1
0
Fork 0
mirror of https://github.com/git/git.git synced 2024-05-29 12:06:14 +02:00
git/notes.c

431 lines
12 KiB
C
Raw Normal View History

#include "cache.h"
#include "commit.h"
#include "notes.h"
#include "utf8.h"
#include "strbuf.h"
#include "tree-walk.h"
Teach the notes lookup code to parse notes trees with various fanout schemes The semantics used when parsing notes trees (with regards to fanout subtrees) follow Dscho's proposal fairly closely: - No concatenation/merging of notes is performed. If there are several notes objects referencing a given commit, only one of those objects are used. - If a notes object for a given commit is present in the "root" notes tree, no subtrees are consulted; the object in the root tree is used directly. - If there are more than one subtree that prefix-matches the given commit, only the subtree with the longest matching prefix is consulted. This means that if the given commit is e.g. "deadbeef", and the notes tree have subtrees "de" and "dead", then the following paths in the notes tree are searched: "deadbeef", "dead/beef". Note that "de/adbeef" is NOT searched. - Fanout directories (subtrees) must references a whole number of bytes from the SHA1 sum they subdivide. E.g. subtrees "dead" and "de" are acceptable; "d" and "dea" are not. - Multiple levels of fanout are allowed. All the above rules apply recursively. E.g. "de/adbeef" is preferred over "de/adbe/ef", etc. This patch changes the in-memory datastructure for holding parsed notes: Instead of holding all note (and subtree) entries in a hash table, a simple 16-tree structure is used instead. The tree structure consists of 16-arrays as internal nodes, and note/subtree entries as leaf nodes. The tree is traversed by indexing subsequent nibbles of the search key until a leaf node is encountered. If a subtree entry is encountered while searching for a note, the subtree is unpacked into the 16-tree structure, and the search continues into that subtree. The new algorithm performs significantly better in the cases where only a fraction of the notes need to be looked up (this is assumed to be the common case for notes lookup). The new code even performs marginally better in the worst case (where _all_ the notes are looked up). In addition to this, comes the massive performance win associated with organizing the notes tree according to some fanout scheme. Even a simple 2/38 fanout scheme is dramatically quicker to traverse (going from tens of seconds to sub-second runtimes). As for memory usage, the new code is marginally better than the old code in the worst case, but in the case of looking up only some notes from a notes tree with proper fanout, the new code uses only a small fraction of the memory needed to hold the entire notes tree. However, there is one casualty of this patch. The old notes lookup code was able to parse notes that were associated with non-SHA1s (e.g. refs). The new code requires the referenced object to be named by a SHA1 sum. Still, this is not considered a major setback, since the notes infrastructure was not originally intended to annotate objects outside the Git object database. Cc: Johannes Schindelin <johannes.schindelin@gmx.de> Signed-off-by: Johan Herland <johan@herland.net> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2009-10-09 12:22:07 +02:00
/*
* Use a non-balancing simple 16-tree structure with struct int_node as
* internal nodes, and struct leaf_node as leaf nodes. Each int_node has a
* 16-array of pointers to its children.
* The bottom 2 bits of each pointer is used to identify the pointer type
* - ptr & 3 == 0 - NULL pointer, assert(ptr == NULL)
* - ptr & 3 == 1 - pointer to next internal node - cast to struct int_node *
* - ptr & 3 == 2 - pointer to note entry - cast to struct leaf_node *
* - ptr & 3 == 3 - pointer to subtree entry - cast to struct leaf_node *
*
* The root node is a statically allocated struct int_node.
*/
struct int_node {
void *a[16];
};
Teach the notes lookup code to parse notes trees with various fanout schemes The semantics used when parsing notes trees (with regards to fanout subtrees) follow Dscho's proposal fairly closely: - No concatenation/merging of notes is performed. If there are several notes objects referencing a given commit, only one of those objects are used. - If a notes object for a given commit is present in the "root" notes tree, no subtrees are consulted; the object in the root tree is used directly. - If there are more than one subtree that prefix-matches the given commit, only the subtree with the longest matching prefix is consulted. This means that if the given commit is e.g. "deadbeef", and the notes tree have subtrees "de" and "dead", then the following paths in the notes tree are searched: "deadbeef", "dead/beef". Note that "de/adbeef" is NOT searched. - Fanout directories (subtrees) must references a whole number of bytes from the SHA1 sum they subdivide. E.g. subtrees "dead" and "de" are acceptable; "d" and "dea" are not. - Multiple levels of fanout are allowed. All the above rules apply recursively. E.g. "de/adbeef" is preferred over "de/adbe/ef", etc. This patch changes the in-memory datastructure for holding parsed notes: Instead of holding all note (and subtree) entries in a hash table, a simple 16-tree structure is used instead. The tree structure consists of 16-arrays as internal nodes, and note/subtree entries as leaf nodes. The tree is traversed by indexing subsequent nibbles of the search key until a leaf node is encountered. If a subtree entry is encountered while searching for a note, the subtree is unpacked into the 16-tree structure, and the search continues into that subtree. The new algorithm performs significantly better in the cases where only a fraction of the notes need to be looked up (this is assumed to be the common case for notes lookup). The new code even performs marginally better in the worst case (where _all_ the notes are looked up). In addition to this, comes the massive performance win associated with organizing the notes tree according to some fanout scheme. Even a simple 2/38 fanout scheme is dramatically quicker to traverse (going from tens of seconds to sub-second runtimes). As for memory usage, the new code is marginally better than the old code in the worst case, but in the case of looking up only some notes from a notes tree with proper fanout, the new code uses only a small fraction of the memory needed to hold the entire notes tree. However, there is one casualty of this patch. The old notes lookup code was able to parse notes that were associated with non-SHA1s (e.g. refs). The new code requires the referenced object to be named by a SHA1 sum. Still, this is not considered a major setback, since the notes infrastructure was not originally intended to annotate objects outside the Git object database. Cc: Johannes Schindelin <johannes.schindelin@gmx.de> Signed-off-by: Johan Herland <johan@herland.net> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2009-10-09 12:22:07 +02:00
/*
* Leaf nodes come in two variants, note entries and subtree entries,
* distinguished by the LSb of the leaf node pointer (see above).
* As a note entry, the key is the SHA1 of the referenced commit, and the
* value is the SHA1 of the note object.
* As a subtree entry, the key is the prefix SHA1 (w/trailing NULs) of the
* referenced commit, using the last byte of the key to store the length of
* the prefix. The value is the SHA1 of the tree object containing the notes
* subtree.
*/
struct leaf_node {
unsigned char key_sha1[20];
unsigned char val_sha1[20];
};
Teach the notes lookup code to parse notes trees with various fanout schemes The semantics used when parsing notes trees (with regards to fanout subtrees) follow Dscho's proposal fairly closely: - No concatenation/merging of notes is performed. If there are several notes objects referencing a given commit, only one of those objects are used. - If a notes object for a given commit is present in the "root" notes tree, no subtrees are consulted; the object in the root tree is used directly. - If there are more than one subtree that prefix-matches the given commit, only the subtree with the longest matching prefix is consulted. This means that if the given commit is e.g. "deadbeef", and the notes tree have subtrees "de" and "dead", then the following paths in the notes tree are searched: "deadbeef", "dead/beef". Note that "de/adbeef" is NOT searched. - Fanout directories (subtrees) must references a whole number of bytes from the SHA1 sum they subdivide. E.g. subtrees "dead" and "de" are acceptable; "d" and "dea" are not. - Multiple levels of fanout are allowed. All the above rules apply recursively. E.g. "de/adbeef" is preferred over "de/adbe/ef", etc. This patch changes the in-memory datastructure for holding parsed notes: Instead of holding all note (and subtree) entries in a hash table, a simple 16-tree structure is used instead. The tree structure consists of 16-arrays as internal nodes, and note/subtree entries as leaf nodes. The tree is traversed by indexing subsequent nibbles of the search key until a leaf node is encountered. If a subtree entry is encountered while searching for a note, the subtree is unpacked into the 16-tree structure, and the search continues into that subtree. The new algorithm performs significantly better in the cases where only a fraction of the notes need to be looked up (this is assumed to be the common case for notes lookup). The new code even performs marginally better in the worst case (where _all_ the notes are looked up). In addition to this, comes the massive performance win associated with organizing the notes tree according to some fanout scheme. Even a simple 2/38 fanout scheme is dramatically quicker to traverse (going from tens of seconds to sub-second runtimes). As for memory usage, the new code is marginally better than the old code in the worst case, but in the case of looking up only some notes from a notes tree with proper fanout, the new code uses only a small fraction of the memory needed to hold the entire notes tree. However, there is one casualty of this patch. The old notes lookup code was able to parse notes that were associated with non-SHA1s (e.g. refs). The new code requires the referenced object to be named by a SHA1 sum. Still, this is not considered a major setback, since the notes infrastructure was not originally intended to annotate objects outside the Git object database. Cc: Johannes Schindelin <johannes.schindelin@gmx.de> Signed-off-by: Johan Herland <johan@herland.net> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2009-10-09 12:22:07 +02:00
#define PTR_TYPE_NULL 0
#define PTR_TYPE_INTERNAL 1
#define PTR_TYPE_NOTE 2
#define PTR_TYPE_SUBTREE 3
Teach the notes lookup code to parse notes trees with various fanout schemes The semantics used when parsing notes trees (with regards to fanout subtrees) follow Dscho's proposal fairly closely: - No concatenation/merging of notes is performed. If there are several notes objects referencing a given commit, only one of those objects are used. - If a notes object for a given commit is present in the "root" notes tree, no subtrees are consulted; the object in the root tree is used directly. - If there are more than one subtree that prefix-matches the given commit, only the subtree with the longest matching prefix is consulted. This means that if the given commit is e.g. "deadbeef", and the notes tree have subtrees "de" and "dead", then the following paths in the notes tree are searched: "deadbeef", "dead/beef". Note that "de/adbeef" is NOT searched. - Fanout directories (subtrees) must references a whole number of bytes from the SHA1 sum they subdivide. E.g. subtrees "dead" and "de" are acceptable; "d" and "dea" are not. - Multiple levels of fanout are allowed. All the above rules apply recursively. E.g. "de/adbeef" is preferred over "de/adbe/ef", etc. This patch changes the in-memory datastructure for holding parsed notes: Instead of holding all note (and subtree) entries in a hash table, a simple 16-tree structure is used instead. The tree structure consists of 16-arrays as internal nodes, and note/subtree entries as leaf nodes. The tree is traversed by indexing subsequent nibbles of the search key until a leaf node is encountered. If a subtree entry is encountered while searching for a note, the subtree is unpacked into the 16-tree structure, and the search continues into that subtree. The new algorithm performs significantly better in the cases where only a fraction of the notes need to be looked up (this is assumed to be the common case for notes lookup). The new code even performs marginally better in the worst case (where _all_ the notes are looked up). In addition to this, comes the massive performance win associated with organizing the notes tree according to some fanout scheme. Even a simple 2/38 fanout scheme is dramatically quicker to traverse (going from tens of seconds to sub-second runtimes). As for memory usage, the new code is marginally better than the old code in the worst case, but in the case of looking up only some notes from a notes tree with proper fanout, the new code uses only a small fraction of the memory needed to hold the entire notes tree. However, there is one casualty of this patch. The old notes lookup code was able to parse notes that were associated with non-SHA1s (e.g. refs). The new code requires the referenced object to be named by a SHA1 sum. Still, this is not considered a major setback, since the notes infrastructure was not originally intended to annotate objects outside the Git object database. Cc: Johannes Schindelin <johannes.schindelin@gmx.de> Signed-off-by: Johan Herland <johan@herland.net> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2009-10-09 12:22:07 +02:00
#define GET_PTR_TYPE(ptr) ((uintptr_t) (ptr) & 3)
#define CLR_PTR_TYPE(ptr) ((void *) ((uintptr_t) (ptr) & ~3))
#define SET_PTR_TYPE(ptr, type) ((void *) ((uintptr_t) (ptr) | (type)))
Teach the notes lookup code to parse notes trees with various fanout schemes The semantics used when parsing notes trees (with regards to fanout subtrees) follow Dscho's proposal fairly closely: - No concatenation/merging of notes is performed. If there are several notes objects referencing a given commit, only one of those objects are used. - If a notes object for a given commit is present in the "root" notes tree, no subtrees are consulted; the object in the root tree is used directly. - If there are more than one subtree that prefix-matches the given commit, only the subtree with the longest matching prefix is consulted. This means that if the given commit is e.g. "deadbeef", and the notes tree have subtrees "de" and "dead", then the following paths in the notes tree are searched: "deadbeef", "dead/beef". Note that "de/adbeef" is NOT searched. - Fanout directories (subtrees) must references a whole number of bytes from the SHA1 sum they subdivide. E.g. subtrees "dead" and "de" are acceptable; "d" and "dea" are not. - Multiple levels of fanout are allowed. All the above rules apply recursively. E.g. "de/adbeef" is preferred over "de/adbe/ef", etc. This patch changes the in-memory datastructure for holding parsed notes: Instead of holding all note (and subtree) entries in a hash table, a simple 16-tree structure is used instead. The tree structure consists of 16-arrays as internal nodes, and note/subtree entries as leaf nodes. The tree is traversed by indexing subsequent nibbles of the search key until a leaf node is encountered. If a subtree entry is encountered while searching for a note, the subtree is unpacked into the 16-tree structure, and the search continues into that subtree. The new algorithm performs significantly better in the cases where only a fraction of the notes need to be looked up (this is assumed to be the common case for notes lookup). The new code even performs marginally better in the worst case (where _all_ the notes are looked up). In addition to this, comes the massive performance win associated with organizing the notes tree according to some fanout scheme. Even a simple 2/38 fanout scheme is dramatically quicker to traverse (going from tens of seconds to sub-second runtimes). As for memory usage, the new code is marginally better than the old code in the worst case, but in the case of looking up only some notes from a notes tree with proper fanout, the new code uses only a small fraction of the memory needed to hold the entire notes tree. However, there is one casualty of this patch. The old notes lookup code was able to parse notes that were associated with non-SHA1s (e.g. refs). The new code requires the referenced object to be named by a SHA1 sum. Still, this is not considered a major setback, since the notes infrastructure was not originally intended to annotate objects outside the Git object database. Cc: Johannes Schindelin <johannes.schindelin@gmx.de> Signed-off-by: Johan Herland <johan@herland.net> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2009-10-09 12:22:07 +02:00
#define GET_NIBBLE(n, sha1) (((sha1[n >> 1]) >> ((~n & 0x01) << 2)) & 0x0f)
Teach the notes lookup code to parse notes trees with various fanout schemes The semantics used when parsing notes trees (with regards to fanout subtrees) follow Dscho's proposal fairly closely: - No concatenation/merging of notes is performed. If there are several notes objects referencing a given commit, only one of those objects are used. - If a notes object for a given commit is present in the "root" notes tree, no subtrees are consulted; the object in the root tree is used directly. - If there are more than one subtree that prefix-matches the given commit, only the subtree with the longest matching prefix is consulted. This means that if the given commit is e.g. "deadbeef", and the notes tree have subtrees "de" and "dead", then the following paths in the notes tree are searched: "deadbeef", "dead/beef". Note that "de/adbeef" is NOT searched. - Fanout directories (subtrees) must references a whole number of bytes from the SHA1 sum they subdivide. E.g. subtrees "dead" and "de" are acceptable; "d" and "dea" are not. - Multiple levels of fanout are allowed. All the above rules apply recursively. E.g. "de/adbeef" is preferred over "de/adbe/ef", etc. This patch changes the in-memory datastructure for holding parsed notes: Instead of holding all note (and subtree) entries in a hash table, a simple 16-tree structure is used instead. The tree structure consists of 16-arrays as internal nodes, and note/subtree entries as leaf nodes. The tree is traversed by indexing subsequent nibbles of the search key until a leaf node is encountered. If a subtree entry is encountered while searching for a note, the subtree is unpacked into the 16-tree structure, and the search continues into that subtree. The new algorithm performs significantly better in the cases where only a fraction of the notes need to be looked up (this is assumed to be the common case for notes lookup). The new code even performs marginally better in the worst case (where _all_ the notes are looked up). In addition to this, comes the massive performance win associated with organizing the notes tree according to some fanout scheme. Even a simple 2/38 fanout scheme is dramatically quicker to traverse (going from tens of seconds to sub-second runtimes). As for memory usage, the new code is marginally better than the old code in the worst case, but in the case of looking up only some notes from a notes tree with proper fanout, the new code uses only a small fraction of the memory needed to hold the entire notes tree. However, there is one casualty of this patch. The old notes lookup code was able to parse notes that were associated with non-SHA1s (e.g. refs). The new code requires the referenced object to be named by a SHA1 sum. Still, this is not considered a major setback, since the notes infrastructure was not originally intended to annotate objects outside the Git object database. Cc: Johannes Schindelin <johannes.schindelin@gmx.de> Signed-off-by: Johan Herland <johan@herland.net> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2009-10-09 12:22:07 +02:00
#define SUBTREE_SHA1_PREFIXCMP(key_sha1, subtree_sha1) \
(memcmp(key_sha1, subtree_sha1, subtree_sha1[19]))
Teach the notes lookup code to parse notes trees with various fanout schemes The semantics used when parsing notes trees (with regards to fanout subtrees) follow Dscho's proposal fairly closely: - No concatenation/merging of notes is performed. If there are several notes objects referencing a given commit, only one of those objects are used. - If a notes object for a given commit is present in the "root" notes tree, no subtrees are consulted; the object in the root tree is used directly. - If there are more than one subtree that prefix-matches the given commit, only the subtree with the longest matching prefix is consulted. This means that if the given commit is e.g. "deadbeef", and the notes tree have subtrees "de" and "dead", then the following paths in the notes tree are searched: "deadbeef", "dead/beef". Note that "de/adbeef" is NOT searched. - Fanout directories (subtrees) must references a whole number of bytes from the SHA1 sum they subdivide. E.g. subtrees "dead" and "de" are acceptable; "d" and "dea" are not. - Multiple levels of fanout are allowed. All the above rules apply recursively. E.g. "de/adbeef" is preferred over "de/adbe/ef", etc. This patch changes the in-memory datastructure for holding parsed notes: Instead of holding all note (and subtree) entries in a hash table, a simple 16-tree structure is used instead. The tree structure consists of 16-arrays as internal nodes, and note/subtree entries as leaf nodes. The tree is traversed by indexing subsequent nibbles of the search key until a leaf node is encountered. If a subtree entry is encountered while searching for a note, the subtree is unpacked into the 16-tree structure, and the search continues into that subtree. The new algorithm performs significantly better in the cases where only a fraction of the notes need to be looked up (this is assumed to be the common case for notes lookup). The new code even performs marginally better in the worst case (where _all_ the notes are looked up). In addition to this, comes the massive performance win associated with organizing the notes tree according to some fanout scheme. Even a simple 2/38 fanout scheme is dramatically quicker to traverse (going from tens of seconds to sub-second runtimes). As for memory usage, the new code is marginally better than the old code in the worst case, but in the case of looking up only some notes from a notes tree with proper fanout, the new code uses only a small fraction of the memory needed to hold the entire notes tree. However, there is one casualty of this patch. The old notes lookup code was able to parse notes that were associated with non-SHA1s (e.g. refs). The new code requires the referenced object to be named by a SHA1 sum. Still, this is not considered a major setback, since the notes infrastructure was not originally intended to annotate objects outside the Git object database. Cc: Johannes Schindelin <johannes.schindelin@gmx.de> Signed-off-by: Johan Herland <johan@herland.net> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2009-10-09 12:22:07 +02:00
static struct int_node root_node;
Teach the notes lookup code to parse notes trees with various fanout schemes The semantics used when parsing notes trees (with regards to fanout subtrees) follow Dscho's proposal fairly closely: - No concatenation/merging of notes is performed. If there are several notes objects referencing a given commit, only one of those objects are used. - If a notes object for a given commit is present in the "root" notes tree, no subtrees are consulted; the object in the root tree is used directly. - If there are more than one subtree that prefix-matches the given commit, only the subtree with the longest matching prefix is consulted. This means that if the given commit is e.g. "deadbeef", and the notes tree have subtrees "de" and "dead", then the following paths in the notes tree are searched: "deadbeef", "dead/beef". Note that "de/adbeef" is NOT searched. - Fanout directories (subtrees) must references a whole number of bytes from the SHA1 sum they subdivide. E.g. subtrees "dead" and "de" are acceptable; "d" and "dea" are not. - Multiple levels of fanout are allowed. All the above rules apply recursively. E.g. "de/adbeef" is preferred over "de/adbe/ef", etc. This patch changes the in-memory datastructure for holding parsed notes: Instead of holding all note (and subtree) entries in a hash table, a simple 16-tree structure is used instead. The tree structure consists of 16-arrays as internal nodes, and note/subtree entries as leaf nodes. The tree is traversed by indexing subsequent nibbles of the search key until a leaf node is encountered. If a subtree entry is encountered while searching for a note, the subtree is unpacked into the 16-tree structure, and the search continues into that subtree. The new algorithm performs significantly better in the cases where only a fraction of the notes need to be looked up (this is assumed to be the common case for notes lookup). The new code even performs marginally better in the worst case (where _all_ the notes are looked up). In addition to this, comes the massive performance win associated with organizing the notes tree according to some fanout scheme. Even a simple 2/38 fanout scheme is dramatically quicker to traverse (going from tens of seconds to sub-second runtimes). As for memory usage, the new code is marginally better than the old code in the worst case, but in the case of looking up only some notes from a notes tree with proper fanout, the new code uses only a small fraction of the memory needed to hold the entire notes tree. However, there is one casualty of this patch. The old notes lookup code was able to parse notes that were associated with non-SHA1s (e.g. refs). The new code requires the referenced object to be named by a SHA1 sum. Still, this is not considered a major setback, since the notes infrastructure was not originally intended to annotate objects outside the Git object database. Cc: Johannes Schindelin <johannes.schindelin@gmx.de> Signed-off-by: Johan Herland <johan@herland.net> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2009-10-09 12:22:07 +02:00
static int initialized;
static void load_subtree(struct leaf_node *subtree, struct int_node *node,
unsigned int n);
/*
* Search the tree until the appropriate location for the given key is found:
Teach the notes lookup code to parse notes trees with various fanout schemes The semantics used when parsing notes trees (with regards to fanout subtrees) follow Dscho's proposal fairly closely: - No concatenation/merging of notes is performed. If there are several notes objects referencing a given commit, only one of those objects are used. - If a notes object for a given commit is present in the "root" notes tree, no subtrees are consulted; the object in the root tree is used directly. - If there are more than one subtree that prefix-matches the given commit, only the subtree with the longest matching prefix is consulted. This means that if the given commit is e.g. "deadbeef", and the notes tree have subtrees "de" and "dead", then the following paths in the notes tree are searched: "deadbeef", "dead/beef". Note that "de/adbeef" is NOT searched. - Fanout directories (subtrees) must references a whole number of bytes from the SHA1 sum they subdivide. E.g. subtrees "dead" and "de" are acceptable; "d" and "dea" are not. - Multiple levels of fanout are allowed. All the above rules apply recursively. E.g. "de/adbeef" is preferred over "de/adbe/ef", etc. This patch changes the in-memory datastructure for holding parsed notes: Instead of holding all note (and subtree) entries in a hash table, a simple 16-tree structure is used instead. The tree structure consists of 16-arrays as internal nodes, and note/subtree entries as leaf nodes. The tree is traversed by indexing subsequent nibbles of the search key until a leaf node is encountered. If a subtree entry is encountered while searching for a note, the subtree is unpacked into the 16-tree structure, and the search continues into that subtree. The new algorithm performs significantly better in the cases where only a fraction of the notes need to be looked up (this is assumed to be the common case for notes lookup). The new code even performs marginally better in the worst case (where _all_ the notes are looked up). In addition to this, comes the massive performance win associated with organizing the notes tree according to some fanout scheme. Even a simple 2/38 fanout scheme is dramatically quicker to traverse (going from tens of seconds to sub-second runtimes). As for memory usage, the new code is marginally better than the old code in the worst case, but in the case of looking up only some notes from a notes tree with proper fanout, the new code uses only a small fraction of the memory needed to hold the entire notes tree. However, there is one casualty of this patch. The old notes lookup code was able to parse notes that were associated with non-SHA1s (e.g. refs). The new code requires the referenced object to be named by a SHA1 sum. Still, this is not considered a major setback, since the notes infrastructure was not originally intended to annotate objects outside the Git object database. Cc: Johannes Schindelin <johannes.schindelin@gmx.de> Signed-off-by: Johan Herland <johan@herland.net> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2009-10-09 12:22:07 +02:00
* 1. Start at the root node, with n = 0
* 2. If a[0] at the current level is a matching subtree entry, unpack that
* subtree entry and remove it; restart search at the current level.
* 3. Use the nth nibble of the key as an index into a:
* - If a[n] is an int_node, recurse from #2 into that node and increment n
Teach the notes lookup code to parse notes trees with various fanout schemes The semantics used when parsing notes trees (with regards to fanout subtrees) follow Dscho's proposal fairly closely: - No concatenation/merging of notes is performed. If there are several notes objects referencing a given commit, only one of those objects are used. - If a notes object for a given commit is present in the "root" notes tree, no subtrees are consulted; the object in the root tree is used directly. - If there are more than one subtree that prefix-matches the given commit, only the subtree with the longest matching prefix is consulted. This means that if the given commit is e.g. "deadbeef", and the notes tree have subtrees "de" and "dead", then the following paths in the notes tree are searched: "deadbeef", "dead/beef". Note that "de/adbeef" is NOT searched. - Fanout directories (subtrees) must references a whole number of bytes from the SHA1 sum they subdivide. E.g. subtrees "dead" and "de" are acceptable; "d" and "dea" are not. - Multiple levels of fanout are allowed. All the above rules apply recursively. E.g. "de/adbeef" is preferred over "de/adbe/ef", etc. This patch changes the in-memory datastructure for holding parsed notes: Instead of holding all note (and subtree) entries in a hash table, a simple 16-tree structure is used instead. The tree structure consists of 16-arrays as internal nodes, and note/subtree entries as leaf nodes. The tree is traversed by indexing subsequent nibbles of the search key until a leaf node is encountered. If a subtree entry is encountered while searching for a note, the subtree is unpacked into the 16-tree structure, and the search continues into that subtree. The new algorithm performs significantly better in the cases where only a fraction of the notes need to be looked up (this is assumed to be the common case for notes lookup). The new code even performs marginally better in the worst case (where _all_ the notes are looked up). In addition to this, comes the massive performance win associated with organizing the notes tree according to some fanout scheme. Even a simple 2/38 fanout scheme is dramatically quicker to traverse (going from tens of seconds to sub-second runtimes). As for memory usage, the new code is marginally better than the old code in the worst case, but in the case of looking up only some notes from a notes tree with proper fanout, the new code uses only a small fraction of the memory needed to hold the entire notes tree. However, there is one casualty of this patch. The old notes lookup code was able to parse notes that were associated with non-SHA1s (e.g. refs). The new code requires the referenced object to be named by a SHA1 sum. Still, this is not considered a major setback, since the notes infrastructure was not originally intended to annotate objects outside the Git object database. Cc: Johannes Schindelin <johannes.schindelin@gmx.de> Signed-off-by: Johan Herland <johan@herland.net> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2009-10-09 12:22:07 +02:00
* - If a matching subtree entry, unpack that subtree entry (and remove it);
* restart search at the current level.
* - Otherwise, we have found one of the following:
* - a subtree entry which does not match the key
* - a note entry which may or may not match the key
* - an unused leaf node (NULL)
* In any case, set *tree and *n, and return pointer to the tree location.
Teach the notes lookup code to parse notes trees with various fanout schemes The semantics used when parsing notes trees (with regards to fanout subtrees) follow Dscho's proposal fairly closely: - No concatenation/merging of notes is performed. If there are several notes objects referencing a given commit, only one of those objects are used. - If a notes object for a given commit is present in the "root" notes tree, no subtrees are consulted; the object in the root tree is used directly. - If there are more than one subtree that prefix-matches the given commit, only the subtree with the longest matching prefix is consulted. This means that if the given commit is e.g. "deadbeef", and the notes tree have subtrees "de" and "dead", then the following paths in the notes tree are searched: "deadbeef", "dead/beef". Note that "de/adbeef" is NOT searched. - Fanout directories (subtrees) must references a whole number of bytes from the SHA1 sum they subdivide. E.g. subtrees "dead" and "de" are acceptable; "d" and "dea" are not. - Multiple levels of fanout are allowed. All the above rules apply recursively. E.g. "de/adbeef" is preferred over "de/adbe/ef", etc. This patch changes the in-memory datastructure for holding parsed notes: Instead of holding all note (and subtree) entries in a hash table, a simple 16-tree structure is used instead. The tree structure consists of 16-arrays as internal nodes, and note/subtree entries as leaf nodes. The tree is traversed by indexing subsequent nibbles of the search key until a leaf node is encountered. If a subtree entry is encountered while searching for a note, the subtree is unpacked into the 16-tree structure, and the search continues into that subtree. The new algorithm performs significantly better in the cases where only a fraction of the notes need to be looked up (this is assumed to be the common case for notes lookup). The new code even performs marginally better in the worst case (where _all_ the notes are looked up). In addition to this, comes the massive performance win associated with organizing the notes tree according to some fanout scheme. Even a simple 2/38 fanout scheme is dramatically quicker to traverse (going from tens of seconds to sub-second runtimes). As for memory usage, the new code is marginally better than the old code in the worst case, but in the case of looking up only some notes from a notes tree with proper fanout, the new code uses only a small fraction of the memory needed to hold the entire notes tree. However, there is one casualty of this patch. The old notes lookup code was able to parse notes that were associated with non-SHA1s (e.g. refs). The new code requires the referenced object to be named by a SHA1 sum. Still, this is not considered a major setback, since the notes infrastructure was not originally intended to annotate objects outside the Git object database. Cc: Johannes Schindelin <johannes.schindelin@gmx.de> Signed-off-by: Johan Herland <johan@herland.net> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2009-10-09 12:22:07 +02:00
*/
static void **note_tree_search(struct int_node **tree,
unsigned char *n, const unsigned char *key_sha1)
Teach the notes lookup code to parse notes trees with various fanout schemes The semantics used when parsing notes trees (with regards to fanout subtrees) follow Dscho's proposal fairly closely: - No concatenation/merging of notes is performed. If there are several notes objects referencing a given commit, only one of those objects are used. - If a notes object for a given commit is present in the "root" notes tree, no subtrees are consulted; the object in the root tree is used directly. - If there are more than one subtree that prefix-matches the given commit, only the subtree with the longest matching prefix is consulted. This means that if the given commit is e.g. "deadbeef", and the notes tree have subtrees "de" and "dead", then the following paths in the notes tree are searched: "deadbeef", "dead/beef". Note that "de/adbeef" is NOT searched. - Fanout directories (subtrees) must references a whole number of bytes from the SHA1 sum they subdivide. E.g. subtrees "dead" and "de" are acceptable; "d" and "dea" are not. - Multiple levels of fanout are allowed. All the above rules apply recursively. E.g. "de/adbeef" is preferred over "de/adbe/ef", etc. This patch changes the in-memory datastructure for holding parsed notes: Instead of holding all note (and subtree) entries in a hash table, a simple 16-tree structure is used instead. The tree structure consists of 16-arrays as internal nodes, and note/subtree entries as leaf nodes. The tree is traversed by indexing subsequent nibbles of the search key until a leaf node is encountered. If a subtree entry is encountered while searching for a note, the subtree is unpacked into the 16-tree structure, and the search continues into that subtree. The new algorithm performs significantly better in the cases where only a fraction of the notes need to be looked up (this is assumed to be the common case for notes lookup). The new code even performs marginally better in the worst case (where _all_ the notes are looked up). In addition to this, comes the massive performance win associated with organizing the notes tree according to some fanout scheme. Even a simple 2/38 fanout scheme is dramatically quicker to traverse (going from tens of seconds to sub-second runtimes). As for memory usage, the new code is marginally better than the old code in the worst case, but in the case of looking up only some notes from a notes tree with proper fanout, the new code uses only a small fraction of the memory needed to hold the entire notes tree. However, there is one casualty of this patch. The old notes lookup code was able to parse notes that were associated with non-SHA1s (e.g. refs). The new code requires the referenced object to be named by a SHA1 sum. Still, this is not considered a major setback, since the notes infrastructure was not originally intended to annotate objects outside the Git object database. Cc: Johannes Schindelin <johannes.schindelin@gmx.de> Signed-off-by: Johan Herland <johan@herland.net> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2009-10-09 12:22:07 +02:00
{
struct leaf_node *l;
unsigned char i;
void *p = (*tree)->a[0];
Teach the notes lookup code to parse notes trees with various fanout schemes The semantics used when parsing notes trees (with regards to fanout subtrees) follow Dscho's proposal fairly closely: - No concatenation/merging of notes is performed. If there are several notes objects referencing a given commit, only one of those objects are used. - If a notes object for a given commit is present in the "root" notes tree, no subtrees are consulted; the object in the root tree is used directly. - If there are more than one subtree that prefix-matches the given commit, only the subtree with the longest matching prefix is consulted. This means that if the given commit is e.g. "deadbeef", and the notes tree have subtrees "de" and "dead", then the following paths in the notes tree are searched: "deadbeef", "dead/beef". Note that "de/adbeef" is NOT searched. - Fanout directories (subtrees) must references a whole number of bytes from the SHA1 sum they subdivide. E.g. subtrees "dead" and "de" are acceptable; "d" and "dea" are not. - Multiple levels of fanout are allowed. All the above rules apply recursively. E.g. "de/adbeef" is preferred over "de/adbe/ef", etc. This patch changes the in-memory datastructure for holding parsed notes: Instead of holding all note (and subtree) entries in a hash table, a simple 16-tree structure is used instead. The tree structure consists of 16-arrays as internal nodes, and note/subtree entries as leaf nodes. The tree is traversed by indexing subsequent nibbles of the search key until a leaf node is encountered. If a subtree entry is encountered while searching for a note, the subtree is unpacked into the 16-tree structure, and the search continues into that subtree. The new algorithm performs significantly better in the cases where only a fraction of the notes need to be looked up (this is assumed to be the common case for notes lookup). The new code even performs marginally better in the worst case (where _all_ the notes are looked up). In addition to this, comes the massive performance win associated with organizing the notes tree according to some fanout scheme. Even a simple 2/38 fanout scheme is dramatically quicker to traverse (going from tens of seconds to sub-second runtimes). As for memory usage, the new code is marginally better than the old code in the worst case, but in the case of looking up only some notes from a notes tree with proper fanout, the new code uses only a small fraction of the memory needed to hold the entire notes tree. However, there is one casualty of this patch. The old notes lookup code was able to parse notes that were associated with non-SHA1s (e.g. refs). The new code requires the referenced object to be named by a SHA1 sum. Still, this is not considered a major setback, since the notes infrastructure was not originally intended to annotate objects outside the Git object database. Cc: Johannes Schindelin <johannes.schindelin@gmx.de> Signed-off-by: Johan Herland <johan@herland.net> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2009-10-09 12:22:07 +02:00
if (GET_PTR_TYPE(p) == PTR_TYPE_SUBTREE) {
l = (struct leaf_node *) CLR_PTR_TYPE(p);
if (!SUBTREE_SHA1_PREFIXCMP(key_sha1, l->key_sha1)) {
/* unpack tree and resume search */
(*tree)->a[0] = NULL;
load_subtree(l, *tree, *n);
free(l);
return note_tree_search(tree, n, key_sha1);
}
}
i = GET_NIBBLE(*n, key_sha1);
p = (*tree)->a[i];
switch (GET_PTR_TYPE(p)) {
Teach the notes lookup code to parse notes trees with various fanout schemes The semantics used when parsing notes trees (with regards to fanout subtrees) follow Dscho's proposal fairly closely: - No concatenation/merging of notes is performed. If there are several notes objects referencing a given commit, only one of those objects are used. - If a notes object for a given commit is present in the "root" notes tree, no subtrees are consulted; the object in the root tree is used directly. - If there are more than one subtree that prefix-matches the given commit, only the subtree with the longest matching prefix is consulted. This means that if the given commit is e.g. "deadbeef", and the notes tree have subtrees "de" and "dead", then the following paths in the notes tree are searched: "deadbeef", "dead/beef". Note that "de/adbeef" is NOT searched. - Fanout directories (subtrees) must references a whole number of bytes from the SHA1 sum they subdivide. E.g. subtrees "dead" and "de" are acceptable; "d" and "dea" are not. - Multiple levels of fanout are allowed. All the above rules apply recursively. E.g. "de/adbeef" is preferred over "de/adbe/ef", etc. This patch changes the in-memory datastructure for holding parsed notes: Instead of holding all note (and subtree) entries in a hash table, a simple 16-tree structure is used instead. The tree structure consists of 16-arrays as internal nodes, and note/subtree entries as leaf nodes. The tree is traversed by indexing subsequent nibbles of the search key until a leaf node is encountered. If a subtree entry is encountered while searching for a note, the subtree is unpacked into the 16-tree structure, and the search continues into that subtree. The new algorithm performs significantly better in the cases where only a fraction of the notes need to be looked up (this is assumed to be the common case for notes lookup). The new code even performs marginally better in the worst case (where _all_ the notes are looked up). In addition to this, comes the massive performance win associated with organizing the notes tree according to some fanout scheme. Even a simple 2/38 fanout scheme is dramatically quicker to traverse (going from tens of seconds to sub-second runtimes). As for memory usage, the new code is marginally better than the old code in the worst case, but in the case of looking up only some notes from a notes tree with proper fanout, the new code uses only a small fraction of the memory needed to hold the entire notes tree. However, there is one casualty of this patch. The old notes lookup code was able to parse notes that were associated with non-SHA1s (e.g. refs). The new code requires the referenced object to be named by a SHA1 sum. Still, this is not considered a major setback, since the notes infrastructure was not originally intended to annotate objects outside the Git object database. Cc: Johannes Schindelin <johannes.schindelin@gmx.de> Signed-off-by: Johan Herland <johan@herland.net> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2009-10-09 12:22:07 +02:00
case PTR_TYPE_INTERNAL:
*tree = CLR_PTR_TYPE(p);
(*n)++;
return note_tree_search(tree, n, key_sha1);
Teach the notes lookup code to parse notes trees with various fanout schemes The semantics used when parsing notes trees (with regards to fanout subtrees) follow Dscho's proposal fairly closely: - No concatenation/merging of notes is performed. If there are several notes objects referencing a given commit, only one of those objects are used. - If a notes object for a given commit is present in the "root" notes tree, no subtrees are consulted; the object in the root tree is used directly. - If there are more than one subtree that prefix-matches the given commit, only the subtree with the longest matching prefix is consulted. This means that if the given commit is e.g. "deadbeef", and the notes tree have subtrees "de" and "dead", then the following paths in the notes tree are searched: "deadbeef", "dead/beef". Note that "de/adbeef" is NOT searched. - Fanout directories (subtrees) must references a whole number of bytes from the SHA1 sum they subdivide. E.g. subtrees "dead" and "de" are acceptable; "d" and "dea" are not. - Multiple levels of fanout are allowed. All the above rules apply recursively. E.g. "de/adbeef" is preferred over "de/adbe/ef", etc. This patch changes the in-memory datastructure for holding parsed notes: Instead of holding all note (and subtree) entries in a hash table, a simple 16-tree structure is used instead. The tree structure consists of 16-arrays as internal nodes, and note/subtree entries as leaf nodes. The tree is traversed by indexing subsequent nibbles of the search key until a leaf node is encountered. If a subtree entry is encountered while searching for a note, the subtree is unpacked into the 16-tree structure, and the search continues into that subtree. The new algorithm performs significantly better in the cases where only a fraction of the notes need to be looked up (this is assumed to be the common case for notes lookup). The new code even performs marginally better in the worst case (where _all_ the notes are looked up). In addition to this, comes the massive performance win associated with organizing the notes tree according to some fanout scheme. Even a simple 2/38 fanout scheme is dramatically quicker to traverse (going from tens of seconds to sub-second runtimes). As for memory usage, the new code is marginally better than the old code in the worst case, but in the case of looking up only some notes from a notes tree with proper fanout, the new code uses only a small fraction of the memory needed to hold the entire notes tree. However, there is one casualty of this patch. The old notes lookup code was able to parse notes that were associated with non-SHA1s (e.g. refs). The new code requires the referenced object to be named by a SHA1 sum. Still, this is not considered a major setback, since the notes infrastructure was not originally intended to annotate objects outside the Git object database. Cc: Johannes Schindelin <johannes.schindelin@gmx.de> Signed-off-by: Johan Herland <johan@herland.net> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2009-10-09 12:22:07 +02:00
case PTR_TYPE_SUBTREE:
l = (struct leaf_node *) CLR_PTR_TYPE(p);
if (!SUBTREE_SHA1_PREFIXCMP(key_sha1, l->key_sha1)) {
/* unpack tree and resume search */
(*tree)->a[i] = NULL;
load_subtree(l, *tree, *n);
Teach the notes lookup code to parse notes trees with various fanout schemes The semantics used when parsing notes trees (with regards to fanout subtrees) follow Dscho's proposal fairly closely: - No concatenation/merging of notes is performed. If there are several notes objects referencing a given commit, only one of those objects are used. - If a notes object for a given commit is present in the "root" notes tree, no subtrees are consulted; the object in the root tree is used directly. - If there are more than one subtree that prefix-matches the given commit, only the subtree with the longest matching prefix is consulted. This means that if the given commit is e.g. "deadbeef", and the notes tree have subtrees "de" and "dead", then the following paths in the notes tree are searched: "deadbeef", "dead/beef". Note that "de/adbeef" is NOT searched. - Fanout directories (subtrees) must references a whole number of bytes from the SHA1 sum they subdivide. E.g. subtrees "dead" and "de" are acceptable; "d" and "dea" are not. - Multiple levels of fanout are allowed. All the above rules apply recursively. E.g. "de/adbeef" is preferred over "de/adbe/ef", etc. This patch changes the in-memory datastructure for holding parsed notes: Instead of holding all note (and subtree) entries in a hash table, a simple 16-tree structure is used instead. The tree structure consists of 16-arrays as internal nodes, and note/subtree entries as leaf nodes. The tree is traversed by indexing subsequent nibbles of the search key until a leaf node is encountered. If a subtree entry is encountered while searching for a note, the subtree is unpacked into the 16-tree structure, and the search continues into that subtree. The new algorithm performs significantly better in the cases where only a fraction of the notes need to be looked up (this is assumed to be the common case for notes lookup). The new code even performs marginally better in the worst case (where _all_ the notes are looked up). In addition to this, comes the massive performance win associated with organizing the notes tree according to some fanout scheme. Even a simple 2/38 fanout scheme is dramatically quicker to traverse (going from tens of seconds to sub-second runtimes). As for memory usage, the new code is marginally better than the old code in the worst case, but in the case of looking up only some notes from a notes tree with proper fanout, the new code uses only a small fraction of the memory needed to hold the entire notes tree. However, there is one casualty of this patch. The old notes lookup code was able to parse notes that were associated with non-SHA1s (e.g. refs). The new code requires the referenced object to be named by a SHA1 sum. Still, this is not considered a major setback, since the notes infrastructure was not originally intended to annotate objects outside the Git object database. Cc: Johannes Schindelin <johannes.schindelin@gmx.de> Signed-off-by: Johan Herland <johan@herland.net> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2009-10-09 12:22:07 +02:00
free(l);
return note_tree_search(tree, n, key_sha1);
Teach the notes lookup code to parse notes trees with various fanout schemes The semantics used when parsing notes trees (with regards to fanout subtrees) follow Dscho's proposal fairly closely: - No concatenation/merging of notes is performed. If there are several notes objects referencing a given commit, only one of those objects are used. - If a notes object for a given commit is present in the "root" notes tree, no subtrees are consulted; the object in the root tree is used directly. - If there are more than one subtree that prefix-matches the given commit, only the subtree with the longest matching prefix is consulted. This means that if the given commit is e.g. "deadbeef", and the notes tree have subtrees "de" and "dead", then the following paths in the notes tree are searched: "deadbeef", "dead/beef". Note that "de/adbeef" is NOT searched. - Fanout directories (subtrees) must references a whole number of bytes from the SHA1 sum they subdivide. E.g. subtrees "dead" and "de" are acceptable; "d" and "dea" are not. - Multiple levels of fanout are allowed. All the above rules apply recursively. E.g. "de/adbeef" is preferred over "de/adbe/ef", etc. This patch changes the in-memory datastructure for holding parsed notes: Instead of holding all note (and subtree) entries in a hash table, a simple 16-tree structure is used instead. The tree structure consists of 16-arrays as internal nodes, and note/subtree entries as leaf nodes. The tree is traversed by indexing subsequent nibbles of the search key until a leaf node is encountered. If a subtree entry is encountered while searching for a note, the subtree is unpacked into the 16-tree structure, and the search continues into that subtree. The new algorithm performs significantly better in the cases where only a fraction of the notes need to be looked up (this is assumed to be the common case for notes lookup). The new code even performs marginally better in the worst case (where _all_ the notes are looked up). In addition to this, comes the massive performance win associated with organizing the notes tree according to some fanout scheme. Even a simple 2/38 fanout scheme is dramatically quicker to traverse (going from tens of seconds to sub-second runtimes). As for memory usage, the new code is marginally better than the old code in the worst case, but in the case of looking up only some notes from a notes tree with proper fanout, the new code uses only a small fraction of the memory needed to hold the entire notes tree. However, there is one casualty of this patch. The old notes lookup code was able to parse notes that were associated with non-SHA1s (e.g. refs). The new code requires the referenced object to be named by a SHA1 sum. Still, this is not considered a major setback, since the notes infrastructure was not originally intended to annotate objects outside the Git object database. Cc: Johannes Schindelin <johannes.schindelin@gmx.de> Signed-off-by: Johan Herland <johan@herland.net> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2009-10-09 12:22:07 +02:00
}
/* fall through */
Teach the notes lookup code to parse notes trees with various fanout schemes The semantics used when parsing notes trees (with regards to fanout subtrees) follow Dscho's proposal fairly closely: - No concatenation/merging of notes is performed. If there are several notes objects referencing a given commit, only one of those objects are used. - If a notes object for a given commit is present in the "root" notes tree, no subtrees are consulted; the object in the root tree is used directly. - If there are more than one subtree that prefix-matches the given commit, only the subtree with the longest matching prefix is consulted. This means that if the given commit is e.g. "deadbeef", and the notes tree have subtrees "de" and "dead", then the following paths in the notes tree are searched: "deadbeef", "dead/beef". Note that "de/adbeef" is NOT searched. - Fanout directories (subtrees) must references a whole number of bytes from the SHA1 sum they subdivide. E.g. subtrees "dead" and "de" are acceptable; "d" and "dea" are not. - Multiple levels of fanout are allowed. All the above rules apply recursively. E.g. "de/adbeef" is preferred over "de/adbe/ef", etc. This patch changes the in-memory datastructure for holding parsed notes: Instead of holding all note (and subtree) entries in a hash table, a simple 16-tree structure is used instead. The tree structure consists of 16-arrays as internal nodes, and note/subtree entries as leaf nodes. The tree is traversed by indexing subsequent nibbles of the search key until a leaf node is encountered. If a subtree entry is encountered while searching for a note, the subtree is unpacked into the 16-tree structure, and the search continues into that subtree. The new algorithm performs significantly better in the cases where only a fraction of the notes need to be looked up (this is assumed to be the common case for notes lookup). The new code even performs marginally better in the worst case (where _all_ the notes are looked up). In addition to this, comes the massive performance win associated with organizing the notes tree according to some fanout scheme. Even a simple 2/38 fanout scheme is dramatically quicker to traverse (going from tens of seconds to sub-second runtimes). As for memory usage, the new code is marginally better than the old code in the worst case, but in the case of looking up only some notes from a notes tree with proper fanout, the new code uses only a small fraction of the memory needed to hold the entire notes tree. However, there is one casualty of this patch. The old notes lookup code was able to parse notes that were associated with non-SHA1s (e.g. refs). The new code requires the referenced object to be named by a SHA1 sum. Still, this is not considered a major setback, since the notes infrastructure was not originally intended to annotate objects outside the Git object database. Cc: Johannes Schindelin <johannes.schindelin@gmx.de> Signed-off-by: Johan Herland <johan@herland.net> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2009-10-09 12:22:07 +02:00
default:
return &((*tree)->a[i]);
}
}
Teach the notes lookup code to parse notes trees with various fanout schemes The semantics used when parsing notes trees (with regards to fanout subtrees) follow Dscho's proposal fairly closely: - No concatenation/merging of notes is performed. If there are several notes objects referencing a given commit, only one of those objects are used. - If a notes object for a given commit is present in the "root" notes tree, no subtrees are consulted; the object in the root tree is used directly. - If there are more than one subtree that prefix-matches the given commit, only the subtree with the longest matching prefix is consulted. This means that if the given commit is e.g. "deadbeef", and the notes tree have subtrees "de" and "dead", then the following paths in the notes tree are searched: "deadbeef", "dead/beef". Note that "de/adbeef" is NOT searched. - Fanout directories (subtrees) must references a whole number of bytes from the SHA1 sum they subdivide. E.g. subtrees "dead" and "de" are acceptable; "d" and "dea" are not. - Multiple levels of fanout are allowed. All the above rules apply recursively. E.g. "de/adbeef" is preferred over "de/adbe/ef", etc. This patch changes the in-memory datastructure for holding parsed notes: Instead of holding all note (and subtree) entries in a hash table, a simple 16-tree structure is used instead. The tree structure consists of 16-arrays as internal nodes, and note/subtree entries as leaf nodes. The tree is traversed by indexing subsequent nibbles of the search key until a leaf node is encountered. If a subtree entry is encountered while searching for a note, the subtree is unpacked into the 16-tree structure, and the search continues into that subtree. The new algorithm performs significantly better in the cases where only a fraction of the notes need to be looked up (this is assumed to be the common case for notes lookup). The new code even performs marginally better in the worst case (where _all_ the notes are looked up). In addition to this, comes the massive performance win associated with organizing the notes tree according to some fanout scheme. Even a simple 2/38 fanout scheme is dramatically quicker to traverse (going from tens of seconds to sub-second runtimes). As for memory usage, the new code is marginally better than the old code in the worst case, but in the case of looking up only some notes from a notes tree with proper fanout, the new code uses only a small fraction of the memory needed to hold the entire notes tree. However, there is one casualty of this patch. The old notes lookup code was able to parse notes that were associated with non-SHA1s (e.g. refs). The new code requires the referenced object to be named by a SHA1 sum. Still, this is not considered a major setback, since the notes infrastructure was not originally intended to annotate objects outside the Git object database. Cc: Johannes Schindelin <johannes.schindelin@gmx.de> Signed-off-by: Johan Herland <johan@herland.net> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2009-10-09 12:22:07 +02:00
/*
* To find a leaf_node:
* Search to the tree location appropriate for the given key:
* If a note entry with matching key, return the note entry, else return NULL.
*/
static struct leaf_node *note_tree_find(struct int_node *tree, unsigned char n,
const unsigned char *key_sha1)
{
void **p = note_tree_search(&tree, &n, key_sha1);
if (GET_PTR_TYPE(*p) == PTR_TYPE_NOTE) {
struct leaf_node *l = (struct leaf_node *) CLR_PTR_TYPE(*p);
if (!hashcmp(key_sha1, l->key_sha1))
return l;
Teach the notes lookup code to parse notes trees with various fanout schemes The semantics used when parsing notes trees (with regards to fanout subtrees) follow Dscho's proposal fairly closely: - No concatenation/merging of notes is performed. If there are several notes objects referencing a given commit, only one of those objects are used. - If a notes object for a given commit is present in the "root" notes tree, no subtrees are consulted; the object in the root tree is used directly. - If there are more than one subtree that prefix-matches the given commit, only the subtree with the longest matching prefix is consulted. This means that if the given commit is e.g. "deadbeef", and the notes tree have subtrees "de" and "dead", then the following paths in the notes tree are searched: "deadbeef", "dead/beef". Note that "de/adbeef" is NOT searched. - Fanout directories (subtrees) must references a whole number of bytes from the SHA1 sum they subdivide. E.g. subtrees "dead" and "de" are acceptable; "d" and "dea" are not. - Multiple levels of fanout are allowed. All the above rules apply recursively. E.g. "de/adbeef" is preferred over "de/adbe/ef", etc. This patch changes the in-memory datastructure for holding parsed notes: Instead of holding all note (and subtree) entries in a hash table, a simple 16-tree structure is used instead. The tree structure consists of 16-arrays as internal nodes, and note/subtree entries as leaf nodes. The tree is traversed by indexing subsequent nibbles of the search key until a leaf node is encountered. If a subtree entry is encountered while searching for a note, the subtree is unpacked into the 16-tree structure, and the search continues into that subtree. The new algorithm performs significantly better in the cases where only a fraction of the notes need to be looked up (this is assumed to be the common case for notes lookup). The new code even performs marginally better in the worst case (where _all_ the notes are looked up). In addition to this, comes the massive performance win associated with organizing the notes tree according to some fanout scheme. Even a simple 2/38 fanout scheme is dramatically quicker to traverse (going from tens of seconds to sub-second runtimes). As for memory usage, the new code is marginally better than the old code in the worst case, but in the case of looking up only some notes from a notes tree with proper fanout, the new code uses only a small fraction of the memory needed to hold the entire notes tree. However, there is one casualty of this patch. The old notes lookup code was able to parse notes that were associated with non-SHA1s (e.g. refs). The new code requires the referenced object to be named by a SHA1 sum. Still, this is not considered a major setback, since the notes infrastructure was not originally intended to annotate objects outside the Git object database. Cc: Johannes Schindelin <johannes.schindelin@gmx.de> Signed-off-by: Johan Herland <johan@herland.net> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2009-10-09 12:22:07 +02:00
}
return NULL;
}
/* Create a new blob object by concatenating the two given blob objects */
static int concatenate_notes(unsigned char *cur_sha1,
const unsigned char *new_sha1)
{
char *cur_msg, *new_msg, *buf;
unsigned long cur_len, new_len, buf_len;
enum object_type cur_type, new_type;
int ret;
/* read in both note blob objects */
new_msg = read_sha1_file(new_sha1, &new_type, &new_len);
if (!new_msg || !new_len || new_type != OBJ_BLOB) {
free(new_msg);
return 0;
}
cur_msg = read_sha1_file(cur_sha1, &cur_type, &cur_len);
if (!cur_msg || !cur_len || cur_type != OBJ_BLOB) {
free(cur_msg);
free(new_msg);
hashcpy(cur_sha1, new_sha1);
return 0;
}
/* we will separate the notes by a newline anyway */
if (cur_msg[cur_len - 1] == '\n')
cur_len--;
/* concatenate cur_msg and new_msg into buf */
buf_len = cur_len + 1 + new_len;
buf = (char *) xmalloc(buf_len);
memcpy(buf, cur_msg, cur_len);
buf[cur_len] = '\n';
memcpy(buf + cur_len + 1, new_msg, new_len);
free(cur_msg);
free(new_msg);
/* create a new blob object from buf */
ret = write_sha1_file(buf, buf_len, "blob", cur_sha1);
free(buf);
return ret;
}
Teach the notes lookup code to parse notes trees with various fanout schemes The semantics used when parsing notes trees (with regards to fanout subtrees) follow Dscho's proposal fairly closely: - No concatenation/merging of notes is performed. If there are several notes objects referencing a given commit, only one of those objects are used. - If a notes object for a given commit is present in the "root" notes tree, no subtrees are consulted; the object in the root tree is used directly. - If there are more than one subtree that prefix-matches the given commit, only the subtree with the longest matching prefix is consulted. This means that if the given commit is e.g. "deadbeef", and the notes tree have subtrees "de" and "dead", then the following paths in the notes tree are searched: "deadbeef", "dead/beef". Note that "de/adbeef" is NOT searched. - Fanout directories (subtrees) must references a whole number of bytes from the SHA1 sum they subdivide. E.g. subtrees "dead" and "de" are acceptable; "d" and "dea" are not. - Multiple levels of fanout are allowed. All the above rules apply recursively. E.g. "de/adbeef" is preferred over "de/adbe/ef", etc. This patch changes the in-memory datastructure for holding parsed notes: Instead of holding all note (and subtree) entries in a hash table, a simple 16-tree structure is used instead. The tree structure consists of 16-arrays as internal nodes, and note/subtree entries as leaf nodes. The tree is traversed by indexing subsequent nibbles of the search key until a leaf node is encountered. If a subtree entry is encountered while searching for a note, the subtree is unpacked into the 16-tree structure, and the search continues into that subtree. The new algorithm performs significantly better in the cases where only a fraction of the notes need to be looked up (this is assumed to be the common case for notes lookup). The new code even performs marginally better in the worst case (where _all_ the notes are looked up). In addition to this, comes the massive performance win associated with organizing the notes tree according to some fanout scheme. Even a simple 2/38 fanout scheme is dramatically quicker to traverse (going from tens of seconds to sub-second runtimes). As for memory usage, the new code is marginally better than the old code in the worst case, but in the case of looking up only some notes from a notes tree with proper fanout, the new code uses only a small fraction of the memory needed to hold the entire notes tree. However, there is one casualty of this patch. The old notes lookup code was able to parse notes that were associated with non-SHA1s (e.g. refs). The new code requires the referenced object to be named by a SHA1 sum. Still, this is not considered a major setback, since the notes infrastructure was not originally intended to annotate objects outside the Git object database. Cc: Johannes Schindelin <johannes.schindelin@gmx.de> Signed-off-by: Johan Herland <johan@herland.net> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2009-10-09 12:22:07 +02:00
/*
* To insert a leaf_node:
* Search to the tree location appropriate for the given leaf_node's key:
* - If location is unused (NULL), store the tweaked pointer directly there
* - If location holds a note entry that matches the note-to-be-inserted, then
* concatenate the two notes.
* - If location holds a note entry that matches the subtree-to-be-inserted,
* then unpack the subtree-to-be-inserted into the location.
* - If location holds a matching subtree entry, unpack the subtree at that
* location, and restart the insert operation from that level.
* - Else, create a new int_node, holding both the node-at-location and the
* node-to-be-inserted, and store the new int_node into the location.
Teach the notes lookup code to parse notes trees with various fanout schemes The semantics used when parsing notes trees (with regards to fanout subtrees) follow Dscho's proposal fairly closely: - No concatenation/merging of notes is performed. If there are several notes objects referencing a given commit, only one of those objects are used. - If a notes object for a given commit is present in the "root" notes tree, no subtrees are consulted; the object in the root tree is used directly. - If there are more than one subtree that prefix-matches the given commit, only the subtree with the longest matching prefix is consulted. This means that if the given commit is e.g. "deadbeef", and the notes tree have subtrees "de" and "dead", then the following paths in the notes tree are searched: "deadbeef", "dead/beef". Note that "de/adbeef" is NOT searched. - Fanout directories (subtrees) must references a whole number of bytes from the SHA1 sum they subdivide. E.g. subtrees "dead" and "de" are acceptable; "d" and "dea" are not. - Multiple levels of fanout are allowed. All the above rules apply recursively. E.g. "de/adbeef" is preferred over "de/adbe/ef", etc. This patch changes the in-memory datastructure for holding parsed notes: Instead of holding all note (and subtree) entries in a hash table, a simple 16-tree structure is used instead. The tree structure consists of 16-arrays as internal nodes, and note/subtree entries as leaf nodes. The tree is traversed by indexing subsequent nibbles of the search key until a leaf node is encountered. If a subtree entry is encountered while searching for a note, the subtree is unpacked into the 16-tree structure, and the search continues into that subtree. The new algorithm performs significantly better in the cases where only a fraction of the notes need to be looked up (this is assumed to be the common case for notes lookup). The new code even performs marginally better in the worst case (where _all_ the notes are looked up). In addition to this, comes the massive performance win associated with organizing the notes tree according to some fanout scheme. Even a simple 2/38 fanout scheme is dramatically quicker to traverse (going from tens of seconds to sub-second runtimes). As for memory usage, the new code is marginally better than the old code in the worst case, but in the case of looking up only some notes from a notes tree with proper fanout, the new code uses only a small fraction of the memory needed to hold the entire notes tree. However, there is one casualty of this patch. The old notes lookup code was able to parse notes that were associated with non-SHA1s (e.g. refs). The new code requires the referenced object to be named by a SHA1 sum. Still, this is not considered a major setback, since the notes infrastructure was not originally intended to annotate objects outside the Git object database. Cc: Johannes Schindelin <johannes.schindelin@gmx.de> Signed-off-by: Johan Herland <johan@herland.net> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2009-10-09 12:22:07 +02:00
*/
static void note_tree_insert(struct int_node *tree, unsigned char n,
struct leaf_node *entry, unsigned char type)
{
Teach the notes lookup code to parse notes trees with various fanout schemes The semantics used when parsing notes trees (with regards to fanout subtrees) follow Dscho's proposal fairly closely: - No concatenation/merging of notes is performed. If there are several notes objects referencing a given commit, only one of those objects are used. - If a notes object for a given commit is present in the "root" notes tree, no subtrees are consulted; the object in the root tree is used directly. - If there are more than one subtree that prefix-matches the given commit, only the subtree with the longest matching prefix is consulted. This means that if the given commit is e.g. "deadbeef", and the notes tree have subtrees "de" and "dead", then the following paths in the notes tree are searched: "deadbeef", "dead/beef". Note that "de/adbeef" is NOT searched. - Fanout directories (subtrees) must references a whole number of bytes from the SHA1 sum they subdivide. E.g. subtrees "dead" and "de" are acceptable; "d" and "dea" are not. - Multiple levels of fanout are allowed. All the above rules apply recursively. E.g. "de/adbeef" is preferred over "de/adbe/ef", etc. This patch changes the in-memory datastructure for holding parsed notes: Instead of holding all note (and subtree) entries in a hash table, a simple 16-tree structure is used instead. The tree structure consists of 16-arrays as internal nodes, and note/subtree entries as leaf nodes. The tree is traversed by indexing subsequent nibbles of the search key until a leaf node is encountered. If a subtree entry is encountered while searching for a note, the subtree is unpacked into the 16-tree structure, and the search continues into that subtree. The new algorithm performs significantly better in the cases where only a fraction of the notes need to be looked up (this is assumed to be the common case for notes lookup). The new code even performs marginally better in the worst case (where _all_ the notes are looked up). In addition to this, comes the massive performance win associated with organizing the notes tree according to some fanout scheme. Even a simple 2/38 fanout scheme is dramatically quicker to traverse (going from tens of seconds to sub-second runtimes). As for memory usage, the new code is marginally better than the old code in the worst case, but in the case of looking up only some notes from a notes tree with proper fanout, the new code uses only a small fraction of the memory needed to hold the entire notes tree. However, there is one casualty of this patch. The old notes lookup code was able to parse notes that were associated with non-SHA1s (e.g. refs). The new code requires the referenced object to be named by a SHA1 sum. Still, this is not considered a major setback, since the notes infrastructure was not originally intended to annotate objects outside the Git object database. Cc: Johannes Schindelin <johannes.schindelin@gmx.de> Signed-off-by: Johan Herland <johan@herland.net> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2009-10-09 12:22:07 +02:00
struct int_node *new_node;
struct leaf_node *l;
void **p = note_tree_search(&tree, &n, entry->key_sha1);
assert(GET_PTR_TYPE(entry) == 0); /* no type bits set */
l = (struct leaf_node *) CLR_PTR_TYPE(*p);
switch (GET_PTR_TYPE(*p)) {
Teach the notes lookup code to parse notes trees with various fanout schemes The semantics used when parsing notes trees (with regards to fanout subtrees) follow Dscho's proposal fairly closely: - No concatenation/merging of notes is performed. If there are several notes objects referencing a given commit, only one of those objects are used. - If a notes object for a given commit is present in the "root" notes tree, no subtrees are consulted; the object in the root tree is used directly. - If there are more than one subtree that prefix-matches the given commit, only the subtree with the longest matching prefix is consulted. This means that if the given commit is e.g. "deadbeef", and the notes tree have subtrees "de" and "dead", then the following paths in the notes tree are searched: "deadbeef", "dead/beef". Note that "de/adbeef" is NOT searched. - Fanout directories (subtrees) must references a whole number of bytes from the SHA1 sum they subdivide. E.g. subtrees "dead" and "de" are acceptable; "d" and "dea" are not. - Multiple levels of fanout are allowed. All the above rules apply recursively. E.g. "de/adbeef" is preferred over "de/adbe/ef", etc. This patch changes the in-memory datastructure for holding parsed notes: Instead of holding all note (and subtree) entries in a hash table, a simple 16-tree structure is used instead. The tree structure consists of 16-arrays as internal nodes, and note/subtree entries as leaf nodes. The tree is traversed by indexing subsequent nibbles of the search key until a leaf node is encountered. If a subtree entry is encountered while searching for a note, the subtree is unpacked into the 16-tree structure, and the search continues into that subtree. The new algorithm performs significantly better in the cases where only a fraction of the notes need to be looked up (this is assumed to be the common case for notes lookup). The new code even performs marginally better in the worst case (where _all_ the notes are looked up). In addition to this, comes the massive performance win associated with organizing the notes tree according to some fanout scheme. Even a simple 2/38 fanout scheme is dramatically quicker to traverse (going from tens of seconds to sub-second runtimes). As for memory usage, the new code is marginally better than the old code in the worst case, but in the case of looking up only some notes from a notes tree with proper fanout, the new code uses only a small fraction of the memory needed to hold the entire notes tree. However, there is one casualty of this patch. The old notes lookup code was able to parse notes that were associated with non-SHA1s (e.g. refs). The new code requires the referenced object to be named by a SHA1 sum. Still, this is not considered a major setback, since the notes infrastructure was not originally intended to annotate objects outside the Git object database. Cc: Johannes Schindelin <johannes.schindelin@gmx.de> Signed-off-by: Johan Herland <johan@herland.net> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2009-10-09 12:22:07 +02:00
case PTR_TYPE_NULL:
assert(!*p);
*p = SET_PTR_TYPE(entry, type);
return;
case PTR_TYPE_NOTE:
switch (type) {
case PTR_TYPE_NOTE:
if (!hashcmp(l->key_sha1, entry->key_sha1)) {
/* skip concatenation if l == entry */
if (!hashcmp(l->val_sha1, entry->val_sha1))
return;
if (concatenate_notes(l->val_sha1,
entry->val_sha1))
die("failed to concatenate note %s "
"into note %s for commit %s",
sha1_to_hex(entry->val_sha1),
sha1_to_hex(l->val_sha1),
sha1_to_hex(l->key_sha1));
free(entry);
return;
}
break;
case PTR_TYPE_SUBTREE:
if (!SUBTREE_SHA1_PREFIXCMP(l->key_sha1,
entry->key_sha1)) {
/* unpack 'entry' */
load_subtree(entry, tree, n);
free(entry);
return;
}
break;
}
break;
case PTR_TYPE_SUBTREE:
if (!SUBTREE_SHA1_PREFIXCMP(entry->key_sha1, l->key_sha1)) {
/* unpack 'l' and restart insert */
*p = NULL;
load_subtree(l, tree, n);
free(l);
note_tree_insert(tree, n, entry, type);
return;
Teach the notes lookup code to parse notes trees with various fanout schemes The semantics used when parsing notes trees (with regards to fanout subtrees) follow Dscho's proposal fairly closely: - No concatenation/merging of notes is performed. If there are several notes objects referencing a given commit, only one of those objects are used. - If a notes object for a given commit is present in the "root" notes tree, no subtrees are consulted; the object in the root tree is used directly. - If there are more than one subtree that prefix-matches the given commit, only the subtree with the longest matching prefix is consulted. This means that if the given commit is e.g. "deadbeef", and the notes tree have subtrees "de" and "dead", then the following paths in the notes tree are searched: "deadbeef", "dead/beef". Note that "de/adbeef" is NOT searched. - Fanout directories (subtrees) must references a whole number of bytes from the SHA1 sum they subdivide. E.g. subtrees "dead" and "de" are acceptable; "d" and "dea" are not. - Multiple levels of fanout are allowed. All the above rules apply recursively. E.g. "de/adbeef" is preferred over "de/adbe/ef", etc. This patch changes the in-memory datastructure for holding parsed notes: Instead of holding all note (and subtree) entries in a hash table, a simple 16-tree structure is used instead. The tree structure consists of 16-arrays as internal nodes, and note/subtree entries as leaf nodes. The tree is traversed by indexing subsequent nibbles of the search key until a leaf node is encountered. If a subtree entry is encountered while searching for a note, the subtree is unpacked into the 16-tree structure, and the search continues into that subtree. The new algorithm performs significantly better in the cases where only a fraction of the notes need to be looked up (this is assumed to be the common case for notes lookup). The new code even performs marginally better in the worst case (where _all_ the notes are looked up). In addition to this, comes the massive performance win associated with organizing the notes tree according to some fanout scheme. Even a simple 2/38 fanout scheme is dramatically quicker to traverse (going from tens of seconds to sub-second runtimes). As for memory usage, the new code is marginally better than the old code in the worst case, but in the case of looking up only some notes from a notes tree with proper fanout, the new code uses only a small fraction of the memory needed to hold the entire notes tree. However, there is one casualty of this patch. The old notes lookup code was able to parse notes that were associated with non-SHA1s (e.g. refs). The new code requires the referenced object to be named by a SHA1 sum. Still, this is not considered a major setback, since the notes infrastructure was not originally intended to annotate objects outside the Git object database. Cc: Johannes Schindelin <johannes.schindelin@gmx.de> Signed-off-by: Johan Herland <johan@herland.net> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2009-10-09 12:22:07 +02:00
}
break;
}
/* non-matching leaf_node */
assert(GET_PTR_TYPE(*p) == PTR_TYPE_NOTE ||
GET_PTR_TYPE(*p) == PTR_TYPE_SUBTREE);
new_node = (struct int_node *) xcalloc(sizeof(struct int_node), 1);
note_tree_insert(new_node, n + 1, l, GET_PTR_TYPE(*p));
*p = SET_PTR_TYPE(new_node, PTR_TYPE_INTERNAL);
note_tree_insert(new_node, n + 1, entry, type);
Teach the notes lookup code to parse notes trees with various fanout schemes The semantics used when parsing notes trees (with regards to fanout subtrees) follow Dscho's proposal fairly closely: - No concatenation/merging of notes is performed. If there are several notes objects referencing a given commit, only one of those objects are used. - If a notes object for a given commit is present in the "root" notes tree, no subtrees are consulted; the object in the root tree is used directly. - If there are more than one subtree that prefix-matches the given commit, only the subtree with the longest matching prefix is consulted. This means that if the given commit is e.g. "deadbeef", and the notes tree have subtrees "de" and "dead", then the following paths in the notes tree are searched: "deadbeef", "dead/beef". Note that "de/adbeef" is NOT searched. - Fanout directories (subtrees) must references a whole number of bytes from the SHA1 sum they subdivide. E.g. subtrees "dead" and "de" are acceptable; "d" and "dea" are not. - Multiple levels of fanout are allowed. All the above rules apply recursively. E.g. "de/adbeef" is preferred over "de/adbe/ef", etc. This patch changes the in-memory datastructure for holding parsed notes: Instead of holding all note (and subtree) entries in a hash table, a simple 16-tree structure is used instead. The tree structure consists of 16-arrays as internal nodes, and note/subtree entries as leaf nodes. The tree is traversed by indexing subsequent nibbles of the search key until a leaf node is encountered. If a subtree entry is encountered while searching for a note, the subtree is unpacked into the 16-tree structure, and the search continues into that subtree. The new algorithm performs significantly better in the cases where only a fraction of the notes need to be looked up (this is assumed to be the common case for notes lookup). The new code even performs marginally better in the worst case (where _all_ the notes are looked up). In addition to this, comes the massive performance win associated with organizing the notes tree according to some fanout scheme. Even a simple 2/38 fanout scheme is dramatically quicker to traverse (going from tens of seconds to sub-second runtimes). As for memory usage, the new code is marginally better than the old code in the worst case, but in the case of looking up only some notes from a notes tree with proper fanout, the new code uses only a small fraction of the memory needed to hold the entire notes tree. However, there is one casualty of this patch. The old notes lookup code was able to parse notes that were associated with non-SHA1s (e.g. refs). The new code requires the referenced object to be named by a SHA1 sum. Still, this is not considered a major setback, since the notes infrastructure was not originally intended to annotate objects outside the Git object database. Cc: Johannes Schindelin <johannes.schindelin@gmx.de> Signed-off-by: Johan Herland <johan@herland.net> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2009-10-09 12:22:07 +02:00
}
Teach the notes lookup code to parse notes trees with various fanout schemes The semantics used when parsing notes trees (with regards to fanout subtrees) follow Dscho's proposal fairly closely: - No concatenation/merging of notes is performed. If there are several notes objects referencing a given commit, only one of those objects are used. - If a notes object for a given commit is present in the "root" notes tree, no subtrees are consulted; the object in the root tree is used directly. - If there are more than one subtree that prefix-matches the given commit, only the subtree with the longest matching prefix is consulted. This means that if the given commit is e.g. "deadbeef", and the notes tree have subtrees "de" and "dead", then the following paths in the notes tree are searched: "deadbeef", "dead/beef". Note that "de/adbeef" is NOT searched. - Fanout directories (subtrees) must references a whole number of bytes from the SHA1 sum they subdivide. E.g. subtrees "dead" and "de" are acceptable; "d" and "dea" are not. - Multiple levels of fanout are allowed. All the above rules apply recursively. E.g. "de/adbeef" is preferred over "de/adbe/ef", etc. This patch changes the in-memory datastructure for holding parsed notes: Instead of holding all note (and subtree) entries in a hash table, a simple 16-tree structure is used instead. The tree structure consists of 16-arrays as internal nodes, and note/subtree entries as leaf nodes. The tree is traversed by indexing subsequent nibbles of the search key until a leaf node is encountered. If a subtree entry is encountered while searching for a note, the subtree is unpacked into the 16-tree structure, and the search continues into that subtree. The new algorithm performs significantly better in the cases where only a fraction of the notes need to be looked up (this is assumed to be the common case for notes lookup). The new code even performs marginally better in the worst case (where _all_ the notes are looked up). In addition to this, comes the massive performance win associated with organizing the notes tree according to some fanout scheme. Even a simple 2/38 fanout scheme is dramatically quicker to traverse (going from tens of seconds to sub-second runtimes). As for memory usage, the new code is marginally better than the old code in the worst case, but in the case of looking up only some notes from a notes tree with proper fanout, the new code uses only a small fraction of the memory needed to hold the entire notes tree. However, there is one casualty of this patch. The old notes lookup code was able to parse notes that were associated with non-SHA1s (e.g. refs). The new code requires the referenced object to be named by a SHA1 sum. Still, this is not considered a major setback, since the notes infrastructure was not originally intended to annotate objects outside the Git object database. Cc: Johannes Schindelin <johannes.schindelin@gmx.de> Signed-off-by: Johan Herland <johan@herland.net> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2009-10-09 12:22:07 +02:00
/* Free the entire notes data contained in the given tree */
static void note_tree_free(struct int_node *tree)
{
unsigned int i;
for (i = 0; i < 16; i++) {
void *p = tree->a[i];
switch (GET_PTR_TYPE(p)) {
Teach the notes lookup code to parse notes trees with various fanout schemes The semantics used when parsing notes trees (with regards to fanout subtrees) follow Dscho's proposal fairly closely: - No concatenation/merging of notes is performed. If there are several notes objects referencing a given commit, only one of those objects are used. - If a notes object for a given commit is present in the "root" notes tree, no subtrees are consulted; the object in the root tree is used directly. - If there are more than one subtree that prefix-matches the given commit, only the subtree with the longest matching prefix is consulted. This means that if the given commit is e.g. "deadbeef", and the notes tree have subtrees "de" and "dead", then the following paths in the notes tree are searched: "deadbeef", "dead/beef". Note that "de/adbeef" is NOT searched. - Fanout directories (subtrees) must references a whole number of bytes from the SHA1 sum they subdivide. E.g. subtrees "dead" and "de" are acceptable; "d" and "dea" are not. - Multiple levels of fanout are allowed. All the above rules apply recursively. E.g. "de/adbeef" is preferred over "de/adbe/ef", etc. This patch changes the in-memory datastructure for holding parsed notes: Instead of holding all note (and subtree) entries in a hash table, a simple 16-tree structure is used instead. The tree structure consists of 16-arrays as internal nodes, and note/subtree entries as leaf nodes. The tree is traversed by indexing subsequent nibbles of the search key until a leaf node is encountered. If a subtree entry is encountered while searching for a note, the subtree is unpacked into the 16-tree structure, and the search continues into that subtree. The new algorithm performs significantly better in the cases where only a fraction of the notes need to be looked up (this is assumed to be the common case for notes lookup). The new code even performs marginally better in the worst case (where _all_ the notes are looked up). In addition to this, comes the massive performance win associated with organizing the notes tree according to some fanout scheme. Even a simple 2/38 fanout scheme is dramatically quicker to traverse (going from tens of seconds to sub-second runtimes). As for memory usage, the new code is marginally better than the old code in the worst case, but in the case of looking up only some notes from a notes tree with proper fanout, the new code uses only a small fraction of the memory needed to hold the entire notes tree. However, there is one casualty of this patch. The old notes lookup code was able to parse notes that were associated with non-SHA1s (e.g. refs). The new code requires the referenced object to be named by a SHA1 sum. Still, this is not considered a major setback, since the notes infrastructure was not originally intended to annotate objects outside the Git object database. Cc: Johannes Schindelin <johannes.schindelin@gmx.de> Signed-off-by: Johan Herland <johan@herland.net> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2009-10-09 12:22:07 +02:00
case PTR_TYPE_INTERNAL:
note_tree_free(CLR_PTR_TYPE(p));
/* fall through */
case PTR_TYPE_NOTE:
case PTR_TYPE_SUBTREE:
free(CLR_PTR_TYPE(p));
}
}
Teach the notes lookup code to parse notes trees with various fanout schemes The semantics used when parsing notes trees (with regards to fanout subtrees) follow Dscho's proposal fairly closely: - No concatenation/merging of notes is performed. If there are several notes objects referencing a given commit, only one of those objects are used. - If a notes object for a given commit is present in the "root" notes tree, no subtrees are consulted; the object in the root tree is used directly. - If there are more than one subtree that prefix-matches the given commit, only the subtree with the longest matching prefix is consulted. This means that if the given commit is e.g. "deadbeef", and the notes tree have subtrees "de" and "dead", then the following paths in the notes tree are searched: "deadbeef", "dead/beef". Note that "de/adbeef" is NOT searched. - Fanout directories (subtrees) must references a whole number of bytes from the SHA1 sum they subdivide. E.g. subtrees "dead" and "de" are acceptable; "d" and "dea" are not. - Multiple levels of fanout are allowed. All the above rules apply recursively. E.g. "de/adbeef" is preferred over "de/adbe/ef", etc. This patch changes the in-memory datastructure for holding parsed notes: Instead of holding all note (and subtree) entries in a hash table, a simple 16-tree structure is used instead. The tree structure consists of 16-arrays as internal nodes, and note/subtree entries as leaf nodes. The tree is traversed by indexing subsequent nibbles of the search key until a leaf node is encountered. If a subtree entry is encountered while searching for a note, the subtree is unpacked into the 16-tree structure, and the search continues into that subtree. The new algorithm performs significantly better in the cases where only a fraction of the notes need to be looked up (this is assumed to be the common case for notes lookup). The new code even performs marginally better in the worst case (where _all_ the notes are looked up). In addition to this, comes the massive performance win associated with organizing the notes tree according to some fanout scheme. Even a simple 2/38 fanout scheme is dramatically quicker to traverse (going from tens of seconds to sub-second runtimes). As for memory usage, the new code is marginally better than the old code in the worst case, but in the case of looking up only some notes from a notes tree with proper fanout, the new code uses only a small fraction of the memory needed to hold the entire notes tree. However, there is one casualty of this patch. The old notes lookup code was able to parse notes that were associated with non-SHA1s (e.g. refs). The new code requires the referenced object to be named by a SHA1 sum. Still, this is not considered a major setback, since the notes infrastructure was not originally intended to annotate objects outside the Git object database. Cc: Johannes Schindelin <johannes.schindelin@gmx.de> Signed-off-by: Johan Herland <johan@herland.net> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2009-10-09 12:22:07 +02:00
}
Teach the notes lookup code to parse notes trees with various fanout schemes The semantics used when parsing notes trees (with regards to fanout subtrees) follow Dscho's proposal fairly closely: - No concatenation/merging of notes is performed. If there are several notes objects referencing a given commit, only one of those objects are used. - If a notes object for a given commit is present in the "root" notes tree, no subtrees are consulted; the object in the root tree is used directly. - If there are more than one subtree that prefix-matches the given commit, only the subtree with the longest matching prefix is consulted. This means that if the given commit is e.g. "deadbeef", and the notes tree have subtrees "de" and "dead", then the following paths in the notes tree are searched: "deadbeef", "dead/beef". Note that "de/adbeef" is NOT searched. - Fanout directories (subtrees) must references a whole number of bytes from the SHA1 sum they subdivide. E.g. subtrees "dead" and "de" are acceptable; "d" and "dea" are not. - Multiple levels of fanout are allowed. All the above rules apply recursively. E.g. "de/adbeef" is preferred over "de/adbe/ef", etc. This patch changes the in-memory datastructure for holding parsed notes: Instead of holding all note (and subtree) entries in a hash table, a simple 16-tree structure is used instead. The tree structure consists of 16-arrays as internal nodes, and note/subtree entries as leaf nodes. The tree is traversed by indexing subsequent nibbles of the search key until a leaf node is encountered. If a subtree entry is encountered while searching for a note, the subtree is unpacked into the 16-tree structure, and the search continues into that subtree. The new algorithm performs significantly better in the cases where only a fraction of the notes need to be looked up (this is assumed to be the common case for notes lookup). The new code even performs marginally better in the worst case (where _all_ the notes are looked up). In addition to this, comes the massive performance win associated with organizing the notes tree according to some fanout scheme. Even a simple 2/38 fanout scheme is dramatically quicker to traverse (going from tens of seconds to sub-second runtimes). As for memory usage, the new code is marginally better than the old code in the worst case, but in the case of looking up only some notes from a notes tree with proper fanout, the new code uses only a small fraction of the memory needed to hold the entire notes tree. However, there is one casualty of this patch. The old notes lookup code was able to parse notes that were associated with non-SHA1s (e.g. refs). The new code requires the referenced object to be named by a SHA1 sum. Still, this is not considered a major setback, since the notes infrastructure was not originally intended to annotate objects outside the Git object database. Cc: Johannes Schindelin <johannes.schindelin@gmx.de> Signed-off-by: Johan Herland <johan@herland.net> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2009-10-09 12:22:07 +02:00
/*
* Convert a partial SHA1 hex string to the corresponding partial SHA1 value.
* - hex - Partial SHA1 segment in ASCII hex format
* - hex_len - Length of above segment. Must be multiple of 2 between 0 and 40
* - sha1 - Partial SHA1 value is written here
* - sha1_len - Max #bytes to store in sha1, Must be >= hex_len / 2, and < 20
* Returns -1 on error (invalid arguments or invalid SHA1 (not in hex format)).
Teach the notes lookup code to parse notes trees with various fanout schemes The semantics used when parsing notes trees (with regards to fanout subtrees) follow Dscho's proposal fairly closely: - No concatenation/merging of notes is performed. If there are several notes objects referencing a given commit, only one of those objects are used. - If a notes object for a given commit is present in the "root" notes tree, no subtrees are consulted; the object in the root tree is used directly. - If there are more than one subtree that prefix-matches the given commit, only the subtree with the longest matching prefix is consulted. This means that if the given commit is e.g. "deadbeef", and the notes tree have subtrees "de" and "dead", then the following paths in the notes tree are searched: "deadbeef", "dead/beef". Note that "de/adbeef" is NOT searched. - Fanout directories (subtrees) must references a whole number of bytes from the SHA1 sum they subdivide. E.g. subtrees "dead" and "de" are acceptable; "d" and "dea" are not. - Multiple levels of fanout are allowed. All the above rules apply recursively. E.g. "de/adbeef" is preferred over "de/adbe/ef", etc. This patch changes the in-memory datastructure for holding parsed notes: Instead of holding all note (and subtree) entries in a hash table, a simple 16-tree structure is used instead. The tree structure consists of 16-arrays as internal nodes, and note/subtree entries as leaf nodes. The tree is traversed by indexing subsequent nibbles of the search key until a leaf node is encountered. If a subtree entry is encountered while searching for a note, the subtree is unpacked into the 16-tree structure, and the search continues into that subtree. The new algorithm performs significantly better in the cases where only a fraction of the notes need to be looked up (this is assumed to be the common case for notes lookup). The new code even performs marginally better in the worst case (where _all_ the notes are looked up). In addition to this, comes the massive performance win associated with organizing the notes tree according to some fanout scheme. Even a simple 2/38 fanout scheme is dramatically quicker to traverse (going from tens of seconds to sub-second runtimes). As for memory usage, the new code is marginally better than the old code in the worst case, but in the case of looking up only some notes from a notes tree with proper fanout, the new code uses only a small fraction of the memory needed to hold the entire notes tree. However, there is one casualty of this patch. The old notes lookup code was able to parse notes that were associated with non-SHA1s (e.g. refs). The new code requires the referenced object to be named by a SHA1 sum. Still, this is not considered a major setback, since the notes infrastructure was not originally intended to annotate objects outside the Git object database. Cc: Johannes Schindelin <johannes.schindelin@gmx.de> Signed-off-by: Johan Herland <johan@herland.net> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2009-10-09 12:22:07 +02:00
* Otherwise, returns number of bytes written to sha1 (i.e. hex_len / 2).
* Pads sha1 with NULs up to sha1_len (not included in returned length).
*/
static int get_sha1_hex_segment(const char *hex, unsigned int hex_len,
unsigned char *sha1, unsigned int sha1_len)
{
unsigned int i, len = hex_len >> 1;
if (hex_len % 2 != 0 || len > sha1_len)
return -1;
for (i = 0; i < len; i++) {
unsigned int val = (hexval(hex[0]) << 4) | hexval(hex[1]);
if (val & ~0xff)
return -1;
*sha1++ = val;
hex += 2;
}
for (; i < sha1_len; i++)
*sha1++ = 0;
return len;
}
Teach the notes lookup code to parse notes trees with various fanout schemes The semantics used when parsing notes trees (with regards to fanout subtrees) follow Dscho's proposal fairly closely: - No concatenation/merging of notes is performed. If there are several notes objects referencing a given commit, only one of those objects are used. - If a notes object for a given commit is present in the "root" notes tree, no subtrees are consulted; the object in the root tree is used directly. - If there are more than one subtree that prefix-matches the given commit, only the subtree with the longest matching prefix is consulted. This means that if the given commit is e.g. "deadbeef", and the notes tree have subtrees "de" and "dead", then the following paths in the notes tree are searched: "deadbeef", "dead/beef". Note that "de/adbeef" is NOT searched. - Fanout directories (subtrees) must references a whole number of bytes from the SHA1 sum they subdivide. E.g. subtrees "dead" and "de" are acceptable; "d" and "dea" are not. - Multiple levels of fanout are allowed. All the above rules apply recursively. E.g. "de/adbeef" is preferred over "de/adbe/ef", etc. This patch changes the in-memory datastructure for holding parsed notes: Instead of holding all note (and subtree) entries in a hash table, a simple 16-tree structure is used instead. The tree structure consists of 16-arrays as internal nodes, and note/subtree entries as leaf nodes. The tree is traversed by indexing subsequent nibbles of the search key until a leaf node is encountered. If a subtree entry is encountered while searching for a note, the subtree is unpacked into the 16-tree structure, and the search continues into that subtree. The new algorithm performs significantly better in the cases where only a fraction of the notes need to be looked up (this is assumed to be the common case for notes lookup). The new code even performs marginally better in the worst case (where _all_ the notes are looked up). In addition to this, comes the massive performance win associated with organizing the notes tree according to some fanout scheme. Even a simple 2/38 fanout scheme is dramatically quicker to traverse (going from tens of seconds to sub-second runtimes). As for memory usage, the new code is marginally better than the old code in the worst case, but in the case of looking up only some notes from a notes tree with proper fanout, the new code uses only a small fraction of the memory needed to hold the entire notes tree. However, there is one casualty of this patch. The old notes lookup code was able to parse notes that were associated with non-SHA1s (e.g. refs). The new code requires the referenced object to be named by a SHA1 sum. Still, this is not considered a major setback, since the notes infrastructure was not originally intended to annotate objects outside the Git object database. Cc: Johannes Schindelin <johannes.schindelin@gmx.de> Signed-off-by: Johan Herland <johan@herland.net> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2009-10-09 12:22:07 +02:00
static void load_subtree(struct leaf_node *subtree, struct int_node *node,
unsigned int n)
{
Teach the notes lookup code to parse notes trees with various fanout schemes The semantics used when parsing notes trees (with regards to fanout subtrees) follow Dscho's proposal fairly closely: - No concatenation/merging of notes is performed. If there are several notes objects referencing a given commit, only one of those objects are used. - If a notes object for a given commit is present in the "root" notes tree, no subtrees are consulted; the object in the root tree is used directly. - If there are more than one subtree that prefix-matches the given commit, only the subtree with the longest matching prefix is consulted. This means that if the given commit is e.g. "deadbeef", and the notes tree have subtrees "de" and "dead", then the following paths in the notes tree are searched: "deadbeef", "dead/beef". Note that "de/adbeef" is NOT searched. - Fanout directories (subtrees) must references a whole number of bytes from the SHA1 sum they subdivide. E.g. subtrees "dead" and "de" are acceptable; "d" and "dea" are not. - Multiple levels of fanout are allowed. All the above rules apply recursively. E.g. "de/adbeef" is preferred over "de/adbe/ef", etc. This patch changes the in-memory datastructure for holding parsed notes: Instead of holding all note (and subtree) entries in a hash table, a simple 16-tree structure is used instead. The tree structure consists of 16-arrays as internal nodes, and note/subtree entries as leaf nodes. The tree is traversed by indexing subsequent nibbles of the search key until a leaf node is encountered. If a subtree entry is encountered while searching for a note, the subtree is unpacked into the 16-tree structure, and the search continues into that subtree. The new algorithm performs significantly better in the cases where only a fraction of the notes need to be looked up (this is assumed to be the common case for notes lookup). The new code even performs marginally better in the worst case (where _all_ the notes are looked up). In addition to this, comes the massive performance win associated with organizing the notes tree according to some fanout scheme. Even a simple 2/38 fanout scheme is dramatically quicker to traverse (going from tens of seconds to sub-second runtimes). As for memory usage, the new code is marginally better than the old code in the worst case, but in the case of looking up only some notes from a notes tree with proper fanout, the new code uses only a small fraction of the memory needed to hold the entire notes tree. However, there is one casualty of this patch. The old notes lookup code was able to parse notes that were associated with non-SHA1s (e.g. refs). The new code requires the referenced object to be named by a SHA1 sum. Still, this is not considered a major setback, since the notes infrastructure was not originally intended to annotate objects outside the Git object database. Cc: Johannes Schindelin <johannes.schindelin@gmx.de> Signed-off-by: Johan Herland <johan@herland.net> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2009-10-09 12:22:07 +02:00
unsigned char commit_sha1[20];
unsigned int prefix_len;
void *buf;
struct tree_desc desc;
struct name_entry entry;
Teach the notes lookup code to parse notes trees with various fanout schemes The semantics used when parsing notes trees (with regards to fanout subtrees) follow Dscho's proposal fairly closely: - No concatenation/merging of notes is performed. If there are several notes objects referencing a given commit, only one of those objects are used. - If a notes object for a given commit is present in the "root" notes tree, no subtrees are consulted; the object in the root tree is used directly. - If there are more than one subtree that prefix-matches the given commit, only the subtree with the longest matching prefix is consulted. This means that if the given commit is e.g. "deadbeef", and the notes tree have subtrees "de" and "dead", then the following paths in the notes tree are searched: "deadbeef", "dead/beef". Note that "de/adbeef" is NOT searched. - Fanout directories (subtrees) must references a whole number of bytes from the SHA1 sum they subdivide. E.g. subtrees "dead" and "de" are acceptable; "d" and "dea" are not. - Multiple levels of fanout are allowed. All the above rules apply recursively. E.g. "de/adbeef" is preferred over "de/adbe/ef", etc. This patch changes the in-memory datastructure for holding parsed notes: Instead of holding all note (and subtree) entries in a hash table, a simple 16-tree structure is used instead. The tree structure consists of 16-arrays as internal nodes, and note/subtree entries as leaf nodes. The tree is traversed by indexing subsequent nibbles of the search key until a leaf node is encountered. If a subtree entry is encountered while searching for a note, the subtree is unpacked into the 16-tree structure, and the search continues into that subtree. The new algorithm performs significantly better in the cases where only a fraction of the notes need to be looked up (this is assumed to be the common case for notes lookup). The new code even performs marginally better in the worst case (where _all_ the notes are looked up). In addition to this, comes the massive performance win associated with organizing the notes tree according to some fanout scheme. Even a simple 2/38 fanout scheme is dramatically quicker to traverse (going from tens of seconds to sub-second runtimes). As for memory usage, the new code is marginally better than the old code in the worst case, but in the case of looking up only some notes from a notes tree with proper fanout, the new code uses only a small fraction of the memory needed to hold the entire notes tree. However, there is one casualty of this patch. The old notes lookup code was able to parse notes that were associated with non-SHA1s (e.g. refs). The new code requires the referenced object to be named by a SHA1 sum. Still, this is not considered a major setback, since the notes infrastructure was not originally intended to annotate objects outside the Git object database. Cc: Johannes Schindelin <johannes.schindelin@gmx.de> Signed-off-by: Johan Herland <johan@herland.net> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2009-10-09 12:22:07 +02:00
buf = fill_tree_descriptor(&desc, subtree->val_sha1);
if (!buf)
die("Could not read %s for notes-index",
sha1_to_hex(subtree->val_sha1));
prefix_len = subtree->key_sha1[19];
assert(prefix_len * 2 >= n);
memcpy(commit_sha1, subtree->key_sha1, prefix_len);
while (tree_entry(&desc, &entry)) {
int len = get_sha1_hex_segment(entry.path, strlen(entry.path),
commit_sha1 + prefix_len, 20 - prefix_len);
if (len < 0)
continue; /* entry.path is not a SHA1 sum. Skip */
len += prefix_len;
/*
* If commit SHA1 is complete (len == 20), assume note object
* If commit SHA1 is incomplete (len < 20), assume note subtree
*/
if (len <= 20) {
unsigned char type = PTR_TYPE_NOTE;
struct leaf_node *l = (struct leaf_node *)
xcalloc(sizeof(struct leaf_node), 1);
hashcpy(l->key_sha1, commit_sha1);
hashcpy(l->val_sha1, entry.sha1);
if (len < 20) {
if (!S_ISDIR(entry.mode))
continue; /* entry cannot be subtree */
Teach the notes lookup code to parse notes trees with various fanout schemes The semantics used when parsing notes trees (with regards to fanout subtrees) follow Dscho's proposal fairly closely: - No concatenation/merging of notes is performed. If there are several notes objects referencing a given commit, only one of those objects are used. - If a notes object for a given commit is present in the "root" notes tree, no subtrees are consulted; the object in the root tree is used directly. - If there are more than one subtree that prefix-matches the given commit, only the subtree with the longest matching prefix is consulted. This means that if the given commit is e.g. "deadbeef", and the notes tree have subtrees "de" and "dead", then the following paths in the notes tree are searched: "deadbeef", "dead/beef". Note that "de/adbeef" is NOT searched. - Fanout directories (subtrees) must references a whole number of bytes from the SHA1 sum they subdivide. E.g. subtrees "dead" and "de" are acceptable; "d" and "dea" are not. - Multiple levels of fanout are allowed. All the above rules apply recursively. E.g. "de/adbeef" is preferred over "de/adbe/ef", etc. This patch changes the in-memory datastructure for holding parsed notes: Instead of holding all note (and subtree) entries in a hash table, a simple 16-tree structure is used instead. The tree structure consists of 16-arrays as internal nodes, and note/subtree entries as leaf nodes. The tree is traversed by indexing subsequent nibbles of the search key until a leaf node is encountered. If a subtree entry is encountered while searching for a note, the subtree is unpacked into the 16-tree structure, and the search continues into that subtree. The new algorithm performs significantly better in the cases where only a fraction of the notes need to be looked up (this is assumed to be the common case for notes lookup). The new code even performs marginally better in the worst case (where _all_ the notes are looked up). In addition to this, comes the massive performance win associated with organizing the notes tree according to some fanout scheme. Even a simple 2/38 fanout scheme is dramatically quicker to traverse (going from tens of seconds to sub-second runtimes). As for memory usage, the new code is marginally better than the old code in the worst case, but in the case of looking up only some notes from a notes tree with proper fanout, the new code uses only a small fraction of the memory needed to hold the entire notes tree. However, there is one casualty of this patch. The old notes lookup code was able to parse notes that were associated with non-SHA1s (e.g. refs). The new code requires the referenced object to be named by a SHA1 sum. Still, this is not considered a major setback, since the notes infrastructure was not originally intended to annotate objects outside the Git object database. Cc: Johannes Schindelin <johannes.schindelin@gmx.de> Signed-off-by: Johan Herland <johan@herland.net> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2009-10-09 12:22:07 +02:00
l->key_sha1[19] = (unsigned char) len;
type = PTR_TYPE_SUBTREE;
}
note_tree_insert(node, n, l, type);
Teach the notes lookup code to parse notes trees with various fanout schemes The semantics used when parsing notes trees (with regards to fanout subtrees) follow Dscho's proposal fairly closely: - No concatenation/merging of notes is performed. If there are several notes objects referencing a given commit, only one of those objects are used. - If a notes object for a given commit is present in the "root" notes tree, no subtrees are consulted; the object in the root tree is used directly. - If there are more than one subtree that prefix-matches the given commit, only the subtree with the longest matching prefix is consulted. This means that if the given commit is e.g. "deadbeef", and the notes tree have subtrees "de" and "dead", then the following paths in the notes tree are searched: "deadbeef", "dead/beef". Note that "de/adbeef" is NOT searched. - Fanout directories (subtrees) must references a whole number of bytes from the SHA1 sum they subdivide. E.g. subtrees "dead" and "de" are acceptable; "d" and "dea" are not. - Multiple levels of fanout are allowed. All the above rules apply recursively. E.g. "de/adbeef" is preferred over "de/adbe/ef", etc. This patch changes the in-memory datastructure for holding parsed notes: Instead of holding all note (and subtree) entries in a hash table, a simple 16-tree structure is used instead. The tree structure consists of 16-arrays as internal nodes, and note/subtree entries as leaf nodes. The tree is traversed by indexing subsequent nibbles of the search key until a leaf node is encountered. If a subtree entry is encountered while searching for a note, the subtree is unpacked into the 16-tree structure, and the search continues into that subtree. The new algorithm performs significantly better in the cases where only a fraction of the notes need to be looked up (this is assumed to be the common case for notes lookup). The new code even performs marginally better in the worst case (where _all_ the notes are looked up). In addition to this, comes the massive performance win associated with organizing the notes tree according to some fanout scheme. Even a simple 2/38 fanout scheme is dramatically quicker to traverse (going from tens of seconds to sub-second runtimes). As for memory usage, the new code is marginally better than the old code in the worst case, but in the case of looking up only some notes from a notes tree with proper fanout, the new code uses only a small fraction of the memory needed to hold the entire notes tree. However, there is one casualty of this patch. The old notes lookup code was able to parse notes that were associated with non-SHA1s (e.g. refs). The new code requires the referenced object to be named by a SHA1 sum. Still, this is not considered a major setback, since the notes infrastructure was not originally intended to annotate objects outside the Git object database. Cc: Johannes Schindelin <johannes.schindelin@gmx.de> Signed-off-by: Johan Herland <johan@herland.net> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2009-10-09 12:22:07 +02:00
}
}
free(buf);
}
static void initialize_notes(const char *notes_ref_name)
{
unsigned char sha1[20], commit_sha1[20];
unsigned mode;
struct leaf_node root_tree;
if (!notes_ref_name || read_ref(notes_ref_name, commit_sha1) ||
get_tree_entry(commit_sha1, "", sha1, &mode))
return;
Teach the notes lookup code to parse notes trees with various fanout schemes The semantics used when parsing notes trees (with regards to fanout subtrees) follow Dscho's proposal fairly closely: - No concatenation/merging of notes is performed. If there are several notes objects referencing a given commit, only one of those objects are used. - If a notes object for a given commit is present in the "root" notes tree, no subtrees are consulted; the object in the root tree is used directly. - If there are more than one subtree that prefix-matches the given commit, only the subtree with the longest matching prefix is consulted. This means that if the given commit is e.g. "deadbeef", and the notes tree have subtrees "de" and "dead", then the following paths in the notes tree are searched: "deadbeef", "dead/beef". Note that "de/adbeef" is NOT searched. - Fanout directories (subtrees) must references a whole number of bytes from the SHA1 sum they subdivide. E.g. subtrees "dead" and "de" are acceptable; "d" and "dea" are not. - Multiple levels of fanout are allowed. All the above rules apply recursively. E.g. "de/adbeef" is preferred over "de/adbe/ef", etc. This patch changes the in-memory datastructure for holding parsed notes: Instead of holding all note (and subtree) entries in a hash table, a simple 16-tree structure is used instead. The tree structure consists of 16-arrays as internal nodes, and note/subtree entries as leaf nodes. The tree is traversed by indexing subsequent nibbles of the search key until a leaf node is encountered. If a subtree entry is encountered while searching for a note, the subtree is unpacked into the 16-tree structure, and the search continues into that subtree. The new algorithm performs significantly better in the cases where only a fraction of the notes need to be looked up (this is assumed to be the common case for notes lookup). The new code even performs marginally better in the worst case (where _all_ the notes are looked up). In addition to this, comes the massive performance win associated with organizing the notes tree according to some fanout scheme. Even a simple 2/38 fanout scheme is dramatically quicker to traverse (going from tens of seconds to sub-second runtimes). As for memory usage, the new code is marginally better than the old code in the worst case, but in the case of looking up only some notes from a notes tree with proper fanout, the new code uses only a small fraction of the memory needed to hold the entire notes tree. However, there is one casualty of this patch. The old notes lookup code was able to parse notes that were associated with non-SHA1s (e.g. refs). The new code requires the referenced object to be named by a SHA1 sum. Still, this is not considered a major setback, since the notes infrastructure was not originally intended to annotate objects outside the Git object database. Cc: Johannes Schindelin <johannes.schindelin@gmx.de> Signed-off-by: Johan Herland <johan@herland.net> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2009-10-09 12:22:07 +02:00
hashclr(root_tree.key_sha1);
hashcpy(root_tree.val_sha1, sha1);
load_subtree(&root_tree, &root_node, 0);
}
static unsigned char *lookup_notes(const unsigned char *commit_sha1)
{
Teach the notes lookup code to parse notes trees with various fanout schemes The semantics used when parsing notes trees (with regards to fanout subtrees) follow Dscho's proposal fairly closely: - No concatenation/merging of notes is performed. If there are several notes objects referencing a given commit, only one of those objects are used. - If a notes object for a given commit is present in the "root" notes tree, no subtrees are consulted; the object in the root tree is used directly. - If there are more than one subtree that prefix-matches the given commit, only the subtree with the longest matching prefix is consulted. This means that if the given commit is e.g. "deadbeef", and the notes tree have subtrees "de" and "dead", then the following paths in the notes tree are searched: "deadbeef", "dead/beef". Note that "de/adbeef" is NOT searched. - Fanout directories (subtrees) must references a whole number of bytes from the SHA1 sum they subdivide. E.g. subtrees "dead" and "de" are acceptable; "d" and "dea" are not. - Multiple levels of fanout are allowed. All the above rules apply recursively. E.g. "de/adbeef" is preferred over "de/adbe/ef", etc. This patch changes the in-memory datastructure for holding parsed notes: Instead of holding all note (and subtree) entries in a hash table, a simple 16-tree structure is used instead. The tree structure consists of 16-arrays as internal nodes, and note/subtree entries as leaf nodes. The tree is traversed by indexing subsequent nibbles of the search key until a leaf node is encountered. If a subtree entry is encountered while searching for a note, the subtree is unpacked into the 16-tree structure, and the search continues into that subtree. The new algorithm performs significantly better in the cases where only a fraction of the notes need to be looked up (this is assumed to be the common case for notes lookup). The new code even performs marginally better in the worst case (where _all_ the notes are looked up). In addition to this, comes the massive performance win associated with organizing the notes tree according to some fanout scheme. Even a simple 2/38 fanout scheme is dramatically quicker to traverse (going from tens of seconds to sub-second runtimes). As for memory usage, the new code is marginally better than the old code in the worst case, but in the case of looking up only some notes from a notes tree with proper fanout, the new code uses only a small fraction of the memory needed to hold the entire notes tree. However, there is one casualty of this patch. The old notes lookup code was able to parse notes that were associated with non-SHA1s (e.g. refs). The new code requires the referenced object to be named by a SHA1 sum. Still, this is not considered a major setback, since the notes infrastructure was not originally intended to annotate objects outside the Git object database. Cc: Johannes Schindelin <johannes.schindelin@gmx.de> Signed-off-by: Johan Herland <johan@herland.net> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2009-10-09 12:22:07 +02:00
struct leaf_node *found = note_tree_find(&root_node, 0, commit_sha1);
if (found)
return found->val_sha1;
return NULL;
}
void free_notes(void)
{
Teach the notes lookup code to parse notes trees with various fanout schemes The semantics used when parsing notes trees (with regards to fanout subtrees) follow Dscho's proposal fairly closely: - No concatenation/merging of notes is performed. If there are several notes objects referencing a given commit, only one of those objects are used. - If a notes object for a given commit is present in the "root" notes tree, no subtrees are consulted; the object in the root tree is used directly. - If there are more than one subtree that prefix-matches the given commit, only the subtree with the longest matching prefix is consulted. This means that if the given commit is e.g. "deadbeef", and the notes tree have subtrees "de" and "dead", then the following paths in the notes tree are searched: "deadbeef", "dead/beef". Note that "de/adbeef" is NOT searched. - Fanout directories (subtrees) must references a whole number of bytes from the SHA1 sum they subdivide. E.g. subtrees "dead" and "de" are acceptable; "d" and "dea" are not. - Multiple levels of fanout are allowed. All the above rules apply recursively. E.g. "de/adbeef" is preferred over "de/adbe/ef", etc. This patch changes the in-memory datastructure for holding parsed notes: Instead of holding all note (and subtree) entries in a hash table, a simple 16-tree structure is used instead. The tree structure consists of 16-arrays as internal nodes, and note/subtree entries as leaf nodes. The tree is traversed by indexing subsequent nibbles of the search key until a leaf node is encountered. If a subtree entry is encountered while searching for a note, the subtree is unpacked into the 16-tree structure, and the search continues into that subtree. The new algorithm performs significantly better in the cases where only a fraction of the notes need to be looked up (this is assumed to be the common case for notes lookup). The new code even performs marginally better in the worst case (where _all_ the notes are looked up). In addition to this, comes the massive performance win associated with organizing the notes tree according to some fanout scheme. Even a simple 2/38 fanout scheme is dramatically quicker to traverse (going from tens of seconds to sub-second runtimes). As for memory usage, the new code is marginally better than the old code in the worst case, but in the case of looking up only some notes from a notes tree with proper fanout, the new code uses only a small fraction of the memory needed to hold the entire notes tree. However, there is one casualty of this patch. The old notes lookup code was able to parse notes that were associated with non-SHA1s (e.g. refs). The new code requires the referenced object to be named by a SHA1 sum. Still, this is not considered a major setback, since the notes infrastructure was not originally intended to annotate objects outside the Git object database. Cc: Johannes Schindelin <johannes.schindelin@gmx.de> Signed-off-by: Johan Herland <johan@herland.net> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2009-10-09 12:22:07 +02:00
note_tree_free(&root_node);
memset(&root_node, 0, sizeof(struct int_node));
initialized = 0;
}
void get_commit_notes(const struct commit *commit, struct strbuf *sb,
const char *output_encoding, int flags)
{
static const char utf8[] = "utf-8";
unsigned char *sha1;
char *msg, *msg_p;
unsigned long linelen, msglen;
enum object_type type;
if (!initialized) {
const char *env = getenv(GIT_NOTES_REF_ENVIRONMENT);
if (env)
notes_ref_name = getenv(GIT_NOTES_REF_ENVIRONMENT);
else if (!notes_ref_name)
notes_ref_name = GIT_NOTES_DEFAULT_REF;
Teach the notes lookup code to parse notes trees with various fanout schemes The semantics used when parsing notes trees (with regards to fanout subtrees) follow Dscho's proposal fairly closely: - No concatenation/merging of notes is performed. If there are several notes objects referencing a given commit, only one of those objects are used. - If a notes object for a given commit is present in the "root" notes tree, no subtrees are consulted; the object in the root tree is used directly. - If there are more than one subtree that prefix-matches the given commit, only the subtree with the longest matching prefix is consulted. This means that if the given commit is e.g. "deadbeef", and the notes tree have subtrees "de" and "dead", then the following paths in the notes tree are searched: "deadbeef", "dead/beef". Note that "de/adbeef" is NOT searched. - Fanout directories (subtrees) must references a whole number of bytes from the SHA1 sum they subdivide. E.g. subtrees "dead" and "de" are acceptable; "d" and "dea" are not. - Multiple levels of fanout are allowed. All the above rules apply recursively. E.g. "de/adbeef" is preferred over "de/adbe/ef", etc. This patch changes the in-memory datastructure for holding parsed notes: Instead of holding all note (and subtree) entries in a hash table, a simple 16-tree structure is used instead. The tree structure consists of 16-arrays as internal nodes, and note/subtree entries as leaf nodes. The tree is traversed by indexing subsequent nibbles of the search key until a leaf node is encountered. If a subtree entry is encountered while searching for a note, the subtree is unpacked into the 16-tree structure, and the search continues into that subtree. The new algorithm performs significantly better in the cases where only a fraction of the notes need to be looked up (this is assumed to be the common case for notes lookup). The new code even performs marginally better in the worst case (where _all_ the notes are looked up). In addition to this, comes the massive performance win associated with organizing the notes tree according to some fanout scheme. Even a simple 2/38 fanout scheme is dramatically quicker to traverse (going from tens of seconds to sub-second runtimes). As for memory usage, the new code is marginally better than the old code in the worst case, but in the case of looking up only some notes from a notes tree with proper fanout, the new code uses only a small fraction of the memory needed to hold the entire notes tree. However, there is one casualty of this patch. The old notes lookup code was able to parse notes that were associated with non-SHA1s (e.g. refs). The new code requires the referenced object to be named by a SHA1 sum. Still, this is not considered a major setback, since the notes infrastructure was not originally intended to annotate objects outside the Git object database. Cc: Johannes Schindelin <johannes.schindelin@gmx.de> Signed-off-by: Johan Herland <johan@herland.net> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2009-10-09 12:22:07 +02:00
initialize_notes(notes_ref_name);
initialized = 1;
}
sha1 = lookup_notes(commit->object.sha1);
if (!sha1)
return;
if (!(msg = read_sha1_file(sha1, &type, &msglen)) || !msglen ||
type != OBJ_BLOB) {
free(msg);
return;
}
if (output_encoding && *output_encoding &&
strcmp(utf8, output_encoding)) {
char *reencoded = reencode_string(msg, output_encoding, utf8);
if (reencoded) {
free(msg);
msg = reencoded;
msglen = strlen(msg);
}
}
/* we will end the annotation by a newline anyway */
if (msglen && msg[msglen - 1] == '\n')
msglen--;
if (flags & NOTES_SHOW_HEADER)
strbuf_addstr(sb, "\nNotes:\n");
for (msg_p = msg; msg_p < msg + msglen; msg_p += linelen + 1) {
linelen = strchrnul(msg_p, '\n') - msg_p;
if (flags & NOTES_INDENT)
strbuf_addstr(sb, " ");
strbuf_add(sb, msg_p, linelen);
strbuf_addch(sb, '\n');
}
free(msg);
}