Vorrenrey/Marlin-VORON/Marlin/temperature.h
2016-03-06 01:33:06 -08:00

178 lines
5.3 KiB
C

/*
temperature.h - temperature controller
Part of Marlin
Copyright (c) 2011 Erik van der Zalm
Grbl is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Grbl is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Grbl. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef TEMPERATURE_H
#define TEMPERATURE_H
#include "Marlin.h"
#include "planner.h"
#if ENABLED(PID_ADD_EXTRUSION_RATE)
#include "stepper.h"
#endif
// public functions
void tp_init(); //initialize the heating
void manage_heater(); //it is critical that this is called periodically.
#if ENABLED(FILAMENT_SENSOR)
// For converting raw Filament Width to milimeters
float analog2widthFil();
// For converting raw Filament Width to an extrusion ratio
int widthFil_to_size_ratio();
#endif
// low level conversion routines
// do not use these routines and variables outside of temperature.cpp
extern int target_temperature[4];
extern float current_temperature[4];
#if ENABLED(SHOW_TEMP_ADC_VALUES)
extern int current_temperature_raw[4];
extern int current_temperature_bed_raw;
#endif
extern int target_temperature_bed;
extern float current_temperature_bed;
#if ENABLED(TEMP_SENSOR_1_AS_REDUNDANT)
extern float redundant_temperature;
#endif
#if HAS_CONTROLLERFAN
extern unsigned char soft_pwm_bed;
#endif
#if ENABLED(PIDTEMP)
#if ENABLED(PID_PARAMS_PER_EXTRUDER)
extern float Kp[HEATER_BLOCKS], Ki[HEATER_BLOCKS], Kd[HEATER_BLOCKS], Kc[HEATER_BLOCKS]; // one param per extruder
#define PID_PARAM(param,e) param[e] // use macro to point to array value
#else
extern float Kp, Ki, Kd, Kc; // one param per extruder - saves 20 or 36 bytes of ram (inc array pointer)
#define PID_PARAM(param, e) param // use macro to point directly to value
#endif // PID_PARAMS_PER_EXTRUDER
float scalePID_i(float i);
float scalePID_d(float d);
float unscalePID_i(float i);
float unscalePID_d(float d);
#endif
#if ENABLED(PIDTEMPBED)
extern float bedKp, bedKi, bedKd;
#endif
#if ENABLED(BABYSTEPPING)
extern volatile int babystepsTodo[3];
#endif
//high level conversion routines, for use outside of temperature.cpp
//inline so that there is no performance decrease.
//deg=degreeCelsius
FORCE_INLINE float degHotend(uint8_t extruder) {
#if HEATER_BLOCKS == 1
return current_temperature[0];
#else
return current_temperature[extruder];
#endif
}
FORCE_INLINE float degBed() { return current_temperature_bed; }
#if ENABLED(SHOW_TEMP_ADC_VALUES)
FORCE_INLINE float rawHotendTemp(uint8_t extruder) {
#if HEATER_BLOCKS == 1
return current_temperature_raw[0];
#else
return current_temperature_raw[extruder];
#endif
}
FORCE_INLINE float rawBedTemp() { return current_temperature_bed_raw; }
#endif
FORCE_INLINE float degTargetHotend(uint8_t extruder) {
#if HEATER_BLOCKS == 1
return target_temperature[0];
#else
return target_temperature[extruder];
#endif
}
FORCE_INLINE float degTargetBed() { return target_temperature_bed; }
#if ENABLED(THERMAL_PROTECTION_HOTENDS)
void start_watching_heater(int e = 0);
#endif
FORCE_INLINE void setTargetHotend(const float& celsius, uint8_t extruder) {
target_temperature[extruder] = celsius;
#if ENABLED(THERMAL_PROTECTION_HOTENDS)
start_watching_heater(extruder);
#endif
}
FORCE_INLINE void setTargetBed(const float& celsius) { target_temperature_bed = celsius; }
FORCE_INLINE bool isHeatingHotend(uint8_t extruder) { return target_temperature[extruder] > current_temperature[extruder]; }
FORCE_INLINE bool isHeatingBed() { return target_temperature_bed > current_temperature_bed; }
FORCE_INLINE bool isCoolingHotend(uint8_t extruder) { return target_temperature[extruder] < current_temperature[extruder]; }
FORCE_INLINE bool isCoolingBed() { return target_temperature_bed < current_temperature_bed; }
#define HOTEND_ROUTINES(NR) \
FORCE_INLINE float degHotend##NR() { return degHotend(NR); } \
FORCE_INLINE float degTargetHotend##NR() { return degTargetHotend(NR); } \
FORCE_INLINE void setTargetHotend##NR(const float c) { setTargetHotend(c, NR); } \
FORCE_INLINE bool isHeatingHotend##NR() { return isHeatingHotend(NR); } \
FORCE_INLINE bool isCoolingHotend##NR() { return isCoolingHotend(NR); }
HOTEND_ROUTINES(0);
#if HEATER_BLOCKS > 1
HOTEND_ROUTINES(1);
#else
#define setTargetHotend1(c) do{}while(0)
#endif
#if HEATER_BLOCKS > 2
HOTEND_ROUTINES(2);
#else
#define setTargetHotend2(c) do{}while(0)
#endif
#if HEATER_BLOCKS > 3
HOTEND_ROUTINES(3);
#else
#define setTargetHotend3(c) do{}while(0)
#endif
int getHeaterPower(int heater);
void disable_all_heaters();
void updatePID();
void PID_autotune(float temp, int extruder, int ncycles);
void setExtruderAutoFanState(int pin, bool state);
void checkExtruderAutoFans();
FORCE_INLINE void autotempShutdown() {
#if ENABLED(AUTOTEMP)
if (autotemp_enabled) {
autotemp_enabled = false;
if (degTargetHotend(active_extruder) > autotemp_min)
setTargetHotend(0, active_extruder);
}
#endif
}
#endif // TEMPERATURE_H