
return NULL;
}
static void *fsm_listen__thread_proc(void *_state)
{
struct fsmonitor_daemon_state *state = _state;
trace2_thread_start("fsm-listen");
trace_printf_key(&trace_fsmonitor, "Watching: worktree '%s'",
state->path_worktree_watch.buf);
if (state->nr_paths_watching > 1)
trace_printf_key(&trace_fsmonitor, "Watching: gitdir '%s'",
state->path_gitdir_watch.buf);
fsm_listen__loop(state);
pthread_mutex_lock(&state->main_lock);
if (state->current_token_data &&
state->current_token_data->client_ref_count == 0)
fsmonitor_free_token_data(state->current_token_data);
state->current_token_data = NULL;
pthread_mutex_unlock(&state->main_lock);
trace2_thread_exit();
return NULL;
}
static int fsmonitor_run_daemon_1(struct fsmonitor_daemon_state *state)
{
struct ipc_server_opts ipc_opts = {
.nr_threads = fsmonitor__ipc_threads,
/*
* We know that there are no other active threads yet,
* so we can let the IPC layer temporarily chdir() if
* it needs to when creating the server side of the
* Unix domain socket.
*/
.uds_disallow_chdir = 0
};
fsmonitor--daemon: stub in health thread Create another thread to watch over the daemon process and automatically shut it down if necessary. This commit creates the basic framework for a "health" thread to monitor the daemon and/or the file system. Later commits will add platform-specific code to do the actual work. The "health" thread is intended to monitor conditions that would be difficult to track inside the IPC thread pool and/or the file system listener threads. For example, when there are file system events outside of the watched worktree root or if we want to have an idle-timeout auto-shutdown feature. This commit creates the health thread itself, defines the thread-proc and sets up the thread's event loop. It integrates this new thread into the existing IPC and Listener thread models. This commit defines the API to the platform-specific code where all of the monitoring will actually happen. The platform-specific code for MacOS is just stubs. Meaning that the health thread will immediately exit on MacOS, but that is OK and expected. Future work can define MacOS-specific monitoring. The platform-specific code for Windows sets up enough of the WaitForMultipleObjects() machinery to watch for system and/or custom events. Currently, the set of wait handles only includes our custom shutdown event (sent from our other theads). Later commits in this series will extend the set of wait handles to monitor other conditions. Signed-off-by: Jeff Hostetler <jeffhost@microsoft.com> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2022-05-26 23:47:10 +02:00
int health_started = 0;
int listener_started = 0;
int err = 0;
/*
* Start the IPC thread pool before the we've started the file
* system event listener thread so that we have the IPC handle
* before we need it.
*/
if (ipc_server_run_async(&state->ipc_server_data,
state->path_ipc.buf, &ipc_opts,
handle_client, state))
return error_errno(
_("could not start IPC thread pool on '%s'"),
state->path_ipc.buf);
/*
* Start the fsmonitor listener thread to collect filesystem
* events.
*/
if (pthread_create(&state->listener_thread, NULL,
fsm_listen__thread_proc, state)) {
ipc_server_stop_async(state->ipc_server_data);
err = error(_("could not start fsmonitor listener thread"));
goto cleanup;
}
listener_started = 1;
fsmonitor--daemon: stub in health thread Create another thread to watch over the daemon process and automatically shut it down if necessary. This commit creates the basic framework for a "health" thread to monitor the daemon and/or the file system. Later commits will add platform-specific code to do the actual work. The "health" thread is intended to monitor conditions that would be difficult to track inside the IPC thread pool and/or the file system listener threads. For example, when there are file system events outside of the watched worktree root or if we want to have an idle-timeout auto-shutdown feature. This commit creates the health thread itself, defines the thread-proc and sets up the thread's event loop. It integrates this new thread into the existing IPC and Listener thread models. This commit defines the API to the platform-specific code where all of the monitoring will actually happen. The platform-specific code for MacOS is just stubs. Meaning that the health thread will immediately exit on MacOS, but that is OK and expected. Future work can define MacOS-specific monitoring. The platform-specific code for Windows sets up enough of the WaitForMultipleObjects() machinery to watch for system and/or custom events. Currently, the set of wait handles only includes our custom shutdown event (sent from our other theads). Later commits in this series will extend the set of wait handles to monitor other conditions. Signed-off-by: Jeff Hostetler <jeffhost@microsoft.com> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2022-05-26 23:47:10 +02:00
/*
* Start the health thread to watch over our process.
*/
if (pthread_create(&state->health_thread, NULL,
fsm_health__thread_proc, state)) {
fsmonitor--daemon: stub in health thread Create another thread to watch over the daemon process and automatically shut it down if necessary. This commit creates the basic framework for a "health" thread to monitor the daemon and/or the file system. Later commits will add platform-specific code to do the actual work. The "health" thread is intended to monitor conditions that would be difficult to track inside the IPC thread pool and/or the file system listener threads. For example, when there are file system events outside of the watched worktree root or if we want to have an idle-timeout auto-shutdown feature. This commit creates the health thread itself, defines the thread-proc and sets up the thread's event loop. It integrates this new thread into the existing IPC and Listener thread models. This commit defines the API to the platform-specific code where all of the monitoring will actually happen. The platform-specific code for MacOS is just stubs. Meaning that the health thread will immediately exit on MacOS, but that is OK and expected. Future work can define MacOS-specific monitoring. The platform-specific code for Windows sets up enough of the WaitForMultipleObjects() machinery to watch for system and/or custom events. Currently, the set of wait handles only includes our custom shutdown event (sent from our other theads). Later commits in this series will extend the set of wait handles to monitor other conditions. Signed-off-by: Jeff Hostetler <jeffhost@microsoft.com> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2022-05-26 23:47:10 +02:00
ipc_server_stop_async(state->ipc_server_data);
err = error(_("could not start fsmonitor health thread"));
goto cleanup;
}
health_started = 1;
/*
* The daemon is now fully functional in background threads.
* Our primary thread should now just wait while the threads
* do all the work.
*/
cleanup:
/*
* Wait for the IPC thread pool to shutdown (whether by client
* request, from filesystem activity, or an error).
*/
ipc_server_await(state->ipc_server_data);
/*
* The fsmonitor listener thread may have received a shutdown
* event from the IPC thread pool, but it doesn't hurt to tell
* it again. And wait for it to shutdown.
*/
if (listener_started) {
fsm_listen__stop_async(state);
pthread_join(state->listener_thread, NULL);
}
fsmonitor--daemon: stub in health thread Create another thread to watch over the daemon process and automatically shut it down if necessary. This commit creates the basic framework for a "health" thread to monitor the daemon and/or the file system. Later commits will add platform-specific code to do the actual work. The "health" thread is intended to monitor conditions that would be difficult to track inside the IPC thread pool and/or the file system listener threads. For example, when there are file system events outside of the watched worktree root or if we want to have an idle-timeout auto-shutdown feature. This commit creates the health thread itself, defines the thread-proc and sets up the thread's event loop. It integrates this new thread into the existing IPC and Listener thread models. This commit defines the API to the platform-specific code where all of the monitoring will actually happen. The platform-specific code for MacOS is just stubs. Meaning that the health thread will immediately exit on MacOS, but that is OK and expected. Future work can define MacOS-specific monitoring. The platform-specific code for Windows sets up enough of the WaitForMultipleObjects() machinery to watch for system and/or custom events. Currently, the set of wait handles only includes our custom shutdown event (sent from our other theads). Later commits in this series will extend the set of wait handles to monitor other conditions. Signed-off-by: Jeff Hostetler <jeffhost@microsoft.com> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2022-05-26 23:47:10 +02:00
if (health_started) {
fsm_health__stop_async(state);
pthread_join(state->health_thread, NULL);
}
if (err)
return err;
if (state->listen_error_code)
return state->listen_error_code;
fsmonitor--daemon: stub in health thread Create another thread to watch over the daemon process and automatically shut it down if necessary. This commit creates the basic framework for a "health" thread to monitor the daemon and/or the file system. Later commits will add platform-specific code to do the actual work. The "health" thread is intended to monitor conditions that would be difficult to track inside the IPC thread pool and/or the file system listener threads. For example, when there are file system events outside of the watched worktree root or if we want to have an idle-timeout auto-shutdown feature. This commit creates the health thread itself, defines the thread-proc and sets up the thread's event loop. It integrates this new thread into the existing IPC and Listener thread models. This commit defines the API to the platform-specific code where all of the monitoring will actually happen. The platform-specific code for MacOS is just stubs. Meaning that the health thread will immediately exit on MacOS, but that is OK and expected. Future work can define MacOS-specific monitoring. The platform-specific code for Windows sets up enough of the WaitForMultipleObjects() machinery to watch for system and/or custom events. Currently, the set of wait handles only includes our custom shutdown event (sent from our other theads). Later commits in this series will extend the set of wait handles to monitor other conditions. Signed-off-by: Jeff Hostetler <jeffhost@microsoft.com> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2022-05-26 23:47:10 +02:00
if (state->health_error_code)
return state->health_error_code;
return 0;
}
static int fsmonitor_run_daemon(void)
{
struct fsmonitor_daemon_state state;
const char *home;
int err;
memset(&state, 0, sizeof(state));
hashmap_init(&state.cookies, cookies_cmp, NULL, 0);
pthread_mutex_init(&state.main_lock, NULL);
pthread_cond_init(&state.cookies_cond, NULL);
state.listen_error_code = 0;
fsmonitor--daemon: stub in health thread Create another thread to watch over the daemon process and automatically shut it down if necessary. This commit creates the basic framework for a "health" thread to monitor the daemon and/or the file system. Later commits will add platform-specific code to do the actual work. The "health" thread is intended to monitor conditions that would be difficult to track inside the IPC thread pool and/or the file system listener threads. For example, when there are file system events outside of the watched worktree root or if we want to have an idle-timeout auto-shutdown feature. This commit creates the health thread itself, defines the thread-proc and sets up the thread's event loop. It integrates this new thread into the existing IPC and Listener thread models. This commit defines the API to the platform-specific code where all of the monitoring will actually happen. The platform-specific code for MacOS is just stubs. Meaning that the health thread will immediately exit on MacOS, but that is OK and expected. Future work can define MacOS-specific monitoring. The platform-specific code for Windows sets up enough of the WaitForMultipleObjects() machinery to watch for system and/or custom events. Currently, the set of wait handles only includes our custom shutdown event (sent from our other theads). Later commits in this series will extend the set of wait handles to monitor other conditions. Signed-off-by: Jeff Hostetler <jeffhost@microsoft.com> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2022-05-26 23:47:10 +02:00
state.health_error_code = 0;
state.current_token_data = fsmonitor_new_token_data();
/* Prepare to (recursively) watch the <worktree-root> directory. */
strbuf_init(&state.path_worktree_watch, 0);
strbuf_addstr(&state.path_worktree_watch, absolute_path(get_git_work_tree()));
state.nr_paths_watching = 1;
fsmonitor: deal with synthetic firmlinks on macOS Starting with macOS 10.15 (Catalina), Apple introduced a new feature called 'firmlinks' in order to separate the boot volume into two volumes, one read-only and one writable but still present them to the user as a single volume. Along with this change, Apple removed the ability to create symlinks in the root directory and replaced them with 'synthetic firmlinks'. See 'man synthetic.conf' When FSEevents reports the path of changed files, if the path involves a synthetic firmlink, the path is reported from the point of the synthetic firmlink and not the real path. For example: Real path: /System/Volumes/Data/network/working/directory/foo.txt Synthetic firmlink: /network -> /System/Volumes/Data/network FSEvents path: /network/working/directory/foo.txt This causes the FSEvents path to not match against the worktree directory. There are several ways in which synthetic firmlinks can be created: they can be defined in /etc/synthetic.conf, the automounter can create them, and there may be other means. Simply reading /etc/synthetic.conf is insufficient. No matter what process creates synthetic firmlinks, they all get created in the root directory. Therefore, in order to deal with synthetic firmlinks, the root directory is scanned and the first possible synthetic firmink that, when resolved, is a prefix of the worktree is used to map FSEvents paths to worktree paths. Signed-off-by: Eric DeCosta <edecosta@mathworks.com> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2022-10-04 19:32:29 +02:00
strbuf_init(&state.alias.alias, 0);
strbuf_init(&state.alias.points_to, 0);
if ((err = fsmonitor__get_alias(state.path_worktree_watch.buf, &state.alias)))
goto done;
/*
* We create and delete cookie files somewhere inside the .git
* directory to help us keep sync with the file system. If
* ".git" is not a directory, then <gitdir> is not inside the
* cone of <worktree-root>, so set up a second watch to watch
* the <gitdir> so that we get events for the cookie files.
*/
strbuf_init(&state.path_gitdir_watch, 0);
strbuf_addbuf(&state.path_gitdir_watch, &state.path_worktree_watch);
strbuf_addstr(&state.path_gitdir_watch, "/.git");
if (!is_directory(state.path_gitdir_watch.buf)) {
strbuf_reset(&state.path_gitdir_watch);
strbuf_addstr(&state.path_gitdir_watch, absolute_path(get_git_dir()));
state.nr_paths_watching = 2;
}
/*
* We will write filesystem syncing cookie files into
* <gitdir>/<fsmonitor-dir>/<cookie-dir>/<pid>-<seq>.
*
* The extra layers of subdirectories here keep us from
* changing the mtime on ".git/" or ".git/foo/" when we create
* or delete cookie files.
*
* There have been problems with some IDEs that do a
* non-recursive watch of the ".git/" directory and run a
* series of commands any time something happens.
*
* For example, if we place our cookie files directly in
* ".git/" or ".git/foo/" then a `git status` (or similar
* command) from the IDE will cause a cookie file to be
* created in one of those dirs. This causes the mtime of
* those dirs to change. This triggers the IDE's watch
* notification. This triggers the IDE to run those commands
* again. And the process repeats and the machine never goes
* idle.
*
* Adding the extra layers of subdirectories prevents the
* mtime of ".git/" and ".git/foo" from changing when a
* cookie file is created.
*/
strbuf_init(&state.path_cookie_prefix, 0);
strbuf_addbuf(&state.path_cookie_prefix, &state.path_gitdir_watch);
strbuf_addch(&state.path_cookie_prefix, '/');
strbuf_addstr(&state.path_cookie_prefix, FSMONITOR_DIR);
mkdir(state.path_cookie_prefix.buf, 0777);
strbuf_addch(&state.path_cookie_prefix, '/');
strbuf_addstr(&state.path_cookie_prefix, FSMONITOR_COOKIE_DIR);
mkdir(state.path_cookie_prefix.buf, 0777);
strbuf_addch(&state.path_cookie_prefix, '/');
/*
* We create a named-pipe or unix domain socket inside of the
* ".git" directory. (Well, on Windows, we base our named
* pipe in the NPFS on the absolute path of the git
* directory.)
*/
strbuf_init(&state.path_ipc, 0);
strbuf_addstr(&state.path_ipc,
absolute_path(fsmonitor_ipc__get_path(the_repository)));
/*
* Confirm that we can create platform-specific resources for the
* filesystem listener before we bother starting all the threads.
*/
if (fsm_listen__ctor(&state)) {
err = error(_("could not initialize listener thread"));
goto done;
}
fsmonitor--daemon: stub in health thread Create another thread to watch over the daemon process and automatically shut it down if necessary. This commit creates the basic framework for a "health" thread to monitor the daemon and/or the file system. Later commits will add platform-specific code to do the actual work. The "health" thread is intended to monitor conditions that would be difficult to track inside the IPC thread pool and/or the file system listener threads. For example, when there are file system events outside of the watched worktree root or if we want to have an idle-timeout auto-shutdown feature. This commit creates the health thread itself, defines the thread-proc and sets up the thread's event loop. It integrates this new thread into the existing IPC and Listener thread models. This commit defines the API to the platform-specific code where all of the monitoring will actually happen. The platform-specific code for MacOS is just stubs. Meaning that the health thread will immediately exit on MacOS, but that is OK and expected. Future work can define MacOS-specific monitoring. The platform-specific code for Windows sets up enough of the WaitForMultipleObjects() machinery to watch for system and/or custom events. Currently, the set of wait handles only includes our custom shutdown event (sent from our other theads). Later commits in this series will extend the set of wait handles to monitor other conditions. Signed-off-by: Jeff Hostetler <jeffhost@microsoft.com> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2022-05-26 23:47:10 +02:00
if (fsm_health__ctor(&state)) {
err = error(_("could not initialize health thread"));
goto done;
}
/*
* CD out of the worktree root directory.
*
* The common Git startup mechanism causes our CWD to be the
* root of the worktree. On Windows, this causes our process
* to hold a locked handle on the CWD. This prevents the
* worktree from being moved or deleted while the daemon is
* running.
*
* We assume that our FS and IPC listener threads have either
* opened all of the handles that they need or will do
* everything using absolute paths.
*/
home = getenv("HOME");
if (home && *home && chdir(home))
die_errno(_("could not cd home '%s'"), home);
err = fsmonitor_run_daemon_1(&state);
done:
pthread_cond_destroy(&state.cookies_cond);
pthread_mutex_destroy(&state.main_lock);
fsm_listen__dtor(&state);
fsmonitor--daemon: stub in health thread Create another thread to watch over the daemon process and automatically shut it down if necessary. This commit creates the basic framework for a "health" thread to monitor the daemon and/or the file system. Later commits will add platform-specific code to do the actual work. The "health" thread is intended to monitor conditions that would be difficult to track inside the IPC thread pool and/or the file system listener threads. For example, when there are file system events outside of the watched worktree root or if we want to have an idle-timeout auto-shutdown feature. This commit creates the health thread itself, defines the thread-proc and sets up the thread's event loop. It integrates this new thread into the existing IPC and Listener thread models. This commit defines the API to the platform-specific code where all of the monitoring will actually happen. The platform-specific code for MacOS is just stubs. Meaning that the health thread will immediately exit on MacOS, but that is OK and expected. Future work can define MacOS-specific monitoring. The platform-specific code for Windows sets up enough of the WaitForMultipleObjects() machinery to watch for system and/or custom events. Currently, the set of wait handles only includes our custom shutdown event (sent from our other theads). Later commits in this series will extend the set of wait handles to monitor other conditions. Signed-off-by: Jeff Hostetler <jeffhost@microsoft.com> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2022-05-26 23:47:10 +02:00
fsm_health__dtor(&state);
ipc_server_free(state.ipc_server_data);
strbuf_release(&state.path_worktree_watch);
strbuf_release(&state.path_gitdir_watch);
strbuf_release(&state.path_cookie_prefix);
strbuf_release(&state.path_ipc);
fsmonitor: deal with synthetic firmlinks on macOS Starting with macOS 10.15 (Catalina), Apple introduced a new feature called 'firmlinks' in order to separate the boot volume into two volumes, one read-only and one writable but still present them to the user as a single volume. Along with this change, Apple removed the ability to create symlinks in the root directory and replaced them with 'synthetic firmlinks'. See 'man synthetic.conf' When FSEevents reports the path of changed files, if the path involves a synthetic firmlink, the path is reported from the point of the synthetic firmlink and not the real path. For example: Real path: /System/Volumes/Data/network/working/directory/foo.txt Synthetic firmlink: /network -> /System/Volumes/Data/network FSEvents path: /network/working/directory/foo.txt This causes the FSEvents path to not match against the worktree directory. There are several ways in which synthetic firmlinks can be created: they can be defined in /etc/synthetic.conf, the automounter can create them, and there may be other means. Simply reading /etc/synthetic.conf is insufficient. No matter what process creates synthetic firmlinks, they all get created in the root directory. Therefore, in order to deal with synthetic firmlinks, the root directory is scanned and the first possible synthetic firmink that, when resolved, is a prefix of the worktree is used to map FSEvents paths to worktree paths. Signed-off-by: Eric DeCosta <edecosta@mathworks.com> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2022-10-04 19:32:29 +02:00
strbuf_release(&state.alias.alias);
strbuf_release(&state.alias.points_to);
return err;
}
static int try_to_run_foreground_daemon(int detach_console)
{
/*
* Technically, we don't need to probe for an existing daemon
* process, since we could just call `fsmonitor_run_daemon()`
* and let it fail if the pipe/socket is busy.
*
* However, this method gives us a nicer error message for a
* common error case.
*/
if (fsmonitor_ipc__get_state() == IPC_STATE__LISTENING)
die(_("fsmonitor--daemon is already running '%s'"),
the_repository->worktree);
if (fsmonitor__announce_startup) {
fprintf(stderr, _("running fsmonitor-daemon in '%s'\n"),
the_repository->worktree);
fflush(stderr);
}
#ifdef GIT_WINDOWS_NATIVE
if (detach_console)
FreeConsole();
#endif
return !!fsmonitor_run_daemon();
}
static start_bg_wait_cb bg_wait_cb;
static int bg_wait_cb(const struct child_process *cp, void *cb_data)
{
enum ipc_active_state s = fsmonitor_ipc__get_state();
switch (s) {
case IPC_STATE__LISTENING:
/* child is "ready" */
return 0;
case IPC_STATE__NOT_LISTENING:
case IPC_STATE__PATH_NOT_FOUND:
/* give child more time */
return 1;
default:
case IPC_STATE__INVALID_PATH:
case IPC_STATE__OTHER_ERROR:
/* all the time in world won't help */
return -1;
}
}
static int try_to_start_background_daemon(void)
{
struct child_process cp = CHILD_PROCESS_INIT;
enum start_bg_result sbgr;
/*
* Before we try to create a background daemon process, see
* if a daemon process is already listening. This makes it
* easier for us to report an already-listening error to the
* console, since our spawn/daemon can only report the success
* of creating the background process (and not whether it
* immediately exited).
*/
if (fsmonitor_ipc__get_state() == IPC_STATE__LISTENING)
die(_("fsmonitor--daemon is already running '%s'"),
the_repository->worktree);
if (fsmonitor__announce_startup) {
fprintf(stderr, _("starting fsmonitor-daemon in '%s'\n"),
the_repository->worktree);
fflush(stderr);
}
cp.git_cmd = 1;
strvec_push(&cp.args, "fsmonitor--daemon");
strvec_push(&cp.args, "run");
strvec_push(&cp.args, "--detach");
strvec_pushf(&cp.args, "--ipc-threads=%d", fsmonitor__ipc_threads);
cp.no_stdin = 1;
cp.no_stdout = 1;
cp.no_stderr = 1;
sbgr = start_bg_command(&cp, bg_wait_cb, NULL,
fsmonitor__start_timeout_sec);
switch (sbgr) {
case SBGR_READY:
return 0;
default:
case SBGR_ERROR:
case SBGR_CB_ERROR:
return error(_("daemon failed to start"));
case SBGR_TIMEOUT:
return error(_("daemon not online yet"));
case SBGR_DIED:
return error(_("daemon terminated"));
}
}
int cmd_fsmonitor__daemon(int argc, const char **argv, const char *prefix)
{
const char *subcmd;
enum fsmonitor_reason reason;
int detach_console = 0;
struct option options[] = {
OPT_BOOL(0, "detach", &detach_console, N_("detach from console")),
OPT_INTEGER(0, "ipc-threads",
&fsmonitor__ipc_threads,
N_("use <n> ipc worker threads")),
OPT_INTEGER(0, "start-timeout",
&fsmonitor__start_timeout_sec,
N_("max seconds to wait for background daemon startup")),
OPT_END()
};
git_config(fsmonitor_config, NULL);
argc = parse_options(argc, argv, prefix, options,
builtin_fsmonitor__daemon_usage, 0);
if (argc != 1)
usage_with_options(builtin_fsmonitor__daemon_usage, options);
subcmd = argv[0];
if (fsmonitor__ipc_threads < 1)
die(_("invalid 'ipc-threads' value (%d)"),
fsmonitor__ipc_threads);
prepare_repo_settings(the_repository);
/*
* If the repo is fsmonitor-compatible, explicitly set IPC-mode
* (without bothering to load the `core.fsmonitor` config settings).
*
* If the repo is not compatible, the repo-settings will be set to
* incompatible rather than IPC, so we can use one of the __get
* routines to detect the discrepancy.
*/
fsm_settings__set_ipc(the_repository);
reason = fsm_settings__get_reason(the_repository);
if (reason > FSMONITOR_REASON_OK)
die("%s",
fsm_settings__get_incompatible_msg(the_repository,
reason));
if (!strcmp(subcmd, "start"))
return !!try_to_start_background_daemon();
if (!strcmp(subcmd, "run"))
return !!try_to_run_foreground_daemon(detach_console);
if (!strcmp(subcmd, "stop"))
return !!do_as_client__send_stop();
if (!strcmp(subcmd, "status"))
return !!do_as_client__status();
die(_("Unhandled subcommand '%s'"), subcmd);
}
#else
int cmd_fsmonitor__daemon(int argc, const char **argv, const char *prefix)
{
struct option options[] = {
OPT_END()
};
if (argc == 2 && !strcmp(argv[1], "-h"))
usage_with_options(builtin_fsmonitor__daemon_usage, options);
die(_("fsmonitor--daemon not supported on this platform"));
}
#endif