
Crowbook User Guide

Crowbook User Guide

Élisabeth Henry

0.11.1

5th of january, 2017

Chapter 1

Crowbook

Render a book written in markdown to HTML, EPUB and/or PDF.
Crowbook’s purpose is to allow you to automatically generate mul-

tiple output formats from a book written in Markdown. Its focus is
novels, and the default settings should (hopefully) generate readable
books with correct typography without requiring you to worry about
it.

1.1 Example
To see what Crowbook’s output looks like, you can read the Crowbook
guide rendered in HTML, PDF or EPUB.

You can also play with the online demo version.

1.2 Installing
There are two ways to install Crowbook:

Binaries
See the releases page to download a precompiled binary for your ar-
chitecture (currently: Linux, Windows and MacOSX). Just extract the
archive and run crowbook (or crowbook.exe on Windows). You might
also want to copy the binary somewhere in your PATH for later usage.

If you are on Debian GNU/Linux or Ubuntu (on a PC architecture),
you can also download .deb packages on the releases page.

http://lise-henry.github.io/crowbook/book/book.html
http://lise-henry.github.io/crowbook/book/book.pdf
http://lise-henry.github.io/crowbook/book/book.epub
http://vps.crowdagger.fr/crowbook/
https://github.com/lise-henry/crowbook/releases
https://github.com/lise-henry/crowbook/releases

6

Using Cargo
Cargo is the Rust’s package manager. You can install it here. Once it
is done:

$ cargo install crowbook

will automatically download the latest crowbook release on crates.io,
compile it, and install it on your system.

1.3 Dependencies
While there should be, strictly speaking, no real dependencies to be
able to run Crowbook (it is published as a statically compiled binary),
some features require additional commands to work correctly:

• EPUB rendering requires the zip command to be present on your
system;

• PDF rendering requires a working installation of LaTeX (prefer-
ably xelatex).

1.4 Quick tour
The simplest command is:

$ crowbook <BOOK>

where BOOK is a configuration file. Crowbook will parse this file and
generate a book in HTML, EPUB, and/or PDF, according to the set-
tings in the configuration file.

To create a new book, assuming you have a list of Markdown files,
you can generate a template configuration file with the --create ar-
gument:

$ crowbook my.book --create chapter_*.md

This will generate a default my.book file, which you’ll need to complete.
This configuration file contains some metadata, options, and lists the
Markdown files.

For short books containing only a single Markdown file, it is possible
to embed some metadata at the beginning of the file and use the --
single or -s option to run crowbook directly on this Markdown file
and avoid creating a separate book configuration file:

https://crates.io/
https://www.rust-lang.org/
https://www.rust-lang.org/downloads.html
https://crates.io/crates/crowbook

7

$ crowbook -s text.md

For more information see the chapters on the arguments supported by
crowbook and on the configuration file.

1.5 Current features
Output formats
Crowbook supports HTML, PDF and EPUB (either version 2 or 3)
as output formats. See the Crowbook User Guide rendered in HTML,
EPUB and PDF.

Input format
Crowbook uses pulldown-cmark and thus should support most of Com-
monMark Markdown. Inline HTML, however, is not implemented, and
probably won’t be, as the goal is to have books that can also be gener-
ated in PDF (and maybe ODT).

Typographic “cleaning”
Maybe the most specific “feature” of Crowbook is that (by default, it
can be deactivated) it tries to “clean” the input files. By default, it
removes superfluous spaces and tries to use curly quotes. If the book’s
language is set to french, it also tries its best to respect french typogra-
phy by replacing spaces with non-breaking ones when it is appropriate
(e.g. before ‘?’, ‘!’, ‘;’ or ‘:’).

Please open an issue describing typographic rules if you
want it to be implemented for other languages.

Links handling
Crowbook tries to correctly translate local links in the input Markdown
files: e.g. if you have a link to a Markdown file that is part of your
book, it will be transformed into a link inside the document.

Inline YAML blocks
Crowbook supports inline YAML blocks:

http://lise-henry.github.io/crowbook/book/book.html
http://lise-henry.github.io/crowbook/book/book.epub
http://lise-henry.github.io/crowbook/book.pdf
https://crates.io/crates/pulldown-cmark
http://commonmark.org/
http://commonmark.org/
https://github.com/lise-henry/crowbook/issues/new

8

author: Me
title: My title

This is mostly useful when Crowbook is run with the --single argu-
ment (receiving a single Markdown file instead of a book configuration
file), for short texts that only contain one “chapter”.

Proofreading
Crowbook can also generate “proofreading” copies in HTML or PDF,
highlighting grammar errors and repetitions.

This feature has been introduced in version 0.9.1 and
is still experimental. For more information, see the proof-
reading chapter of the guide.

Bugs
See the github’s issue tracker.

1.6 Contributors
• Stéphane Mourey <s+crowbook AT stephanemourey DOT fr>

1.7 Acknowledgements
Besides the Rust compiler and standard library, Crowbook uses the
following libraries:

• pulldown-cmark

• yaml-rust

• mustache

• clap

• chrono

• uuid

• mime_guess

https://github.com/lise-henry/crowbook/issues
http://stephanemourey.fr/
https://www.rust-lang.org/
https://crates.io/crates/pulldown-cmark
https://crates.io/crates/yaml-rust
https://crates.io/crates/mustache
https://github.com/kbknapp/clap-rs
https://crates.io/crates/chrono
https://crates.io/crates/uuid
https://crates.io/crates/mime_guess

9

• crossbeam

• walkdir

• rustc-serialize

• caribon

• hyper

• url

• lazy_static

• regex

• term

• numerals

• syntect

It also embeds Highlight.js in HTML output to enable syntax high-
lighting for code blocks.

It also uses configuration files from rust-everywhere to use Travis
and Appveyor to generate binaries for various platforms on each release.

While Crowbook directly doesn’t use them, there was also inspira-
tion from Pandoc and mdBook.

Also, the W3C HTML validator and the IDPF EPUB validator
proved very useful during development.

1.8 ChangeLog
See ChangeLog.

1.9 Contributing
See how you can contribute to Crowbook.

https://crates.io/crates/crossbeam
https://crates.io/crates/walkdir
https://crates.io/crates/rustc-serialize
https://crates.io/crates/caribon
https://crates.io/crates/hyper
https://crates.io/crates/url
https://crates.io/crates/lazy_static
https://crates.io/crates/regex
https://crates.io/crates/term
https://crates.io/crates/numerals
https://crates.io/crates/syntect
https://highlightjs.org/
https://github.com/japaric/rust-everywhere
https://travis-ci.org/
http://www.appveyor.com/
http://pandoc.org/
https://github.com/azerupi/mdBook
https://validator.w3.org/
http://validator.idpf.org/

10

1.10 Library
While the main purpose of Crowbook is to be run as a standalone
program, the code is written as a library, so if you want to build on it
you can use it as such. You can look at the generated documentation
on docs.rs.

Note that, in order to facilitate code reuse, some features have been
split to separate libraries:

• epub-builder makes it easier to generate EPUB files.

• crowbook-text-processing contains all the “typographic” functions
(smart quotes, handling of non-breaking spaces in french, ...).

• crowbook-intl is used for the internationalization (translation)
process.

1.11 License
Crowbook is free software: you can redistribute it and/or modify it
under the terms of the GNU Lesser General Public License (LGPL),
version 2.1 or (at your option) any ulterior version. See LICENSE for
more information.

Crowbook’s logo is licensed under the Creative Commons Attri-
bution 4.0 International license, based on the Rust logo by Mozilla
Corporation.

Crowbook includes binary (minified) CSS and Javascript files from
Highlight.js, written by Ivan Sagalaev, licensed under the following
terms:

Copyright (c) 2006, Ivan Sagalaev
All rights reserved.
Redistribution and use in source and binary forms, with

or without modification, are permitted provided that the fol-
lowing conditions are met:

• Redistributions of source code must retain the above
copyright notice, this list of conditions and the follow-
ing disclaimer.

• Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the follow-
ing disclaimer in the documentation and/or other ma-
terials provided with the distribution.

https://docs.rs/releases/search?query=crowbook
https://github.com/lise-henry/epub-builder
https://github.com/lise-henry/crowbook-text-processing/
https://github.com/lise-henry/crowbook-intl/
https://creativecommons.org/licenses/by/4.0/deed.en
https://creativecommons.org/licenses/by/4.0/deed.en
https://commons.wikimedia.org/wiki/File:Rust_programming_language_black_logo.svg
https://highlightjs.org/

11

• Neither the name of highlight.js nor the names of its
contributors may be used to endorse or promote prod-
ucts derived from this software without specific prior
written permission.

THIS SOFTWARE IS PROVIDED BY THE REGENTS
AND CONTRIBUTORS “AS IS’’ AND ANY EXPRESS
OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MER-
CHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
THE REGENTS AND CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EX-
EMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUD-
ING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIA-
BILITY, WHETHER IN CONTRACT, STRICT LIABIL-
ITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
ERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

12

Chapter 2

Arguments

Crowbook can take a number of arguments:

Render a Markdown book in EPUB, PDF or HTML.

USAGE:
crowbook [OPTIONS] [--] [BOOK]

FLAGS:
-h, --help Print help information
-l, --list-options List all possible options
-p, --proofread Enable proofreading
-q, --quiet Don't print info/error messages
-s, --single Use a single Markdown file

instead of a book configuration file
-v, --verbose Print warnings in parsing/rendering
-V, --version Print version information

OPTIONS:
-c, --create <FILES>... Create a new book

with existing Markdown files
-o, --output <FILE> Specify output

file
--print-template <TEMPLATE> Prints the default

content of a template
--set <KEY_VALUES> Set a list of

book options

14

-t, --to <FORMAT> Generate specific
format

ARGS:
<BOOK> File containing the book configuration

file, or a Markdown file when called with --single

The most important option is obviously <BOOK>, i.e. the book con-
figuration file. It is mandatory in most cases: if you don’t pass it,
Crowbook will simply display this help message. In a normal use case
this is the only argument you’ll need to pass, and Crowbook will gen-
erate the book in all formats specified in the configuration file.

It is, however, possible to pass more arguments to crowbook:

2.1 --create
Usage: crowbook [BOOK] --create file_1.md file_2.md ...

Creates a new book from a list of Markdown files. It will generate
a book configuration file with all file names specified as chapters. It
either prints the result to stdout (if BOOK is not specified) or generate
the file BOOK (or abort if it already exists).

Examples
crowbook foo.book --create README.md ChangeLog.md LICENSE.md

will generate a file foo.book containing:

author: Your name
title: Your title
lang: en

Uncomment and fill to generate files
output.html: some_file.html
output.epub: some_file.epub
output.pdf: some_file.pdf

Uncomment and fill to set cover image (for Epub)
cover: some_cover.png

List of chapters

15

+ README.md
+ ChangeLog.md
+ LICENSE.md

while
crowbook --create README.md ChangeLog.md LICENSE.md

will print the same result, but to stdout (without creating a file).
When crowbook is run with --create, it can also use the keys/values

set by --set (see below):

$ crowbook foo.book --create file1.md file2.md --set
author "Pierre Dupont" title "Mon œuvre" lang fr

will generate a foo.book file containing:

author: Pierre Dupont
title: Mon œuvre
lang: fr

List of chapters
+ file1.md
+ file2.md

2.2 --single
usage: crowbook --single <FILE>

(or crowbook -s <FILE>)
This argument allows to give crowbook a single Markdown file. This

file can contain an inline YAML block to set some book options. Inline
YAML blocks must start and end with a line containing only --- (three
dashes). E.g:

author: Joan Doe
title: A short story
output.html: short.html

If this YAML block is not at the beginning of a file, it must also be
preceded by a blank line.

This allows to not have to write a .book configuration file for a
short story or an article. crowbook -s foo.md is rougly equivalent to
having a book configuration file containing:

16

! foo.md

That is, the chapter heading (if any) won’t be displayed in the output
documents (though they still appear in the TOC).

Note that by default, using --single or -s sets the de-
fault LaTeX class of the book to article instead of book.

2.3 --set
usage: crowbook <BOOK> --set [KEY] [VALUE]...

This argument takes a list of KEY VALUE pairs and allows setting
or overriding a book configuration option. All valid options in the
configuration files are valid as keys. For more information, see the
configuration file.

Examples
$ crowbook foo.book --set html.css style.css

will override the CSS for HTML generation (the html.css key) to the
file style.css.

$ crowbook foo.book --set author Foo title Bar

will override the book title to Bar and its author to Foo.

2.4 --proofread
usage: crowbook --proofread <BOOK>

(or crowbook -p <BOOK>)
Equivalent to --set proofread true. Enable proofreading. See

Proofreading.

2.5 --list-options
usage: crowbook --list-options

(or crowbook -l)
Displays all the valid options to use, whether in a book configuration

file, with --set, or in an inline YAML block.

17

2.6 --print-template
usage: crowbook --print-template template

Prints the built-in template to stdout. Useful if you want to cus-
tomize the appearance of your document. E.g., if you want to modify
the CSS used for HTML rendering:

$ crowbook --print-template html.css > my_style.css
edit my_style.css in your favourite editor
$ crowbook my.book --set html.css my_style.css
or add "html.css: my_style.css" in my.book

2.7 --verbose
usage: crowbook <BOOK> --verbose

If this flag is set, Crowbook will print the warnings it detects while
parsing and rendering. These warnings are typically related to the
inclusion of non-local images, linking to Markdown files that are not
part of the book, and so on.

2.8 --to
usage: crowbook <BOOK>--to [FORMAT]

(or crowbook <BOOK> -t [FORMAT])
Generate only the specified format. FORMAT must be either epub,

pdf, html, html.dir, odt or tex.
If an output file for the format is not specified in the book configu-

ration file, crowbook will fail to render PDF, ODT and EPUB, whereas
it will print HTML and TeX files on stdout. It is, however, possible to
specify a file with the --output option.

Examples
crowbook --to html foo.book

will generate some HTML, and prints it either to the file specified by
output.html in foo.book, or to stdout if it is not specified.

crowbook --to pdf --output foo.pdf foo.book

will generate a foo.pdf file.

18

2.9 --output
usage: crowbook <BOOK> --to <FORMAT> --output <FILE>

(or crowbook -t <FORMAT> -o <FILE> <BOOK>)
Specifies an output file. Only valid when --to is used.

2.10 --lang
usage: crowbook --lang <LANG>

(or crowbook -L <LANG>)
Set the runtime language used by Crowbook. Currently, only a

french translation is available. By default, Crowbook uses the LANG en-
vironment variable to determine which language to use, but this option
allows to override it (e.g. for operating systems that don’t use such an
option, such as Windows).

Example
$ crowbook --lang fr --help

will display Crowbook’s help messages in french.

Note that this argument has nothing to do with the lang
option that you can set in the book configuration file, which
specifies the language of the book. This argument specifies
the language of the text messages that Crowbook will display
while running.

Chapter 3

The configuration file

If you want to use Crowbook for your book, this configuration file is all
you’ll have to add (assuming you already have the book in Markdown
files; if you don’t, you’ll also have to write a book first, but that’s
besides the scope of this document).

The format is not very complicated. This is an example of it:

metadata
author: Joan Doe
title: Some book
lang: en

output.html: some_book.html

list of chapters
- preface.md
+ chapter_1.md
+ chapter_2.md
+ chapter_3.md
+ chapter_4.md
- epilogue.md

Basically, it is divided in two parts:

• a list of options, under the form key: value, following YAML
syntax.

• a list of Markdown files.

Lines starting with the # characters are comments and are discarded.

20

3.1 Configuration in an inline YAML block
Sometimes, you only have one Markdown file and might not want to
have a separate configuration file. In this case, you can specify options
at the beginning of your Markdown file, using an inline YAML block,
separated by two lines containing only ---:

author: Joan Doe
title: Some (short) book
lang: en

output.html: some_book.html

Some (short) book

The book content, formatted in Markdown.

This method only allows to set up options: you can’t include a list of
chapters in this way, since the only “chapter” that will be included is
this Markdown file itself.

You can then use

crowbook -s some_book.md

to generate output formats from this Markdown file.

By default (unless input.yaml_blocks is set to true),
Crowboook will only read those inline blocks when it is
runned with crowbook --single (or crowbook -s).

3.2 The list of files
There are various options to include a Markdown file.

• + file_name.md includes a numbered chapter.

• - file_name.md includes an unnumbered chapter.

• ! file_name.md includes a chapter whose title won’t be dis-
played (except in the table of contents); this is useful for e.g.
including a copyright at the beginning or the book, or for short
stories where there is only one chapter.

21

• 42. file_name.md specifies the number for a chapter.

• @ includes a part instead of a chapter.

So a typical usage might look like this:

! copyright.md
- preface.md
0. chapter_0.md # We want to start at chapter 0 instead
of 1
Next chapters can be numbered automatically
+ chapter_1.md
+ chapter_2.md
...

There are two important things to note:

1. you must not use quotes around the file names.

2. the path of these files are relative to the directory where your con-
figuration file is. This means you can run crowbook books/my_
trilogy/first_book/config.book without being in the book’s
directory.

Also note that you don’t have to specify a title. This is because the
title of the chapter is inferred from the Markdown document. To go
back to our previous example:

+ chapter_1.md

does not specify a chapter title, because it will read it directly in
chapter_1.md, e.g.:

The day I was born
...

You should have one and only one level-one header (i.e. chapter title)
in each Markdown file.

If you have more than one, Crowbook will print a warning and treat
it as another chapter (numbered according to the scheme specified for
including the file). It might however mess the table of contents in some
cases (e.g. for EPUB).

If you do not have a level-1 header in a markdown file:

• if it is a numbered chapter, Crowbook will infer a chapter name
from the numbering scheme;

22

• if it is not numbered, chapter’s title will default to the empty
string.

Parts
Parts are included using the @ character, followed by the same charac-
ters than for chapters:

@+ numbered_part.md
+ chapter_01.md
+ chapter_02.md
@- unnumbered_part.md
+ chapter_03.md
+ chapter_04.md
@42. part_with_number_42.md
+ chapter_05.md

However, you usually don’t really want to have a content directly below
the part, only chapters (though it can be useful to add an introduction
before the first chapter of this part), so there is also a more straigh-
forward way to use parts, using only the @ character followed by the
(markdown-formatted) title of this part:

@ Beginning
+ chapter_01.md
+ chapter_02.md
@ Middle
+ chapter_03.md
+ chapter_04.md
@ Appendix
- notes.md

With this shortcut, parts are always numbered. So

@ Beginning

is equivalent to

@+ some_file.md

with some_file.md containing only a title:

23

Beginning

3.3 Crowbook options
The first part of the configuration file is dedicated to pass options to
Crowbook. This is YAML syntax, so each line should be of the form
key: value. Note that in most cases you don’t have to put string in
quotes, e.g.:

title: My title

It is however possible (and sometimes necessary) to escape some char-
acters to use quotes around strings:

title: "My: title!"

It is possible to use multiline strings with >- and then indenting the
lines that are part of the string:

title: >-
A
long
title

author: Joan Doe

will set title to “A long title”. See block literals in YAML for
more information on the various way to insert multiline strings (which
mostly change the way newlines will or won’t be inserted).

A final note on the syntax: all options must be set before the first
chapter inclusion (that is, a line beginning with ‘+’, ‘-’, ‘x.’ (where x is
a number) or ‘!’).

Metadata
Metadata are data about the book. Except for cover, which points to
an image file, all its fields are strings. The main metadata are:

• author: the author(s) of the book.

• title: the title of the book.

• lang: the language of the book. The unicode language code
should be used, e.g. en_GB or en, fr_FR, ...

https://en.wikipedia.org/wiki/YAML
https://en.wikipedia.org/wiki/YAML#Block_literals

24

• cover: path to an image file for the cover of the book (not dis-
played in all output formats).

There are also additional metadata:

• subject

• description

• license

• version

• date

You can define your own metadata by starting an option name with
metadata.foo.

All metadata are accessible from templates, see Templates.

The import special option
The special import option allows you to include the options of another
book configuration file. E.g., assuming that you want some common
options to be applied to both foo.book and bar.book, you can create
a common.book file:

author: Joan Doe
lang: en
license: "Copyright (C) Joan Doe. All rights reserved."

html.header: "[Joan Doe's website](http://joan-doe.com)"
tex.template: my_template.tex

You can then include this file in foo.book:

import: common.book
title: Foo

+ foo_01.md
+ foo_02.md

Or include it in bar.book, but override some of its features:

25

import: common.book
title: Bar
license: CC-BY-SA # Override the license from common.book

+ bar_01.md

Output options
These options specify which files to generate.

Note that all file paths are relative to the directory where the config
file is, not to the one where you run crowbook. So if you set

output.epub: foo.epub

and runs

$ crowbook some/dir/config.book

foo.epub will be generated in some/dir, not in your current directory.
Crowbook will try to generate each of the output.xxx files that are

specified. That means that you’ll have to set at least one of those if
you want a call to

$ crowbook my.book

to generate anything. (It’s still possible to generate a specific format,
and only this one, by using the --to and --output argument on the
command line).

Note that some formats depend on some commands being installed
on your system. Most notably, Crowbook depends on LaTeX (xelatex
by default, though you can specify the command to use with tex.
command) to generate a PDF file, so PDF rendering won’t work if it is
not installed on your system. Crowbook also uses the zip command to
generate the EPUB and ODT files.

Current output options are:

• output.html: renders a standalone HTML file.

• output.html.dir: render a HTML directory with one page by
chapter.

• output.epub: renders an EPUB file.

• output.tex: renders a LaTeX file.

26

• output.pdf: renders a PDF file (using tex.command).

(There are other output options for generating proofreading files, see
Proofreading.)

output.base_path

Additionally, the output.base_path option allows you to set where the
output files will be written (relatively to the book configuration file).
E.g.,

output.base_path: docs/book
output.epub: book.epub

will render the EPUB file in docs/book/book.epub.

Input options
Crowbook does its best to improve the typography of your text. De-
fault settings should be good enough for most usages, but you can
enable/disable specific options:

• input.clean: if set to false, will disable all typographic “clean-
ing” (default: true). The clean algorithm is dependent on the
language, though currently there is only a variant implemented
for fr (french), dealing with the specific non-breaking spaces rules
for this language.

• input.clean.smart_quotes: if set to false, disable the “smart
quote” feature, that (tries to) replace straight quotes with curly
ones. As it is an heuristics and can’t be perfect, you might want
to disable it in some circumstances (default: true).

• input.clean.ligature_dashes: if set to true, will convert --
to en dash (–) and --- to em dash (—). This can be useful if you
want to use these characters but can’t access them easily on your
keymap; however, as it can also cause problems if you do want to
have two successive dashes, it is disabled by default.

• input.clean.ligature_guillemets is a similar feature for french
‘guilemets’, replacing << and >> to « and ». For the same reason,
it is also disabled by default.

27

Generic options for rendering
These options allow to configure the rendering; they are used (or at
least should be) for all formats.

• rendering.highlight: specify if and how to perform syntax
highlighting for code blocks. Default value is highlight.js; this
will use highlight.js for HTML rendering, and will not per-
form any syntax highlighting for other output formats. Other
valid values are:

– syntect: uses the syntect library to perform syntax high-
lighting. This has the advantage of also enabling syntax
highlighting for LaTeX/PDF and EPUB formats; however
syntect support is still experimental in Crowbook.

– none: disable syntax highlighting.

• rendering.num_depth: an integer that represents the maximum
level of numbering for your book. E.g., 1 will only number chap-
ters, while 2 will number chapters, sections, but not anything
below that. 6 is the maximum level and turns numbering on for
all headers. (Default is 1.)

• rendering.chapter.template and rendering.part.template:
the strings that will be used for chapter and part titles. It is
possible to include Markdown formatting in this template, but it
isn’t advised, because it might cause problems for some formats
(e.g. your EPUB file might not be correct anymore).

• rendering.part.roman_numerals and rendering.chapter.roman_
numerals: these two booleans allow you to specify if you want
roman numerals for part or chapter numbers (default is true for
part numbers, and false for chapter numbers).

• rendering.inline_toc: if set to true, Crowbook will include a
table of contents at the beginning of the document.

• rendering.inline_toc.name: the name of this table of contents
as it should be displayed in the document.

• rendering.initials: if set to true, Crowbook will use initials,
or “lettrines”, displaying the first letter of each chapter bigger
than the others.

• rendering.part.reset_counter: set it to false if you don’t
want your chapter numbers to start again at 1 at each part.

https://highlightjs.org/
https://crates.io/crates/syntect

28

HTML Options
These options allow you to customize the HTML rendering (used both
by the default HTML standalone renderer and the HTML multifile
renderer):

• html.icon: allows to set a favicon for the page.

• html.header and html.footer allow to set a custom (Mark-
down) string at the top and at the bottom of the HTML page.
This is actually a template, so you can access metadata, such as
{{{author}}}, {{{title}}}, or {{{version}}} in it. See the
template chapter for more information on the fields you can use.

• html.css allow to set up a custom CSS file. You can also redefine
the colours in a file and set it using html.css.colours.

Options for standalone HTML

There are a few options specific to the standalone HTML renderer
(default, set with output.html):

• html.standalone.one_chapter, if set to true, will only display
one chapter at a time (using Javascript), making it look similarly
to the multifile HTML.

• html.standalone.template allows you to change or modify the
HTML template for standalone HTML.

Options for LaTeX/PDF rendering
These options allow you to customize the LaTeX renderer (and, thus,
the generated PDF documents):

• tex.template specifies a different LaTeX template.

• tex.class changes the LaTeX class used.

• tex.paper_size and tex.font.size (default a5paper and 10pt)
allows to modify the page and font size .

• tex.links_as_footnotes can be set to false if you don’t want
links to also appear as footnotes (which means losing them if it
is actually printed).

29

Options for EPUB rendering
There are also options specific to the EPUB format:

• epub.version can be set to 2 or 3 (default 2).

• epub.css can be useful if you want to specify a customized stylesheet.

Resources options
These options allow to embed additional files for some formats (cur-
rently, only EPUB). This can be useful for embedding fonts.

resources.files

A list of files or directories that should be added. It’s a whitespace-
separated list, so it can be, e.g.:

resources.files: font1.otf font2.otf

It is also possible to specify a directory (or multiple directories). So if
you have a fonts directories containing font1.otf and font2.otf,

resources.files: fonts

will be equivalent to:

resources.files: fonts/font1.otf fonts/font2.otf

default: not set

resources.out_path

This option determine where (in which directory), in the resulting doc-
ument, those files will be copied. The default is data, so by default
the resources.files in the first example above will search font1.
otf and font2.otf in the same directory than the .book file, and will
copy them to data/font1.otf and data/font2.otf in the EPUB file.
This is therefore this last path that you should use if you want to access
those files e.g. in a custom CSS stylesheet.

Note that if you pass directories to resources.files, the whole
directory would be copied. So assuming fonts/ contains font1.otf
and font2.otf

30

resources.files: fonts
resources.path: data

will copy these two files to data/fonts/font1.otf and data/fonts/
font2.otf (and not data/font1.otf and data/font2.otf).

Similarly, the whole path of resources.files is copied, so

resources.files: fonts/font1.otf fonts/font2.otf

will yield the same result.
default: data

3.4 Full list of options
Here is the complete list of options. You can always look at it by
running crowbook --list-options or crowbook -l.

Metadata
• author

– type: metadata
– default value: “”
– Author of the book

• title

– type: metadata
– default value: “”
– Title of the book

• lang

– type: metadata
– default value: en
– Language of the book

• subject

– type: metadata
– default value: not set
– Subject of the book (used for EPUB metadata)

31

• description

– type: metadata
– default value: not set
– Description of the book (used for EPUB metadata)

• cover

– type: path
– default value: not set
– Path to the cover of the book

Additional metadata
• license

– type: metadata
– default value: not set
– License of the book

• version

– type: metadata
– default value: not set
– Version of the book

• date

– type: metadata
– default value: not set
– Date the book was revised

Output options
• output.epub

– type: path
– default value: not set
– Output file name for EPUB rendering

• output.html

32

– type: path
– default value: not set
– Output file name for HTML rendering

• output.html.dir

– type: path
– default value: not set
– Output directory name for HTML rendering

• output.tex

– type: path
– default value: not set
– Output file name for LaTeX rendering

• output.pdf

– type: path
– default value: not set
– Output file name for PDF rendering

• output.odt

– type: path
– default value: not set
– Output file name for ODT rendering

• output.base_path

– type: path
– default value: “”
– Directory where those output files will we written

Rendering options
• rendering.highlight

– type: string
– default value: highlight.js

33

– If/how highligh code blocks. Possible values: “highlight.js”
(HTML-only, default), “syntect”, “none”

• rendering.initials

– type: boolean
– default value: false
– Use initials (‘lettrines’) for first letter of a chapter (experi-

mental)

• rendering.inline_toc

– type: boolean
– default value: false
– Display a table of content in the document

• rendering.inline_toc.name

– type: string
– default value: “{{{loc_toc}}}”
– Name of the table of contents if it is displayed in document

• rendering.num_depth

– type: integer
– default value: 1
– The maximum heading levels that should be numbered (0:

no numbering, 1: only chapters, ..., 6: all)

• rendering.chapter.template

– type: string
– default value: “{{{number}}}\\. {{{chapter_title}}}”
– Naming scheme of chapters

• rendering.chapter.roman_numerals

– type: boolean
– default value: false
– If set to true, display chapter number with roman numerals

• rendering.part.template

34

– type: string
– default value: “{{{loc_part}}} {{{number}}}”
– Naming scheme of parts

• rendering.part.roman_numerals

– type: boolean
– default value: true
– If set to true, display part number with roman numerals

• rendering.part.reset_counter

– type: boolean
– default value: true
– If set to true, reset chapter number at each part

Special option
• import

– type: path
– default value: not set
– Import another book configuration file

HTML options
• html.icon

– type: path
– default value: not set
– Path to an icon to be used for the HTML files(s)

• html.header

– type: string
– default value: not set
– Custom header to display at the beginning of html file(s)

• html.footer

– type: string

35

– default value: not set
– Custom footer to display at the end of HTML file(s)

• html.css

– type: template path
– default value: not set
– Path of a stylesheet for HTML rendering

• html.css.add

– type: string
– default value: not set
– Some inline CSS added to the stylesheet template

• html.css.colours

– type: template path
– default value: not set
– Path of a stylesheet for the colours for HTML

• html.js

– type: template path
– default value: not set
– Path of a javascript file

• html.css.print

– type: template path
– default value: not set
– Path of a media print stylesheet for HTML rendering

• html.highlight.js

– type: template path
– default value: not set
– Set another highlight.js version than the bundled one

• html.highlight.css

– type: template path

36

– default value: not set

– Set another highlight.js CSS theme than the default one

• html.side_notes

– type: boolean
– default value: false
– Display footnotes as side notes in HTML/Epub (experimen-

tal)

• html.escape_nb_spaces

– type: boolean
– default value: true
– Replace unicode non breaking spaces with HTML entities

and CSS

Standalone HTML options
• html.standalone.template

– type: template path
– default value: not set

– Path of an HTML template for standalone HTML

• html.standalone.one_chapter

– type: boolean
– default value: false
– Display only one chapter at a time (with a button to display

all)

• html.standalone.js

– type: template path
– default value: not set

– Path of a javascript file

37

Multifile HTML options
• html.dir.template

– type: template path
– default value: not set
– Path of a HTML template for multifile HTML

EPUB options
• epub.version

– type: integer
– default value: 2
– EPUB version to generate (2 or 3)

• epub.css

– type: template path
– default value: not set
– Path of a stylesheet for EPUB

• epub.css.add

– type: string
– default value: not set
– Inline CSS added to the EPUB stylesheet template

• epub.chapter.xhtml

– type: template path
– default value: not set
– Path of an xhtml template for each chapter

• epub.toc.extras

– type: boolean
– default value: true
– Add ‘Title’ and (if set) ‘Cover’ in the EPUB table of contents

• epub.escape_nb_spaces

38

– type: boolean
– default value: true
– Replace unicode non breaking spaces with HTML entities

and CSS

LaTeX options
• tex.links_as_footnotes

– type: boolean
– default value: true
– Add foontotes to URL of links so they are readable when

printed

• tex.command

– type: string
– default value: xelatex
– LaTeX command to use for generating PDF

• tex.template

– type: template path
– default value: not set
– Path of a LaTeX template file

• tex.template.add

– type: string
– default value: not set
– Inline code added in the LaTeX template

• tex.class

– type: string
– default value: book
– LaTeX class to use

• tex.paper_size

– type: string

39

– default value: a5paper
– Specifies the size of the page.

• tex.title

– type: boolean
– default value: true
– If true, generate a title with \maketitle

• tex.font.size

– type: integer
– default value: not set
– Specify latex font size (in pt, 10 (default), 11, or 12 are

accepted)

Resources option
• resources.files

– type: string
– default value: not set
– Whitespace-separated list of files to embed in e.g. EPUB

file; useful for including e.g. fonts

• resources.out_path

– type: path
– default value: data
– Paths where additional resources should be copied in the

EPUB file or HTML directory

• resources.base_path

– type: path
– default value: not set
– Path where to find resources (in the source tree). By default,

links and images are relative to the Markdown file. If this is
set, it will be to this path.

• resources.base_path.links

40

– type: path
– default value: not set
– Set base path but only for links. Useless if resources.base_path

is set

• resources.base_path.images

– type: path
– default value: .
– Set base path but only for images. Useless if resources.base_path

is set

• resources.base_path.files

– type: path
– default value: .
– Set base path but only for additional files. Useless if re-

sources.base_path is set.

• resources.base_path.templates

– type: path
– default value: .
– Set base path but only for templates files. Useless if re-

sources.base_path is set

Input options
• input.clean

– type: boolean
– default value: true
– Toggle typographic cleaning of input markdown according

to lang

• input.clean.smart_quotes

– type: boolean
– default value: true
– If enabled, tries to replace vertical quotations marks to curly

ones

41

• input.clean.ligature.dashes

– type: boolean
– default value: false
– If enabled, replaces ‘--’ to en dash (’–’) and ‘---’ to em dash

(’—’)

• input.clean.ligature.guillemets

– type: boolean
– default value: false
– If enabled, replaces ‘«’ and ‘»’ to french “guillemets” (’«’

and ‘»’)

• input.yaml_blocks

– type: boolean
– default value: false
– Enable inline YAML blocks to override options set in config

file

Crowbook options
• crowbook.temp_dir

– type: path
– default value: “
– Path where to create a temporary directory (default: uses

result from Rust’s std::env::temp_dir())

• crowbook.zip.command

– type: string
– default value: zip
– Command to use to zip files (for EPUB/ODT)

• crowbook.verbose

– type: boolean
– default value: false
– Make Crowbook display more messages

42

Output options (for proofreading)
• output.proofread.html

– type: path
– default value: not set
– Output file name for HTML rendering with proofread fea-

tures

• output.proofread.html.dir

– type: path
– default value: not set
– Output directory name for HTML rendering with proofread

features

• output.proofread.pdf

– type: path
– default value: not set
– Output file name for PDF rendering with proofread features

Proofreading options (only for output.proofread.* tar-
gets)

• proofread

– type: boolean
– default value: false
– If set to false, will disactivate proofreading even if one of

output.proofread.x is present

• proofread.nb_spaces

– type: boolean
– default value: true
– Highlight non breaking spaces so it is easier to see if typog-

raphy is correct

• proofread.languagetool

– type: boolean

43

– default value: false
– If true, try to use language tool server to grammar check the

book

• proofread.languagetool.port

– type: integer
– default value: 8081
– Port to connect to languagetool-server

• proofread.repetitions

– type: boolean
– default value: false
– If set to true, use Caribon to detect repetitions

• proofread.repetitions.max_distance

– type: integer
– default value: 25
– Max distance between two occurences so it is considered a

repetition

• proofread.repetitions.fuzzy

– type: boolean
– default value: true
– Enable fuzzy string matching

• proofread.repetitions.fuzzy.threshold

– type: float
– default value: 0.2
– Max threshold of differences to consider two strings a repe-

tition

• proofread.repetitions.ignore_proper

– type: boolean
– default value: true
– Ignore proper nouns for repetitions

44

• proofread.repetitions.threshold

– type: float
– default value: 2.0
– Threshold to detect a repetition

Note that these options have a type, which in most case should be
pretty straightforward (a boolean can be true or false, an integer
must be composed by a number, a string is, well, any string). The
path type might puzzle you a bit, but it’s equivalent to a string, except
Crowbook will consider it relatively to the book file. The template
path type is just the path of a template. Metadata are just strings.

Chapter 4

Templates

Crowbook allows the user to specify a number of templates.1
Each of this template can be overriden by a custom one, by setting

e.g.:

html.css: my_template.css

in the book configuration file. The templates that you are most sus-
ceptible to modify are the following:

• html.css: stylesheet for HTML output;

• epub.css: stylesheet for EPUB output;

• tex.template: template of a LaTeX file.

4.1 Create and edit template
Except for inline templates, which are set directly in the book config-
uration file:

rendering.chapter.template: "{{{loc_chapter}}} {{{number}}}:
{{{chapter_title}}}"

most templates must be in a separate file:
1Some of them, though, are not “real” templates, they are just files that are

inserted, but can’t contain mustache tags. This will probably evolve in future
versions.

46

tex.template: my_template.tex

--print-template
The easiest way to create a new template is to start with the default
one. In order to do so, you can use the --print-template argument:

$ crowbook --print-template tex.template > my_template.tex

In order to get the chapter.xhtml template for EPUB3, you’ll also
have to use --set epub.version 3:

$ crowbook --print-template epub.chapter.xhtml --set epub.version
3 > my_epub3_template.xhtml

Mustache syntax
Crowbook uses rust-mustache as its templating engine, which allows to
use Mustache syntax in the templates.

It mainly boils down to using {{{foo}}}2 to insert the value of
variable foo in the document:

<h1 class = "title" >{{{title}}}<h1>
<h2 class = "author">{{{author}}}</h2>

Mustache also provides the possibility of checking whether a variable
is set:

{{#foo}}
Foo exists
{{/foo}}
{{^foo}}
Foo does not exist
{{^foo}}

Crowbook uses this and sets some variables to true to allow templates
to conditionally include some portions. E.g., in html.css:

2Mustache also provides the {{foo}} variant, which HTML-escapes the content
of the variable. You should not use this, as Crowbook already renders and correctly
escapes the variables it sets for use in templates.

https://crates.io/crates/mustache
http://mustache.github.io/

47

{{#lang_fr}}
/* Make list displays '–' instead of bullets */
ul li {

list-style-type: '–';
padding-left: .5em;

}
{{/lang_fr}}

In this case, Crowbook sets a variable whose name is equal to lang_foo
to true, allowing to have different styles for some elements according
to the language.

For more information about Mustache syntax, see Mustache man-
ual.

Syntax in LaTeX

Since LaTeX already uses a lot of curly brackets, the default template
sets an altenative syntax to access variables, with <<&foo>>3:

\title{<<&title>>}
\author{<<&author>>}
<<#has_date>>\date{<<&date>>}<</has_date>

4.2 List of templates
html.js
The javascript file used by both the standalone HTML renderer and
the multiple files HTML renderer.

This is not currently an actual template, just a plain javascript file
which cannot contain mustache tags.

html.css
The main CSS file used by both the standalone HTML renderer and
the multiple files HTML renderer.

3<<foo>> might also work, but the ampersand is required to prevent mustache
HTML-escaping the value. This is not good because:

1. escaping is already done by Crowbook before setting variable content;
2. escaping HTML in a LaTeX document won’t probably look good.

http://mustache.github.io/mustache.5.html
http://mustache.github.io/mustache.5.html

48

html.css.colours
A CSS file containing only colour settings. Used by html.css.

This is not currently an actual template, just a plain CSS file which
cannot contain mustache tags.

html.css.print
An additional CSS file used by both the standalone HTML renderer
and the multiple files HTML renderer. Its purpose is to provide CSS
instructions for printing (i.e., when the user clicks the print button in
her browser).

This is not currently an actual template, just a plain CSS file which
cannot contain mustache tags.

html.highlight.js
A javascript file used by both HTML renderers to highlight codes in
code blocks. It should be a variant of highlight.js.

This is not an actual template, just a plain javascript file.

html.highlight.css
A CSS file used by both HTML renderers to set the theme of high-
light.js. It should, though, be an highlight.js theme.

This is not an actual template, just a plain CSS file.

html.standalone.js
A javascript file used only by the standalone HTML renderer. Its main
purpose is to handle the displaying of a single chapter at a time when
one_chapter is set to true.

html.standalone.template
The main HTML template for standalone HTML renderer.

html.dir.template
The main HTML template for multiple files HTML renderer.

https://highlightjs.org/
https://highlightjs.org/
https://highlightjs.org/

49

tex.template
The main (and currently only) template used by the LaTeX renderer.

epub.chapter.xhtml
This template is the main template used by the Epub renderer. It
contains the XHTML template that will be used for each chapter.

epub.css
This template is used by the Epub renderer and contains the style sheet.

Inline templates
Crowbook also has some inline templates, that are set in the book
configuration file:

• tex.template.add, html.css.add and epub.css.add allow to
specify some LaTeX or CSS code directly in the book configura-
tion file. This code will be added respectively to tex.template,
html.css or epub.css template. For CSS templates, this code is
inserted at the end of the template (allowing to redefine rules that
are set by the template); for the LaTeX template, the code is in-
serted at the end of the preambule, just before the \begin{document}
tag.

• rendering.inline_toc.name sets the name of the inline table of
content, if it is displayed. By default, is is set to {{{loc_toc}}},
that is, a localised version of “Table of Contents”.

• rendering.chapter.template sets the naming scheme for chap-
ters, while rendering.part.template does the same for part.

4.3 List of accessible variables
Metadata
For every template, Crowbook exports all of the metadata:

• author;

• title;

50

• lang;

• subject;

• description;

• license;

• version;

• date;

• any option metadata.foo defined in the book configuration file
will also be exported as metadata_foo.

These metadata can contain Markdown, which will be rendered. E.g.,
setting date: “20th of **september**” will render september in
bold, using tag for HTML or \textbf for LaTeX. (It might be
a bad idea to insert Markdown into author or title fields, and it
certainly is for lang, but it can be useful for custom metadata or for
fields like description).

For each metadata foo that is set, Crowbook also inserts a has_
foo bool set to true. This allows to use Mustache’s section for some
logic, e.g.:

{{{title}}}
{{#has_version}}, version {{{version}}}{{/has_version}}

will avoid rendering “, version” when version is not set.

Localisation strings
For all templates, Crowbook also exports some localisation strings loc_
foo. They currently include:

Localisation key Value in english
loc_toc Table of contents
loc_chapter Chapter
loc_display_all Display all chapters
loc_display_one Display one chapter

51

Template-dependent values

Crowbook also exports some additional fields for some templates, see
below.

52

Mustache tag Value Available in...
content A rendered version

of the book or chap-
ter’s content

html.standalone.
template, html.
dir.template, tex.
template, epub.
chapter.xhtml

toc A rendered version
of the table of con-
tents

html.standalone.
template, html.
dir.template

has_toc Set to true if the ta-
ble of contents is not
empty

html.standalone.
template

colours The content of
html.css.colours

html.css

footer The content of
html.footer

html.standalone.
template, html.
dir.template

header The content of
html.header

html.standalone.
template, html.
dirtemplate

script The javascript file
for this HTML doc-
ument

html.standalone.
template, html.
dir.template

style The CSS file for this
HTML document,
that is, a rendered
version of html.css

html.standalone.
template

A variable whose
name corresponds
to lang in book
options (e.g. lang_
en if lang is set to
“en”, lang_fr if it
is set to “fr”, ...)

true html.css, epub.css

chapter_title The title of current
chapter

html.dir.
template, epub.
chapter.xhtml,
rendering.
chapter.template

highlight_code True if html.
highlight_code is
true

html.standalone.
template, html.
dir.template

highlight_css The content of
html.highlight.
css

html.standalone.
template

highlight_js The base64-encoded
content of html.
highlight.js

html.standalone.
tempate

common_script The content of
html.js

html.single.js

one_chapter True if html.
standalone.one_
chapter is true, else
not present

html.standalone.
template, html.
standalone.js

book.svg The base64-encoded
image of the button
to display all chap-
ters

html.standalone.
js, html.
standalone.
template

pages.svg The base64-encoded
image of the button
to display one chap-
ter at a time

html.standalone.
js, html.
standalone.
template

favicon The <link rel =
“icon” ...> tag if
html.icon is set

html.standalone.
template, html.
dir.template

menu_svg The base64-encoded
image of the ham-
burger menu image

html.standalone.
template

prev_chapter Title and a link of
previous chapter

html.dir.template

next_chapter Title and a link of
nexts chapter

html.dir.template

class The content of tex.
class

tex.template

book True if tex.class is
book, not set else

tex.template

tex_lang The babel equivalent
of lang

tex.template

tex_title Set to true to run
\maketitle

tex.template

tex_size The font size to pass
to the LaTeX class

tex.template

has_tex_size Set to true if tex_
size is set

tex.template

initials True if rendering.
initials is true,
not set else

tex.template

additional_code Set to the content
of tex.template.
add, html.css.add
or epub.css.add

tex.template,
html.css, epub.css

Chapter 5

Proofreading with
Crowbook

Since version 0.9.1, Crowbook includes some proofreading features, that
can be enabled if you set one of the

• output.proofread.html

• output.proofread.html_dir

• output.proofread.pdf

output files. This allows you to generate different files for publishing
and proofreading (you probably don’t want to publish a version that
highlights your grammar errors or your repetitions).

Current proofreading features are:

• repetition detection;

• grammar check;

• highlighting non-breaking spaces.

5.1 Enabling proofreading
Since proofreading can take quite a lot of time, particularly for a long
book, it is disabled by default. You’ll have to run

54

$ crowbook --proofread my.book

or

$ crowbook -p my.book

to generate proofreading copies. Alternatively, if you want it to be ac-
tivated each time you run crowbook on this book (which is not recom-
manded for long books, particularly if you want to perform a grammar
check), you can set

proofread: true

in the book configuration file.

5.2 Repetition detection
Repetition detection is enabled with:

proofread.repetitions: true

It uses Caribon library to detect the repetition in your text. Since the
notion of a repetition is relatively arbitrary, it is possible to adapt the
settings. Default are:

The maximum distance between two identical words to
consider them a repetition
proofread.repetitions.max_distance: 25
The minimal number of occurences to consider it a
repetition
proofread.repetitions.threshold: 2.0
Ignore proper nouns (words starting by a capital,
not at a beginning of a sentence)
proofread.repetitions.ignore_proper: true

Activate fuzzy string matching
proofread.repetitions.fuzzy: true
The maximal ratio of difference to consider
that two words are identical
(E.g., with 0.2, "Rust" and "Lust" won't be
considered as the same word, but they will be with
0.5)

https://github.com/lise-henry/caribon

55

proofread.repetitions.fuzzy.threshold: 0.2

For more information, see Caribon’s documentation.

Currently, repetitions are not displayed in PDF proof-
reading output.

5.3 Grammar checking
Crowbook can also use LanguageTool to detect grammar errors in your
text. It is, however, a bit more complex to activate.

First, you’ll have to activate this feature in your book configuration
file:

Activate language tool support
proofread.languagetool: true
(Optional) Sets the port number to connect to (default
below)
proofread.languagetool.port: 8081

You’ll then have to download the stand-alone version of LanguageTool.
It includes a server mode, which you’ll have to launch:

$ java -cp languagetool-server.jar org.languagetool.server.HTTPServer
--port 8081

You can also use the LanguageTool GUI (languagetool.jar) and start
the server from the menu “Text Checking -> Options”. This also al-
lows you to configure LanguageTool more precisely by activating or
deactivating rules.

You can then run Crowbook, and it will highlight grammar errors
in HTML or PDF proofreading output files.

Note: running a grammar check on a long book (like a
novel) can take up to a few minutes.

5.4 Highlighting non-breaking spaces
The last proofreading feature is a bit less important, but it can be
useful in some cases. It is is dis/activated by setting proofread.nb_
spaces to “true” or “false”, and it will highlight different sort of non-
breaking spaces in HTML proofreading output files. This can be useful

https://github.com/lise-henry/caribon
https://languagetool.org/
https://languagetool.org/

56

in some cases, but it is mostly a debugging feature to check that the
french cleaner of Crowbook correctly replaces spaces with correct non-
breaking spaces in the relevant places.

Chapter 6

Tips and tricks

6.1 Using Crowbook with Emacs’ markdown
mode

If you use Emacs as a text editor, there is a nice Markdown mode to
edit Markdown files.

It is possible to use Crowbook for HTML previewing in this mode,
which requires only minimal configuration and tweaking:

(custom-set-variables
'(markdown-command "crowbook - -qs --to html --output
-"))

You can then use markdown-preview (or C-c C-c p) to run Crowbook
on this file and preview it in your browser, or run markdown-live-
preview-mode to see a live preview (updated each time you save you
file) in Emacs’ integrated browser.

Some explanations if it looks a bit cryptic to you
We set markdown-command to crowbook, the reason for this is a bit ob-
vious. The arguments we give to crowbook might be a bit less obvious:

• the fist argument, -, is actually the book file: it tells crowbook
to read it from standard input.

• -qs or --quiet --single tells Crowbook that is a a standalone
markdown file, and not a book configuration file, and to be a bit
quiet on error/info messages;

https://www.gnu.org/software/emacs/
http://jblevins.org/projects/markdown-mode/
http://xkcd.com/1742/

58

• --to html specifies that HTML must be generated;

• --output - tells Crowbook to display the result on the stdout,
even if you set output.html to some_file.html.

Limitations
While it renders correctly, this only works really nicely on standalone
Markdown files where you have specified, e.g.:

author: Your name
title: Some title

Else, it will sets author and title to the default values.

6.2 Embedding fonts in an EPUB file
In order to embed fonts in an EPUB file, you’ll first have to edit the
stylesheet, which you can first obtain with:

$ crowbook --print-template epub.css > my_epub_stylesheet.css

You’ll need to use the @font-face attribute:
@font-face {

font-family: MyFont;
src: url(data/my_font.ttf);

}

Then you can add my_font.ttf to the files that need to be added to
the EPUB zip file:

title: My Book
author: Me

cover: cover.png
output.epub: book.epub

resources.files: my_font.ttf

(Note that you’ll have to repeat the process the different font-weight
and font-style variants of your font if you want it to display correctly
when there is some text in bold, italics, or both.)

https://developer.mozilla.org/fr/docs/Web/CSS/@font-face

Chapter 7

Contributing

Crowbook is a free software, and you can contribute to it. There are
some things that can be accessible even if you don’t know anything
about programming.

7.1 Internationalization
Crowbook aims to support multiple languages. However, unfortunately,
currently only english, french, and (in a more limited way) spanish
are currently supported. If you want to have better support for the
language you write in, there are easy things you can do:

• Provide a translation for the few strings that Crowbook insert
into the rendered documents. This is really easy, as there are
currently less than a dozen of them, and you just need to create
a new variant of the lang/en.yaml file.

• Open an issue about the typographic rules in your language, if
Crowbook doesn’t cover them.

• Provide a translation for the Crowbook program. It requires cre-
ating a variant of the .po file, which is a bit more work because
(at this time) it’s around 1,500 lines (and less a priority than
the first item of this list, as this translation only affects the the
command-line interface and not the rendered documents).

https://github.com/lise-henry/crowbook/blob/master/lang/en.yaml
https://github.com/lise-henry/crowbook/issues
https://github.com/lise-henry/crowbook/blob/master/lang/fr.po

60

ChangeLog

0.11.1 (2017-01-05)
• Rendering:

– Avoid page break before or after a separating rule.
– Add support for syntect for syntax highlighting. This is

activated by setting rendering.highlight to syntect (see
below).

– EPUB:
* Set back HTML escape of narrow non-breaking spaces
to true by default (it caused problems on some readers,
but cause much more serious one if false).

* Add more information to guide/nav landmarks.
– LaTeX/PDF:

* Improve the way code blocks are displayed, using the
mdframed package.

* Try to reduce the issues of too long lines when using code
and code blocks, by inserting \allowbreak{} directive
after some characters (., /, _, ...).

* Block quotes are now displayed in italics.
* Tables now use tabularx, which allows to break too
long lines (it still doesn’t break pages, though).

• New options:

– rendering.highlight can be set to none, highlight.js
(by default, enables syntax highlighting via Javascript, but
only on HTML document) or syntect (doesn’t necessitate
javascript, and can work in EPUB or LaTeX, but more ex-
perimental at this point).

https://crates.io/crates/syntect

62

• Deprecated options:

– html.highlight_code (use rendering.highlight instead).

• Bugfixes:

– HTML (standalone): fix the template that contained invalid
HTML code.

0.11.0 (2016-12-31)
Substantial changes in this release, the more important one being sup-
port for parts!

• Breaking changes: the API has undergone some breaking changes,
hoping they will be the last ones for a while. API should now be
more simple and consistent (?). This version contains also sub-
stantial options renaming (see below).

• Crowbook now supports parts (above the “chapter” level), using
the ‘@’ character in the book configuration file.

• Command-line interface:

– Behaviour of --to should now be consistent for all output
formats.

– If --output is set to -, prints to stdout.
– Conversely, if <BOOK> is set to -, reads from stdin.
– Path specified by --output is now interpreted relatively to

current directory (and not depending on where <BOOK> is or
its options).

• Rendering:

– Chapters with no titles now have an empty title added (so
it can at least display e.g. “Chapter X”).

– EPUB:
* The toc.ncx file now displays links to “title” and (if
set) “cover” (can be deactivated, see below).

* The toc.ncx file now displays toc levels below chapter.
* The table of contents is now displayed inline if rendering.
inline_toc is set to true.

63

• New options:

– epub.toc.extras, set to true by default, will add links to
the title and the cover (if it is set) in the table of contents.

– epub.escape_nb_spaces, similar to html.escape_nb_spaces
and set to false by default since at least Kobo reader don’t
seem to be able to understand the CSS to escape those nb
spaces...

– rendering.chapter.roman_numerals, if set to true, will
display chapter numbers using roman numerals.

– rendering.part.roman_numerals, if set to true (it is by
default) will display part numbers using roman numerals.

– rendering.part.template specifies the numbering scheme
of parts.

– rendering.part.reset_counter, if set to true (it is by
default), resets chapter number to zero after a part.

• Renamed options:

– import_config renamed to import.
– rendering.chapter_template renamed to rendering.chapter.

template.
– html_single.html renamed to html.standalone.template.
– html_single.js renamed to html.standalone.js.
– html_single.one_chapter renamed to html.standalone.

one_chapter.
– output.html_dir renamed to output.html.dir.
– output.proofread.html_dir renamed to output.proofread.

html.dir.
– html_dir.index.html and html.dir.chapter.html have

been merged and both renamed to html.dir.template.
– tex.font_size renamed to tex.font.size.

• Bugfixes:

– EPUB:
* Fix duplicate HTML escaping (resulting in e.g. ”&”
instead of ”&”).

64

– HTML directory:
* Fix panic when trying to generate html directory in
“../xxx” (#23).

* Fix “previous chapter” links that were not displayed
when “html.header” was set.

– HTML:
* Fix the way initial letter is displayed if rendering.
initials is true.

• Internationalization:

– Strings in generated Crowbook documents (such as “Table
of contents”, “Title”, “Cover” and such) are now translated
in spanish.

0.10.4 (2016-12-16)
• New options:

– tex.font_size specifies an optional font size (in pt) passed
to the LaTeX class (must be 10, 11 or 12).

– tex.title can be set to false to avoid rendering the title
with \maketitle.

– tex.paper_size specifies the paper size for PDF output.
– tex.template.add, html.css.add and epub.css.addallow

to specify inline LaTex or CSS code in the book configuration
file that will be added respectively to tex.template.add,
html.css.add and epub.css.add.

– html.icon allows to specify the path of an icon for HTML
documents.

• Command-line interface:

– Paths that are displayed should now be normalized, e.g.
“foo/bar.pdf” instead of “baz/../foo/bar.pdf”.

• Rendering:

– HTML:
* The default CSS style has been slightly modified.

https://github.com/lise-henry/crowbook/issues/23

65

0.10.3 (2016-11-19)
• Building:

– Crowbook now requires rustc >= 1.13.0 to build.
– Pre-built binaries now all include the proofreading feature.
– Linux binaries are now linked against musl library so they

should really work on any Linux platform.

• Bugfixes:

– Fixed escaping of author and title fields.
– Fixed text cleaning in ODT rendering that causes corrupt

files to be generated.

• CommandLine Interface:

– Crowbook displays clearer error messages when unable to
launch latex or zip commands.

– Crowbook uses term library in order to display colours cor-
rectly on e.g. Windows.

– The new argument --lang (or -L) allows to set the runtime
language used by Crowbook, overriding LANG environment
variable.

– --list-options no longer uses colours as it caused prob-
lems depending on the terminal or when piping to less.

0.10.2 (2016-10-21)
Only minor changes in this version:

• Options:

– author and title’s default values are both set to the empty
string, instead of Anonymous and Untitled.

– input.autoclean has been renamed input.clean.
– input.smart_quotes has been renamed input.clean.smart_

quotes.
– new option: input.clean.ligature.dashes will (if set to

true) replace -- to en dash (–) and --- to em dash (—).

66

– new option: input.clean.ligature.guillemets will (if
set to true) replace << and >> to french guillemets (« and
»).

• Rendering:

– HTML: if html_single.one_chapter and rendering.inline_
toc are both set to true, only render the TOC if currently
displayed chapter is the first.

0.10.1 (2016-10-18)
Fixed a bug in fr.po translation that prevented building from fresh
install.

0.10.0 (2016-10-18)
This release contains some breaking changes (mostly for the API, which
has been split in separate libraries). It alse features some international-
ization support, and the program should now be tranlated if your LANG
environment variable is set to french.

• Breaking changes:

– Templates:
* Conditional inclusion depending on lang must now be
done using lang_LANG (e.g. lang_fr, lang_en, and so
on). This might impact custom epub.css and html.
css templates.

– API:
* The escape module has been moved to a separate crate,
crowbook_text_processing. The cleaner module is
no longer public, but the features it provided are also
available in crowbook_text_processing.

• New options:

– html.css.colours allows to provide a CSS file that only
redefine the colour scheme. Such a file can be built from
crowbook --print-template html.css.colours.

67

– input.smart_quotes: if set to true, tries to replace ' and
" by curly quotes.

• Command line interface:

– Crowbook is now (imperfectly) localized in french, and can
be translated to other languages.

– Added the --quiet (or -q) argument, that makes crowbook
run without displaying any messages (except some error mes-
sages at this point).

• Rendering:

– HTML:
* The table of contents menu is no longer displayed in the
HTML single renderer if it doesn’t contain at least two
elements.

* The default colour theme has been modified a little.

• Bugfixes:

– Fix the escaping of non-breaking spaces in EPUB, as
and its friends aren’t valid entities in XHTML, apparently.

0.9.1 (2016-09-29)
This release mainly introduces generation of proofreading copies, allow-
ing, if they are set (and crowbook was compiled with the proofread
feature) to generate proofreading copies, using tools to check grammar
and detect repetitions. These features are currently experimental.

• New options:

– html.escape_nb_spaces, if set to true (by default), will
replace unicode non breaking spaces with HTML entites and
CSS so it can display correctly even if reader’s don’t have a
browser/font supporting these unicode symbols.

– Output files for proofread documents: output.proofread.
html, output.proofread.html_dir and output.proofread.
pdf.

– Proofread options proofread.repetitions and proofread.
nb_spaces have been added.

68

* proofread.nb_spaces, if set to true, highlights non-
breaking spaces so it is easier to check the correct ty-
pography of a book. Note that it requires that html.
escape_nb_spaces be set to true (default) to work.

* proofread.reppetitions, if set to true, uses Caribon
to highlight repetitions in a document. It also uses the
settings proofread.repetitions.fuzzy, proofread.
repetitions.max_distance, proofread.repetitions.
threshold, proofread.repetitions.fuzzy.threshold,
proofread.repetitions.ignore_proper. Note that
this feature is not built by default, you’ll have to build
crowbook with cargo build --release --features
“repetitions”.

• New default settings for options:

– tex.command is now xelatex by default.

• Rendering:

– LaTeX:
* Add support for xelatex in the default template.

– Improved french cleaner (see an article (in french) that talks
about what it does).

• Crowbook user guide: documentation has been updated to cor-
rectly reflect 0.9.x options.

• API:

– clap dependency is now optional, people who want to use
Crowbook as a library should include it with crowbook = {
version = “0.9”, default-features = false }. (clap
is still required to build a working binary).

0.9.0 (2016-09-23)
The main objective of this release is to clean public interfaces, in order
to limit breaking changes in the future. Ideally, all pre-1.0 releases
should thus be 0.9.x. Concretely, this meant three things:

• reducing the surface of Crowbook’s library API;

https://github.com/lise-henry/caribon
https://crowdagger.github.io/textes/articles/heuristique.html

69

• cleaning options names

• cleaning the names exported in templates and document them, in
order not to break user-defined templates in future (non-breaking)
releases. More detailed changes for this release:

• Breaking change for users: removed tex.short option, re-
placed by a more generic tex.class (default being book). html.
crowbook_link has also been removed.

• Renamed options. Using the old name will print a deprecation
warning but will still work for a while.

– temp_dir -> crowbook.temp_dir
– zip.command -> crowbook.zip.command
– verbose -> crowbook.verbose
– html.print_css -> html.css.print
– html.display_chapter -> html_single.one_chapter
– html.script -> html_single.js
– numbering -> rendering.num_depth
– numbering_template -> rendering.chapter_template
– display_toc -> rendering.inline_toc
– toc_name -> rendering.inline_toc.name
– enable_yaml_blocks -> input.yaml_blocks
– use_initials -> rendering.initials
– autoclean -> input.autoclean
– html_dir.css -> html.css (not really renamed, html_dir.

css isactually removed as there is no point in having differ-
ent CSS for standalone and multifile HTML rendering, is
it?)

• New options:

– More metadata: license, version and date. These meta-
data are not treated by the renderers, but they are exported
to the templates: {{{metadata}}} allows to access the con-
tent. If they are present, a has_metadata is also set to
true, allowing to do something like {{{title}}} {{#has_
version}}version {{{version}}} {{/has_version}}.

70

– Yet more metadata: it is possible to add custom metadata by
prefixing it with metadata.. They will then be accessible in
the templates, with dots (’.’) replaced by underscores (’_’).
E.g., with metadata.foo: bar you can access it in your
templates with {{{metadata_foo}}}.

– output.base_path specifies a directory where the output
files (set by output.FORMAT will be written.

– resources.base_path.templates specifies where templates
can be found.

• Rendering:

– Metadata can now contain Markdown and will be rendered
by the renderers. This might not be a good idea for common
fields (e.g. “title”), though. Use with caution.

– rendering.inline_toc.name can use {{{loc_toc}}} to spec-
ify a localized name.

– HTML:
* html.top and hstml.footer are now considered as tem-
plates, so you can use some {{{metadata}}} in it.

* Improved the way footnotes are displayed.
* In standalone HTML, footnotes are rendered at the end
of the document instead of at the end of the chapter,
unless html_single.one_chapter is true.

– LaTeX:
* If tex.class is set to article, chapters will be dis-
played as \sections since article class doesn’t handle
chapters.

* Except if tex.class is set to book, margins are now
symmetrical.

* LaTex template now uses version and date.

• Bugfixes:

– import_config only import options from another book file
that are not equal to the default ones and that haven’t al-
ready been set by the caller. E.g., author: foo then
import_config: bar.book won’t erase the author previ-
ously set.

71

– import_config now correctly translates the imported book’s
paths.

• Crowbook program:

– Still working to improve error messages.
– crowbook --list-options uses colours. This might hurt

your eyes.
– Display an error message when mustache can’t compile a

template, instead of panicking.

• Internal/API:

– Added static methods to Logger to allows displaying mes-
sages more easily/prettily.

– Reduce pubic API’s surface so less changes will need to be
considered breaking in the future.

0.8.0 (2016-09-19)
This release adds support for syntax higlighting in code blocks, cus-
tomized top and footer blocks for HTML rendering, and the special
import_config option that allows to import options from another book
file. It also provides (hopefully) better error messages.

• New options:

– import_configis not really an option, but allows to import
another configuration file, useful if you share a same set of
options between multiple books.

– use_initials (set to false by default) makes Crowbook use
initials (“lettrines”) at start of each chapter. Support is still
experimental.

– html.highlight_code (set to true by default) allows syntax
highlighting for code blocks, using highlight.js.

– html.higlight.css and html.highlight.js can be used
to provide other themes (default is default.css) and an high-
light.js build that support other languages.

– html.footer allows to specify custom footer. If not set,
html.crowbook_link allows to disable “Generated by Crow-
book” message.

72

– html.top allows to specify a custom header that will be
displayed at the top of HTML file(s).

• Deprecated options:

– side_notes has been renamed html.side_notes.

• Crowbook program:

– All output formats are now rendered concurrently.
– Better error messages. Crowbook now tries to give more

information when displaying an error, with the file name
where a problem was found, and, in some cases, the line. It
also tries to detect errors (such as files not found) sooner.

– Some “warning” messages have also been “moved” to error
messages, to make sure they are displayed even when crow-
book isn’t runned with --verbose.

• Rendering:

– Hidden chapter now produce empty \chapter*{} and <h1>
in LaTeX and HTML. This allow to delimit a chapter break
even if nothing is displayed.

• Bugfixes:

– Navigation menu of standalone HTML didn’t include a call
to javascript when html.display_chapter was set to true,
meaning it didn’t display the chapter correctly.

– Implementations of Image and StandaloneImage were re-
versed in LaTeX.

– StandaloneImage urls were not adjusted (meanning that
running crowbook from another directory failed).

– Image paths are now found correctly in HtmlDir rendering
even if crowbook is called from another directory (same fix as
0.6’s for Epub and LaTeX, which was forgotten for HtmlDir).

• Internal/API:

– In order to have better error messages, there was a need
to refactor the Error type, and make more methods return
Result<X> instead of X. The API is, therefore, quite modi-
fied.

– Added a Renderer trait used by the various renderers.
– Removed some methods from public API.

73

0.7.0 (2016-09-11)
This releases renders images differently when they are on a standalone
paragraph or inside a paragraph.

• Internal/API:

– Token has a new variant, StandaloneImage. This is used
to distinguish an image that is alone in a paragraph of an
image that is inlined alongside text.

– Parser.parse method now distingues between Image and
StandaloneImage. Currently, an image is considered “stan-
dalone” if it is the sole element of a paragraph, even if it is
among a link.

– Token has a new is_image method.

• Rendering:

– Standalone images are now rendered differently than inline
images (80% of width VS original size) in HTML/EPUB and
LaTeX.

0.6.0 (2016-09-09)
• Deprecated options:

– nb_char: since it was only used for french cleaner and for
typography reasons it’s better to use different non breaking
spaces according to context, this option was not really useful
anymore.

• Rendering:

– Images are now displayed at 80% width of the page.

• Bugfixes:

– Image paths are now found correctly in LaTeX and EPUB
rendering even if crowbook is called from another directory.

– Fixed a bug in French cleaner when a string to clean ended
by a non-breaking space (space was doubled with a breaking
one).

– LaTeX/PDF:

74

* “Autocleaning” is now also activated (for french at least)
for LaTeX rendering, since it doesn’t correctly insert
non-breaking spaces for e.g. ‘«’ or ‘»’.

* Fixed escaping of -- to -{}- to avoid tex ligatures.
– HTML/EPUB:

* html.display_chapter now defaults to false (e.g., by
default the HTML displays the entirety of a book).

* Fixed rendering of lists when lang is set to fr.
* Links are now HTML-escaped, fixing errors in XHTML
(for EPUB rendering) when links contained ‘&’ charac-
ter.

0.5.1 (2016-04-14)
Mostly rendering fixes:

• Epub:

– Fix a validation problem when book contained hidden chap-
ters.

• French cleaner:

– Use semi-cadratine space instead of cadratine space for di-
alogs.

– Use non-narrow non-breaking spapce instead of narrow one
for ‘:’, ‘«’ and ‘»’ (following https://fr.wikipedia.org/wiki/Espace_ins%C3%A9cable#En_France).

• HTML:

– Add viewport meta tags.
– Standalone HTML:

* Don’t display the button to display chapter and the pre-
vious/next chapter link if html.display_chapter is set
to false.

* Fix chapter displaying when some chapters are not num-
bered.

– Multi-files HTML:
* Fix previous/next chapter display to make it consistent
with standalone HTML.

75

0.5.0 (2016-04-02)
• Crowbook now requires Rustc 1.7.0.

• It is now possible to render HTML in multiple files:

– output.html_dir will activate this renderer, and specify in
which directory to render these files;

– html_dir.css allows to override the CSS for this rendering;
– html_dir.index.html allows to specify a template for the

index.html page;
– html_dir.chapter.html allows to specify a template for

the chapters pages.

• New book options:

– tex.short: if set to true, the LaTeX renderer will use article
instead of book as document class, and will use the default
\maketitle command for article. This option is by default
set to false, except when Crowbook is called with --single.

– enable_yaml_blocks: parsing YAML blocks is no longer
activated by default, except when using --single. This is
because you might want to have e.g. multiple short stories
using YAML blocks to set their titles and so on, and a sep-
arate .book file to render a book as a collection of short
stories. In this case, you wouldn’t want the displayed title
or the output.pdf/html/epub files be redefined by the short
stories .md files.

– html.print_css: allows to specify a stylesheet for media
print

– html.display_chapter: displays one chapter at a time in
standalone HTML

– html.script: allows to specify a custom javascript file for
standalone HTML

– html_dir.script: same thing for multipage HTML
– resources.base_path: by default, Crowbook resolves local

links in markdown files relatively to the markdown file. This
option allows to resolve them relatively to a base path. This
option comes with two variants, resources.base_path.images
and resources.base_path.links, which only activate it

76

for respectively images tags and links tags. These two op-
tions are ignored when base_path is set. There is also
resources.base_path.files which specify where additional
files (see below) should be read, but this is one is set to .
(i.e., the directory where the .book file is) by default.

– resources.files: indicate a (whitespace-separated) list of
files that should be embedded. Currently only used with the
EPUB renderer.

– resources.out_path: indicate where resources.files should
be copied in the final document. Default to data, meaning
that files will be placed in a data directory in the EPUB.

• Rendering:

– Templates can now use localized strings according to the
lang option

– Standalone HTML now includes locale files using base64.

– Standalone HTML displays one chapter at a time, thouht it
can be changed via a button in the menu.

– HTML/EPUB: default CSS now uses the lang value do de-
termine how to display lists (currently the only difference is
it uses “–” when lang is set to “fr” and standard bullets for
other languages).

• Bugfixes:

– Fixed a bug of filename “resolution” when Crowbook was
called with --single (e.g., crowbook -s tests/test.md
would previously try to load ‘tests/tests/test.md).

– Epub renderer now uses the mime_guess library to guess the
mime type based on extension, which should fix the mime
type guessed for a wide range of extensions (e.g., svg).

• Internal/API:

– The Book::new, new_from_file, and new_from_markdown_
file take an additional options parameter. To create a
book with default options, set it to &[].

77

0.4.0 (2016-03-01)
• Crowbook now internally uses a true YAML parser, yaml_rust,

for its options. Since the “old” Crowbooks’s config format was
similar, but had some subtle differences, this is somewhat of a
breaking change:

– strings should now be escaped with “” in some cases (e.g. if
it contains special characters). On the other hand, it allows
to optionally escape a string with these quotes, which wasn’t
possible until then and might be useful in some cases.

– multiline strings now follow the YAML format, instead of
the previous “YAML-ish” format. This can impact the way
newlines are added at the end of a multiline string. See e.g.
this link for the various ways to include mulitiline strings in
Yaml.

• Crowbook now parses YAML blocks (delimited by two lines with
“---”) in Markdown files, ignoring keys that it doesn’t recognize.
This allows crowbook to be compatible(-ish) with Markdown that
contains YAML blocks for Jekyll or Pandoc.

• New option --single allows to give Crowbook a single Markdown
file (which can contain options within an inline YAML block)
instead of a book configuration file. This is useful for e.g. short
stories.

• Enhanced the way debugging/warning/info messages are handled
and displayed:

– Added a --debug option to the binary.

– Internal: added a Logger struct.

– Different levels of information (debug/warning/info/error)
get different colours.

• Bugfixes:

– Crowbook no longer crashes when called with the --to ar-
gument if it can’t create a file.

http://stackoverflow.com/questions/3790454/in-yaml-how-do-i-break-a-string-over-multiple-lines

78

0.3.0 (2016-02-27)
• Crowbook now tries to convert local links. That is, if you link to

a Markdown file that is used in the book. (e.g. README.md),
it should link to an appropriate inner reference inside the book.

• Latex renderer now supports (local) images.

• Epub renderer now embed (local) images in the EPUB file.

• Some changes to the HTML/Epub stylesheets.

• Internal (or usage as a library):

– Crowbook no longer changes current directory, which worked
in the binary but could cause problem if library was used in
multithreaded environment (e.g. in cargo test).

– More modules and methods are now private.
– Improved documentation.
– Added more unit tests.

• Bugfixes:

– Epub renderer now correctly renders unnumbered chapter
without a number in its toc.ncx file

0.2.2 (2016-02-25)
• Bugfixes:

– French cleaner now correctly replaces space after — (in e.g.
dialogs) with “em space”.

0.2.1 (2016-02-25)
• Bugfixes:

– HTML/Epub rendering no longer incorrectly increment chap-
ter count for unnumbered chapters.

– Latex: makes what is possible to avoid orverflowing the
page.

• Minor changes:

– Latex: improvement of the default way URLs are displayed.

79

0.2.0 (2016-02-25)
• Command line arguments:

– New argument --print-template now allows to print a
built-in template to stdout.

– New argument --list-options prints out all valid options
in a config file (or in set), their type and default value.

– New argument --set allows to define or override whatever
option set in a book configuration.

– --create can now be used without specifying a BOOK, print-
ing its result on stdout.

• Configuration file:

– Added support for multiline strings in .book files, with ei-
ther ‘|’ (preserving line returns) or ‘>’ (transforming line
returns in spaces)

– New option display_toc allows to display the table of con-
tents (whose name, at least for HTML, is specified by toc_
name) in HTML and PDF documents.

– Option numbering now takes an int instead of a boolean,
allowing to specify the maximum level to number (e.g. 1:
chapters only, 2: chapters and sectino, ..., 6: everything).

• Rendering:

– Added support for numbering all headers, not just level-1
(e.g., having a subsection numbered 2.3.1).

– Tables and Footnotes are now implemented for HTML/Epub
and LaTeX output.

• Internal:

– Refactored Book to use an HashMap of BookOptions instead
of having like 42 fields.

0.1.0 (2016-02-21)
• initial release

80

GNU LESSER
GENERAL PUBLIC
LICENSE

Version 2.1, February 1999

Copyright (C) 1991, 1999 Free Software Foundation, Inc. 51 Franklin
Street, Fifth Floor, Boston, MA 02110-1301 USA Everyone is permitted
to copy and distribute verbatim copies of this license document, but
changing it is not allowed.

[This is the first released version of the Lesser GPL. It also counts
as the successor of the GNU Library Public License, version 2, hence
the version number 2.1.]

Preamble

The licenses for most software are designed to take away your free-
dom to share and change it. By contrast, the GNU General Public
Licenses are intended to guarantee your freedom to share and change
free software--to make sure the software is free for all its users.

This license, the Lesser General Public License, applies to some
specially designated software packages--typically libraries--of the Free
Software Foundation and other authors who decide to use it. You can
use it too, but we suggest you first think carefully about whether this
license or the ordinary General Public License is the better strategy to
use in any particular case, based on the explanations below.

When we speak of free software, we are referring to freedom of use,
not price. Our General Public Licenses are designed to make sure that
you have the freedom to distribute copies of free software (and charge
for this service if you wish); that you receive source code or can get it

82

if you want it; that you can change the software and use pieces of it in
new free programs; and that you are informed that you can do these
things.

To protect your rights, we need to make restrictions that forbid
distributors to deny you these rights or to ask you to surrender these
rights. These restrictions translate to certain responsibilities for you if
you distribute copies of the library or if you modify it.

For example, if you distribute copies of the library, whether gratis
or for a fee, you must give the recipients all the rights that we gave you.
You must make sure that they, too, receive or can get the source code. If
you link other code with the library, you must provide complete object
files to the recipients, so that they can relink them with the library
after making changes to the library and recompiling it. And you must
show them these terms so they know their rights.

We protect your rights with a two-step method: (1) we copyright
the library, and (2) we offer you this license, which gives you legal
permission to copy, distribute and/or modify the library.

To protect each distributor, we want to make it very clear that there
is no warranty for the free library. Also, if the library is modified by
someone else and passed on, the recipients should know that what they
have is not the original version, so that the original author’s reputation
will not be affected by problems that might be introduced by others.

Finally, software patents pose a constant threat to the existence
of any free program. We wish to make sure that a company cannot
effectively restrict the users of a free program by obtaining a restrictive
license from a patent holder. Therefore, we insist that any patent
license obtained for a version of the library must be consistent with the
full freedom of use specified in this license.

Most GNU software, including some libraries, is covered by the
ordinary GNU General Public License. This license, the GNU Lesser
General Public License, applies to certain designated libraries, and is
quite different from the ordinary General Public License. We use this
license for certain libraries in order to permit linking those libraries
into non-free programs.

When a program is linked with a library, whether statically or using
a shared library, the combination of the two is legally speaking a com-
bined work, a derivative of the original library. The ordinary General
Public License therefore permits such linking only if the entire combi-
nation fits its criteria of freedom. The Lesser General Public License
permits more lax criteria for linking other code with the library.

We call this license the “Lesser” General Public License because

83

it does Less to protect the user’s freedom than the ordinary General
Public License. It also provides other free software developers Less of
an advantage over competing non-free programs. These disadvantages
are the reason we use the ordinary General Public License for many
libraries. However, the Lesser license provides advantages in certain
special circumstances.

For example, on rare occasions, there may be a special need to
encourage the widest possible use of a certain library, so that it becomes
a de-facto standard. To achieve this, non-free programs must be allowed
to use the library. A more frequent case is that a free library does the
same job as widely used non-free libraries. In this case, there is little
to gain by limiting the free library to free software only, so we use the
Lesser General Public License.

In other cases, permission to use a particular library in non-free
programs enables a greater number of people to use a large body of
free software. For example, permission to use the GNU C Library in
non-free programs enables many more people to use the whole GNU
operating system, as well as its variant, the GNU/Linux operating sys-
tem.

Although the Lesser General Public License is Less protective of
the users’ freedom, it does ensure that the user of a program that is
linked with the Library has the freedom and the wherewithal to run
that program using a modified version of the Library.

The precise terms and conditions for copying, distribution and mod-
ification follow. Pay close attention to the difference between a “work
based on the library” and a “work that uses the library”. The for-
mer contains code derived from the library, whereas the latter must be
combined with the library in order to run.

GNU LESSER GENERAL PUBLIC LICENSE TERMS AND CON-
DITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

1. This License Agreement applies to any software library or other
program which contains a notice placed by the copyright holder
or other authorized party saying it may be distributed under the
terms of this Lesser General Public License (also called “this Li-
cense”). Each licensee is addressed as “you”.

A “library” means a collection of software functions and/or data pre-
pared so as to be conveniently linked with application programs (which
use some of those functions and data) to form executables.

The “Library”, below, refers to any such software library or work
which has been distributed under these terms. A “work based on the

84

Library” means either the Library or any derivative work under copy-
right law: that is to say, a work containing the Library or a portion
of it, either verbatim or with modifications and/or translated straight-
forwardly into another language. (Hereinafter, translation is included
without limitation in the term “modification”.)

“Source code” for a work means the preferred form of the work for
making modifications to it. For a library, complete source code means
all the source code for all modules it contains, plus any associated
interface definition files, plus the scripts used to control compilation
and installation of the library.

Activities other than copying, distribution and modification are not
covered by this License; they are outside its scope. The act of running
a program using the Library is not restricted, and output from such a
program is covered only if its contents constitute a work based on the
Library (independent of the use of the Library in a tool for writing it).
Whether that is true depends on what the Library does and what the
program that uses the Library does.

1. You may copy and distribute verbatim copies of the Library’s
complete source code as you receive it, in any medium, provided
that you conspicuously and appropriately publish on each copy
an appropriate copyright notice and disclaimer of warranty; keep
intact all the notices that refer to this License and to the absence
of any warranty; and distribute a copy of this License along with
the Library.

You may charge a fee for the physical act of transferring a copy, and
you may at your option offer warranty protection in exchange for a fee.

1. You may modify your copy or copies of the Library or any portion
of it, thus forming a work based on the Library, and copy and
distribute such modifications or work under the terms of Section
1 above, provided that you also meet all of these conditions:

a) The modified work must itself be a software library.

b) You must cause the files modified to carry prominent
notices
stating that you changed the files and the date of any
change.

c) You must cause the whole of the work to be licensed

85

at no
charge to all third parties under the terms of this
License.

d) If a facility in the modified Library refers to a
function or a
table of data to be supplied by an application program
that uses
the facility, other than as an argument passed when the
facility
is invoked, then you must make a good faith effort to
ensure that,
in the event an application does not supply such function
or
table, the facility still operates, and performs whatever
part of
its purpose remains meaningful.

(For example, a function in a library to compute square
roots has
a purpose that is entirely well-defined independent of
the
application. Therefore, Subsection 2d requires that any
application-supplied function or table used by this
function must
be optional: if the application does not supply it, the
square
root function must still compute square roots.)

These requirements apply to the modified work as a whole. If identifi-
able sections of that work are not derived from the Library, and can be
reasonably considered independent and separate works in themselves,
then this License, and its terms, do not apply to those sections when
you distribute them as separate works. But when you distribute the
same sections as part of a whole which is a work based on the Library,
the distribution of the whole must be on the terms of this License,
whose permissions for other licensees extend to the entire whole, and
thus to each and every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest
your rights to work written entirely by you; rather, the intent is to
exercise the right to control the distribution of derivative or collective
works based on the Library.

86

In addition, mere aggregation of another work not based on the
Library with the Library (or with a work based on the Library) on a
volume of a storage or distribution medium does not bring the other
work under the scope of this License.

1. You may opt to apply the terms of the ordinary GNU General
Public License instead of this License to a given copy of the Li-
brary. To do this, you must alter all the notices that refer to this
License, so that they refer to the ordinary GNU General Public
License, version 2, instead of to this License. (If a newer version
than version 2 of the ordinary GNU General Public License has
appeared, then you can specify that version instead if you wish.)
Do not make any other change in these notices.

Once this change is made in a given copy, it is irreversible for that copy,
so the ordinary GNU General Public License applies to all subsequent
copies and derivative works made from that copy.

This option is useful when you wish to copy part of the code of the
Library into a program that is not a library.

1. You may copy and distribute the Library (or a portion or deriva-
tive of it, under Section 2) in object code or executable form under
the terms of Sections 1 and 2 above provided that you accompany
it with the complete corresponding machine-readable source code,
which must be distributed under the terms of Sections 1 and 2
above on a medium customarily used for software interchange.

If distribution of object code is made by offering access to copy from
a designated place, then offering equivalent access to copy the source
code from the same place satisfies the requirement to distribute the
source code, even though third parties are not compelled to copy the
source along with the object code.

1. A program that contains no derivative of any portion of the Li-
brary, but is designed to work with the Library by being compiled
or linked with it, is called a “work that uses the Library”. Such
a work, in isolation, is not a derivative work of the Library, and
therefore falls outside the scope of this License.

However, linking a “work that uses the Library” with the Library cre-
ates an executable that is a derivative of the Library (because it con-
tains portions of the Library), rather than a “work that uses the li-
brary”. The executable is therefore covered by this License. Section 6
states terms for distribution of such executables.

87

When a “work that uses the Library” uses material from a header
file that is part of the Library, the object code for the work may be
a derivative work of the Library even though the source code is not.
Whether this is true is especially significant if the work can be linked
without the Library, or if the work is itself a library. The threshold for
this to be true is not precisely defined by law.

If such an object file uses only numerical parameters, data structure
layouts and accessors, and small macros and small inline functions (ten
lines or less in length), then the use of the object file is unrestricted,
regardless of whether it is legally a derivative work. (Executables con-
taining this object code plus portions of the Library will still fall under
Section 6.)

Otherwise, if the work is a derivative of the Library, you may dis-
tribute the object code for the work under the terms of Section 6. Any
executables containing that work also fall under Section 6, whether or
not they are linked directly with the Library itself.

1. As an exception to the Sections above, you may also combine or
link a “work that uses the Library” with the Library to produce
a work containing portions of the Library, and distribute that
work under terms of your choice, provided that the terms permit
modification of the work for the customer’s own use and reverse
engineering for debugging such modifications.

You must give prominent notice with each copy of the work that the
Library is used in it and that the Library and its use are covered by this
License. You must supply a copy of this License. If the work during
execution displays copyright notices, you must include the copyright
notice for the Library among them, as well as a reference directing the
user to the copy of this License. Also, you must do one of these things:

a) Accompany the work with the complete corresponding
machine-readable source code for the Library including
whatever
changes were used in the work (which must be distributed
under
Sections 1 and 2 above); and, if the work is an executable
linked
with the Library, with the complete machine-readable
"work that
uses the Library", as object code and/or source code,
so that the

88

user can modify the Library and then relink to produce
a modified
executable containing the modified Library. (It is
understood
that the user who changes the contents of definitions
files in the
Library will not necessarily be able to recompile the
application
to use the modified definitions.)

b) Use a suitable shared library mechanism for linking
with the
Library. A suitable mechanism is one that (1) uses at
run time a
copy of the library already present on the user's computer
system,
rather than copying library functions into the executable,
and (2)
will operate properly with a modified version of the
library, if
the user installs one, as long as the modified version
is
interface-compatible with the version that the work was
made with.

c) Accompany the work with a written offer, valid for at
least three years, to give the same user the materials
specified in Subsection 6a, above, for a charge no more
than the cost of performing this distribution.

d) If distribution of the work is made by offering access
to copy
from a designated place, offer equivalent access to copy
the above
specified materials from the same place.

e) Verify that the user has already received a copy of
these
materials or that you have already sent this user a copy.

For an executable, the required form of the “work that uses the Library”
must include any data and utility programs needed for reproducing the

89

executable from it. However, as a special exception, the materials to be
distributed need not include anything that is normally distributed (in
either source or binary form) with the major components (compiler,
kernel, and so on) of the operating system on which the executable
runs, unless that component itself accompanies the executable.

It may happen that this requirement contradicts the license restric-
tions of other proprietary libraries that do not normally accompany
the operating system. Such a contradiction means you cannot use both
them and the Library together in an executable that you distribute.

1. You may place library facilities that are a work based on the Li-
brary side-by-side in a single library together with other library
facilities not covered by this License, and distribute such a com-
bined library, provided that the separate distribution of the work
based on the Library and of the other library facilities is otherwise
permitted, and provided that you do these two things:

a) Accompany the combined library with a copy of the
same work
based on the Library, uncombined with any other library
facilities. This must be distributed under the terms
of the
Sections above.

b) Give prominent notice with the combined library of
the fact
that part of it is a work based on the Library, and
explaining
where to find the accompanying uncombined form of the
same work.

1. You may not copy, modify, sublicense, link with, or distribute
the Library except as expressly provided under this License. Any
attempt otherwise to copy, modify, sublicense, link with, or dis-
tribute the Library is void, and will automatically terminate your
rights under this License. However, parties who have received
copies, or rights, from you under this License will not have their
licenses terminated so long as such parties remain in full compli-
ance.

2. You are not required to accept this License, since you have not
signed it. However, nothing else grants you permission to modify

90

or distribute the Library or its derivative works. These actions
are prohibited by law if you do not accept this License. Therefore,
by modifying or distributing the Library (or any work based on
the Library), you indicate your acceptance of this License to do
so, and all its terms and conditions for copying, distributing or
modifying the Library or works based on it.

3. Each time you redistribute the Library (or any work based on the
Library), the recipient automatically receives a license from the
original licensor to copy, distribute, link with or modify the Li-
brary subject to these terms and conditions. You may not impose
any further restrictions on the recipients’ exercise of the rights
granted herein. You are not responsible for enforcing compliance
by third parties with this License.

1. If, as a consequence of a court judgment or allegation of patent in-
fringement or for any other reason (not limited to patent issues),
conditions are imposed on you (whether by court order, agree-
ment or otherwise) that contradict the conditions of this License,
they do not excuse you from the conditions of this License. If you
cannot distribute so as to satisfy simultaneously your obligations
under this License and any other pertinent obligations, then as
a consequence you may not distribute the Library at all. For
example, if a patent license would not permit royalty-free redis-
tribution of the Library by all those who receive copies directly or
indirectly through you, then the only way you could satisfy both
it and this License would be to refrain entirely from distribution
of the Library.

If any portion of this section is held invalid or unenforceable under any
particular circumstance, the balance of the section is intended to apply,
and the section as a whole is intended to apply in other circumstances.

It is not the purpose of this section to induce you to infringe any
patents or other property right claims or to contest validity of any such
claims; this section has the sole purpose of protecting the integrity of
the free software distribution system which is implemented by public
license practices. Many people have made generous contributions to
the wide range of software distributed through that system in reliance
on consistent application of that system; it is up to the author/donor
to decide if he or she is willing to distribute software through any other
system and a licensee cannot impose that choice.

This section is intended to make thoroughly clear what is believed
to be a consequence of the rest of this License.

91

1. If the distribution and/or use of the Library is restricted in cer-
tain countries either by patents or by copyrighted interfaces, the
original copyright holder who places the Library under this Li-
cense may add an explicit geographical distribution limitation
excluding those countries, so that distribution is permitted only
in or among countries not thus excluded. In such case, this Li-
cense incorporates the limitation as if written in the body of this
License.

2. The Free Software Foundation may publish revised and/or new
versions of the Lesser General Public License from time to time.
Such new versions will be similar in spirit to the present version,
but may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Library
specifies a version number of this License which applies to it and “any
later version”, you have the option of following the terms and condi-
tions either of that version or of any later version published by the Free
Software Foundation. If the Library does not specify a license ver-
sion number, you may choose any version ever published by the Free
Software Foundation.

1. If you wish to incorporate parts of the Library into other free
programs whose distribution conditions are incompatible with
these, write to the author to ask for permission. For software
which is copyrighted by the Free Software Foundation, write to
the Free Software Foundation; we sometimes make exceptions for
this. Our decision will be guided by the two goals of preserv-
ing the free status of all derivatives of our free software and of
promoting the sharing and reuse of software generally.

NO WARRANTY

2. BECAUSE THE LIBRARY IS LICENSED FREE OF CHARGE,
THERE IS NO WARRANTY FOR THE LIBRARY, TO THE
EXTENT PERMITTED BYAPPLICABLE LAW. EXCEPTWHEN
OTHERWISE STATED INWRITING THE COPYRIGHT HOLD-
ERS AND/OR OTHER PARTIES PROVIDE THE LIBRARY
“AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIM-
ITED TO, THE IMPLIEDWARRANTIES OFMERCHANTABIL-
ITY AND FITNESS FOR A PARTICULAR PURPOSE. THE
ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE

92

OF THE LIBRARY IS WITH YOU. SHOULD THE LIBRARY
PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL
NECESSARY SERVICING, REPAIR OR CORRECTION.

3. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW
ORAGREED TO INWRITINGWILL ANY COPYRIGHT HOLDER,
OR ANY OTHER PARTY WHO MAY MODIFY AND/OR RE-
DISTRIBUTE THE LIBRARY AS PERMITTED ABOVE, BE
LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GEN-
ERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAM-
AGES ARISING OUT OF THE USE OR INABILITY TO USE
THE LIBRARY (INCLUDING BUT NOT LIMITED TO LOSS
OF DATA OR DATA BEING RENDERED INACCURATE OR
LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A
FAILUREOF THE LIBRARY TOOPERATEWITH ANYOTHER
SOFTWARE), EVEN IF SUCH HOLDER OR OTHER PARTY
HAS BEEN ADVISED OF THE POSSIBILITY OF SUCHDAM-
AGES.

END OF TERMS AND CONDITIONS

How to Apply These Terms to Your New Libraries
If you develop a new library, and you want it to be of the greatest

possible use to the public, we recommend making it free software that
everyone can redistribute and change. You can do so by permitting
redistribution under these terms (or, alternatively, under the terms of
the ordinary General Public License).

To apply these terms, attach the following notices to the library. It
is safest to attach them to the start of each source file to most effectively
convey the exclusion of warranty; and each file should have at least the
“copyright” line and a pointer to where the full notice is found.

<one line to give the library's name and a brief idea
of what it does.>
Copyright (C) <year> <name of author>

This library is free software; you can redistribute it
and/or
modify it under the terms of the GNU Lesser General
Public
License as published by the Free Software Foundation;
either

93

version 2.1 of the License, or (at your option) any later
version.

This library is distributed in the hope that it will be
useful,
but WITHOUT ANY WARRANTY; without even the implied warranty
of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
See the GNU
Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General
Public
License along with this library; if not, write to the
Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
MA 02110-1301 USA

Also add information on how to contact you by electronic and paper
mail.

You should also get your employer (if you work as a programmer)
or your school, if any, to sign a “copyright disclaimer” for the library,
if necessary. Here is a sample; alter the names:

Yoyodyne, Inc., hereby disclaims all copyright interest in the library
‘Frob’ (a library for tweaking knobs) written by James Random Hacker.

<signature of Ty Coon>, 1 April 1990 Ty Coon, President of Vice
That’s all there is to it!

	Crowbook
	Example
	Installing
	Dependencies
	Quick tour
	Current features
	Contributors
	Acknowledgements
	ChangeLog
	Contributing
	Library
	License

	Arguments
	--create
	--single
	--set
	--proofread
	--list-options
	--print-template
	--verbose
	--to
	--output
	--lang

	The configuration file
	Configuration in an inline YAML block
	The list of files
	Crowbook options
	Full list of options

	Templates
	Create and edit template
	List of templates
	List of accessible variables

	Proofreading with Crowbook
	Enabling proofreading
	Repetition detection
	Grammar checking
	Highlighting non-breaking spaces

	Tips and tricks
	Using Crowbook with Emacs’ markdown mode
	Embedding fonts in an EPUB file

	Contributing
	Internationalization

