OSHW-DEIMOS/SOFTWARE/A64-TERES/linux-a64/fs/dlm/recover.c
Dimitar Gamishev f9b0e7a283 linux
2017-10-13 14:07:04 +03:00

956 lines
23 KiB
C

/******************************************************************************
*******************************************************************************
**
** Copyright (C) Sistina Software, Inc. 1997-2003 All rights reserved.
** Copyright (C) 2004-2005 Red Hat, Inc. All rights reserved.
**
** This copyrighted material is made available to anyone wishing to use,
** modify, copy, or redistribute it subject to the terms and conditions
** of the GNU General Public License v.2.
**
*******************************************************************************
******************************************************************************/
#include "dlm_internal.h"
#include "lockspace.h"
#include "dir.h"
#include "config.h"
#include "ast.h"
#include "memory.h"
#include "rcom.h"
#include "lock.h"
#include "lowcomms.h"
#include "member.h"
#include "recover.h"
/*
* Recovery waiting routines: these functions wait for a particular reply from
* a remote node, or for the remote node to report a certain status. They need
* to abort if the lockspace is stopped indicating a node has failed (perhaps
* the one being waited for).
*/
/*
* Wait until given function returns non-zero or lockspace is stopped
* (LS_RECOVERY_STOP set due to failure of a node in ls_nodes). When another
* function thinks it could have completed the waited-on task, they should wake
* up ls_wait_general to get an immediate response rather than waiting for the
* timeout. This uses a timeout so it can check periodically if the wait
* should abort due to node failure (which doesn't cause a wake_up).
* This should only be called by the dlm_recoverd thread.
*/
int dlm_wait_function(struct dlm_ls *ls, int (*testfn) (struct dlm_ls *ls))
{
int error = 0;
int rv;
while (1) {
rv = wait_event_timeout(ls->ls_wait_general,
testfn(ls) || dlm_recovery_stopped(ls),
dlm_config.ci_recover_timer * HZ);
if (rv)
break;
}
if (dlm_recovery_stopped(ls)) {
log_debug(ls, "dlm_wait_function aborted");
error = -EINTR;
}
return error;
}
/*
* An efficient way for all nodes to wait for all others to have a certain
* status. The node with the lowest nodeid polls all the others for their
* status (wait_status_all) and all the others poll the node with the low id
* for its accumulated result (wait_status_low). When all nodes have set
* status flag X, then status flag X_ALL will be set on the low nodeid.
*/
uint32_t dlm_recover_status(struct dlm_ls *ls)
{
uint32_t status;
spin_lock(&ls->ls_recover_lock);
status = ls->ls_recover_status;
spin_unlock(&ls->ls_recover_lock);
return status;
}
static void _set_recover_status(struct dlm_ls *ls, uint32_t status)
{
ls->ls_recover_status |= status;
}
void dlm_set_recover_status(struct dlm_ls *ls, uint32_t status)
{
spin_lock(&ls->ls_recover_lock);
_set_recover_status(ls, status);
spin_unlock(&ls->ls_recover_lock);
}
static int wait_status_all(struct dlm_ls *ls, uint32_t wait_status,
int save_slots)
{
struct dlm_rcom *rc = ls->ls_recover_buf;
struct dlm_member *memb;
int error = 0, delay;
list_for_each_entry(memb, &ls->ls_nodes, list) {
delay = 0;
for (;;) {
if (dlm_recovery_stopped(ls)) {
error = -EINTR;
goto out;
}
error = dlm_rcom_status(ls, memb->nodeid, 0);
if (error)
goto out;
if (save_slots)
dlm_slot_save(ls, rc, memb);
if (rc->rc_result & wait_status)
break;
if (delay < 1000)
delay += 20;
msleep(delay);
}
}
out:
return error;
}
static int wait_status_low(struct dlm_ls *ls, uint32_t wait_status,
uint32_t status_flags)
{
struct dlm_rcom *rc = ls->ls_recover_buf;
int error = 0, delay = 0, nodeid = ls->ls_low_nodeid;
for (;;) {
if (dlm_recovery_stopped(ls)) {
error = -EINTR;
goto out;
}
error = dlm_rcom_status(ls, nodeid, status_flags);
if (error)
break;
if (rc->rc_result & wait_status)
break;
if (delay < 1000)
delay += 20;
msleep(delay);
}
out:
return error;
}
static int wait_status(struct dlm_ls *ls, uint32_t status)
{
uint32_t status_all = status << 1;
int error;
if (ls->ls_low_nodeid == dlm_our_nodeid()) {
error = wait_status_all(ls, status, 0);
if (!error)
dlm_set_recover_status(ls, status_all);
} else
error = wait_status_low(ls, status_all, 0);
return error;
}
int dlm_recover_members_wait(struct dlm_ls *ls)
{
struct dlm_member *memb;
struct dlm_slot *slots;
int num_slots, slots_size;
int error, rv;
uint32_t gen;
list_for_each_entry(memb, &ls->ls_nodes, list) {
memb->slot = -1;
memb->generation = 0;
}
if (ls->ls_low_nodeid == dlm_our_nodeid()) {
error = wait_status_all(ls, DLM_RS_NODES, 1);
if (error)
goto out;
/* slots array is sparse, slots_size may be > num_slots */
rv = dlm_slots_assign(ls, &num_slots, &slots_size, &slots, &gen);
if (!rv) {
spin_lock(&ls->ls_recover_lock);
_set_recover_status(ls, DLM_RS_NODES_ALL);
ls->ls_num_slots = num_slots;
ls->ls_slots_size = slots_size;
ls->ls_slots = slots;
ls->ls_generation = gen;
spin_unlock(&ls->ls_recover_lock);
} else {
dlm_set_recover_status(ls, DLM_RS_NODES_ALL);
}
} else {
error = wait_status_low(ls, DLM_RS_NODES_ALL, DLM_RSF_NEED_SLOTS);
if (error)
goto out;
dlm_slots_copy_in(ls);
}
out:
return error;
}
int dlm_recover_directory_wait(struct dlm_ls *ls)
{
return wait_status(ls, DLM_RS_DIR);
}
int dlm_recover_locks_wait(struct dlm_ls *ls)
{
return wait_status(ls, DLM_RS_LOCKS);
}
int dlm_recover_done_wait(struct dlm_ls *ls)
{
return wait_status(ls, DLM_RS_DONE);
}
/*
* The recover_list contains all the rsb's for which we've requested the new
* master nodeid. As replies are returned from the resource directories the
* rsb's are removed from the list. When the list is empty we're done.
*
* The recover_list is later similarly used for all rsb's for which we've sent
* new lkb's and need to receive new corresponding lkid's.
*
* We use the address of the rsb struct as a simple local identifier for the
* rsb so we can match an rcom reply with the rsb it was sent for.
*/
static int recover_list_empty(struct dlm_ls *ls)
{
int empty;
spin_lock(&ls->ls_recover_list_lock);
empty = list_empty(&ls->ls_recover_list);
spin_unlock(&ls->ls_recover_list_lock);
return empty;
}
static void recover_list_add(struct dlm_rsb *r)
{
struct dlm_ls *ls = r->res_ls;
spin_lock(&ls->ls_recover_list_lock);
if (list_empty(&r->res_recover_list)) {
list_add_tail(&r->res_recover_list, &ls->ls_recover_list);
ls->ls_recover_list_count++;
dlm_hold_rsb(r);
}
spin_unlock(&ls->ls_recover_list_lock);
}
static void recover_list_del(struct dlm_rsb *r)
{
struct dlm_ls *ls = r->res_ls;
spin_lock(&ls->ls_recover_list_lock);
list_del_init(&r->res_recover_list);
ls->ls_recover_list_count--;
spin_unlock(&ls->ls_recover_list_lock);
dlm_put_rsb(r);
}
static void recover_list_clear(struct dlm_ls *ls)
{
struct dlm_rsb *r, *s;
spin_lock(&ls->ls_recover_list_lock);
list_for_each_entry_safe(r, s, &ls->ls_recover_list, res_recover_list) {
list_del_init(&r->res_recover_list);
r->res_recover_locks_count = 0;
dlm_put_rsb(r);
ls->ls_recover_list_count--;
}
if (ls->ls_recover_list_count != 0) {
log_error(ls, "warning: recover_list_count %d",
ls->ls_recover_list_count);
ls->ls_recover_list_count = 0;
}
spin_unlock(&ls->ls_recover_list_lock);
}
static int recover_idr_empty(struct dlm_ls *ls)
{
int empty = 1;
spin_lock(&ls->ls_recover_idr_lock);
if (ls->ls_recover_list_count)
empty = 0;
spin_unlock(&ls->ls_recover_idr_lock);
return empty;
}
static int recover_idr_add(struct dlm_rsb *r)
{
struct dlm_ls *ls = r->res_ls;
int rv;
idr_preload(GFP_NOFS);
spin_lock(&ls->ls_recover_idr_lock);
if (r->res_id) {
rv = -1;
goto out_unlock;
}
rv = idr_alloc(&ls->ls_recover_idr, r, 1, 0, GFP_NOWAIT);
if (rv < 0)
goto out_unlock;
r->res_id = rv;
ls->ls_recover_list_count++;
dlm_hold_rsb(r);
rv = 0;
out_unlock:
spin_unlock(&ls->ls_recover_idr_lock);
idr_preload_end();
return rv;
}
static void recover_idr_del(struct dlm_rsb *r)
{
struct dlm_ls *ls = r->res_ls;
spin_lock(&ls->ls_recover_idr_lock);
idr_remove(&ls->ls_recover_idr, r->res_id);
r->res_id = 0;
ls->ls_recover_list_count--;
spin_unlock(&ls->ls_recover_idr_lock);
dlm_put_rsb(r);
}
static struct dlm_rsb *recover_idr_find(struct dlm_ls *ls, uint64_t id)
{
struct dlm_rsb *r;
spin_lock(&ls->ls_recover_idr_lock);
r = idr_find(&ls->ls_recover_idr, (int)id);
spin_unlock(&ls->ls_recover_idr_lock);
return r;
}
static void recover_idr_clear(struct dlm_ls *ls)
{
struct dlm_rsb *r;
int id;
spin_lock(&ls->ls_recover_idr_lock);
idr_for_each_entry(&ls->ls_recover_idr, r, id) {
idr_remove(&ls->ls_recover_idr, id);
r->res_id = 0;
r->res_recover_locks_count = 0;
ls->ls_recover_list_count--;
dlm_put_rsb(r);
}
if (ls->ls_recover_list_count != 0) {
log_error(ls, "warning: recover_list_count %d",
ls->ls_recover_list_count);
ls->ls_recover_list_count = 0;
}
spin_unlock(&ls->ls_recover_idr_lock);
}
/* Master recovery: find new master node for rsb's that were
mastered on nodes that have been removed.
dlm_recover_masters
recover_master
dlm_send_rcom_lookup -> receive_rcom_lookup
dlm_dir_lookup
receive_rcom_lookup_reply <-
dlm_recover_master_reply
set_new_master
set_master_lkbs
set_lock_master
*/
/*
* Set the lock master for all LKBs in a lock queue
* If we are the new master of the rsb, we may have received new
* MSTCPY locks from other nodes already which we need to ignore
* when setting the new nodeid.
*/
static void set_lock_master(struct list_head *queue, int nodeid)
{
struct dlm_lkb *lkb;
list_for_each_entry(lkb, queue, lkb_statequeue) {
if (!(lkb->lkb_flags & DLM_IFL_MSTCPY)) {
lkb->lkb_nodeid = nodeid;
lkb->lkb_remid = 0;
}
}
}
static void set_master_lkbs(struct dlm_rsb *r)
{
set_lock_master(&r->res_grantqueue, r->res_nodeid);
set_lock_master(&r->res_convertqueue, r->res_nodeid);
set_lock_master(&r->res_waitqueue, r->res_nodeid);
}
/*
* Propagate the new master nodeid to locks
* The NEW_MASTER flag tells dlm_recover_locks() which rsb's to consider.
* The NEW_MASTER2 flag tells recover_lvb() and recover_grant() which
* rsb's to consider.
*/
static void set_new_master(struct dlm_rsb *r)
{
set_master_lkbs(r);
rsb_set_flag(r, RSB_NEW_MASTER);
rsb_set_flag(r, RSB_NEW_MASTER2);
}
/*
* We do async lookups on rsb's that need new masters. The rsb's
* waiting for a lookup reply are kept on the recover_list.
*
* Another node recovering the master may have sent us a rcom lookup,
* and our dlm_master_lookup() set it as the new master, along with
* NEW_MASTER so that we'll recover it here (this implies dir_nodeid
* equals our_nodeid below).
*/
static int recover_master(struct dlm_rsb *r, unsigned int *count)
{
struct dlm_ls *ls = r->res_ls;
int our_nodeid, dir_nodeid;
int is_removed = 0;
int error;
if (is_master(r))
return 0;
is_removed = dlm_is_removed(ls, r->res_nodeid);
if (!is_removed && !rsb_flag(r, RSB_NEW_MASTER))
return 0;
our_nodeid = dlm_our_nodeid();
dir_nodeid = dlm_dir_nodeid(r);
if (dir_nodeid == our_nodeid) {
if (is_removed) {
r->res_master_nodeid = our_nodeid;
r->res_nodeid = 0;
}
/* set master of lkbs to ourself when is_removed, or to
another new master which we set along with NEW_MASTER
in dlm_master_lookup */
set_new_master(r);
error = 0;
} else {
recover_idr_add(r);
error = dlm_send_rcom_lookup(r, dir_nodeid);
}
(*count)++;
return error;
}
/*
* All MSTCPY locks are purged and rebuilt, even if the master stayed the same.
* This is necessary because recovery can be started, aborted and restarted,
* causing the master nodeid to briefly change during the aborted recovery, and
* change back to the original value in the second recovery. The MSTCPY locks
* may or may not have been purged during the aborted recovery. Another node
* with an outstanding request in waiters list and a request reply saved in the
* requestqueue, cannot know whether it should ignore the reply and resend the
* request, or accept the reply and complete the request. It must do the
* former if the remote node purged MSTCPY locks, and it must do the later if
* the remote node did not. This is solved by always purging MSTCPY locks, in
* which case, the request reply would always be ignored and the request
* resent.
*/
static int recover_master_static(struct dlm_rsb *r, unsigned int *count)
{
int dir_nodeid = dlm_dir_nodeid(r);
int new_master = dir_nodeid;
if (dir_nodeid == dlm_our_nodeid())
new_master = 0;
dlm_purge_mstcpy_locks(r);
r->res_master_nodeid = dir_nodeid;
r->res_nodeid = new_master;
set_new_master(r);
(*count)++;
return 0;
}
/*
* Go through local root resources and for each rsb which has a master which
* has departed, get the new master nodeid from the directory. The dir will
* assign mastery to the first node to look up the new master. That means
* we'll discover in this lookup if we're the new master of any rsb's.
*
* We fire off all the dir lookup requests individually and asynchronously to
* the correct dir node.
*/
int dlm_recover_masters(struct dlm_ls *ls)
{
struct dlm_rsb *r;
unsigned int total = 0;
unsigned int count = 0;
int nodir = dlm_no_directory(ls);
int error;
log_debug(ls, "dlm_recover_masters");
down_read(&ls->ls_root_sem);
list_for_each_entry(r, &ls->ls_root_list, res_root_list) {
if (dlm_recovery_stopped(ls)) {
up_read(&ls->ls_root_sem);
error = -EINTR;
goto out;
}
lock_rsb(r);
if (nodir)
error = recover_master_static(r, &count);
else
error = recover_master(r, &count);
unlock_rsb(r);
cond_resched();
total++;
if (error) {
up_read(&ls->ls_root_sem);
goto out;
}
}
up_read(&ls->ls_root_sem);
log_debug(ls, "dlm_recover_masters %u of %u", count, total);
error = dlm_wait_function(ls, &recover_idr_empty);
out:
if (error)
recover_idr_clear(ls);
return error;
}
int dlm_recover_master_reply(struct dlm_ls *ls, struct dlm_rcom *rc)
{
struct dlm_rsb *r;
int ret_nodeid, new_master;
r = recover_idr_find(ls, rc->rc_id);
if (!r) {
log_error(ls, "dlm_recover_master_reply no id %llx",
(unsigned long long)rc->rc_id);
goto out;
}
ret_nodeid = rc->rc_result;
if (ret_nodeid == dlm_our_nodeid())
new_master = 0;
else
new_master = ret_nodeid;
lock_rsb(r);
r->res_master_nodeid = ret_nodeid;
r->res_nodeid = new_master;
set_new_master(r);
unlock_rsb(r);
recover_idr_del(r);
if (recover_idr_empty(ls))
wake_up(&ls->ls_wait_general);
out:
return 0;
}
/* Lock recovery: rebuild the process-copy locks we hold on a
remastered rsb on the new rsb master.
dlm_recover_locks
recover_locks
recover_locks_queue
dlm_send_rcom_lock -> receive_rcom_lock
dlm_recover_master_copy
receive_rcom_lock_reply <-
dlm_recover_process_copy
*/
/*
* keep a count of the number of lkb's we send to the new master; when we get
* an equal number of replies then recovery for the rsb is done
*/
static int recover_locks_queue(struct dlm_rsb *r, struct list_head *head)
{
struct dlm_lkb *lkb;
int error = 0;
list_for_each_entry(lkb, head, lkb_statequeue) {
error = dlm_send_rcom_lock(r, lkb);
if (error)
break;
r->res_recover_locks_count++;
}
return error;
}
static int recover_locks(struct dlm_rsb *r)
{
int error = 0;
lock_rsb(r);
DLM_ASSERT(!r->res_recover_locks_count, dlm_dump_rsb(r););
error = recover_locks_queue(r, &r->res_grantqueue);
if (error)
goto out;
error = recover_locks_queue(r, &r->res_convertqueue);
if (error)
goto out;
error = recover_locks_queue(r, &r->res_waitqueue);
if (error)
goto out;
if (r->res_recover_locks_count)
recover_list_add(r);
else
rsb_clear_flag(r, RSB_NEW_MASTER);
out:
unlock_rsb(r);
return error;
}
int dlm_recover_locks(struct dlm_ls *ls)
{
struct dlm_rsb *r;
int error, count = 0;
down_read(&ls->ls_root_sem);
list_for_each_entry(r, &ls->ls_root_list, res_root_list) {
if (is_master(r)) {
rsb_clear_flag(r, RSB_NEW_MASTER);
continue;
}
if (!rsb_flag(r, RSB_NEW_MASTER))
continue;
if (dlm_recovery_stopped(ls)) {
error = -EINTR;
up_read(&ls->ls_root_sem);
goto out;
}
error = recover_locks(r);
if (error) {
up_read(&ls->ls_root_sem);
goto out;
}
count += r->res_recover_locks_count;
}
up_read(&ls->ls_root_sem);
log_debug(ls, "dlm_recover_locks %d out", count);
error = dlm_wait_function(ls, &recover_list_empty);
out:
if (error)
recover_list_clear(ls);
return error;
}
void dlm_recovered_lock(struct dlm_rsb *r)
{
DLM_ASSERT(rsb_flag(r, RSB_NEW_MASTER), dlm_dump_rsb(r););
r->res_recover_locks_count--;
if (!r->res_recover_locks_count) {
rsb_clear_flag(r, RSB_NEW_MASTER);
recover_list_del(r);
}
if (recover_list_empty(r->res_ls))
wake_up(&r->res_ls->ls_wait_general);
}
/*
* The lvb needs to be recovered on all master rsb's. This includes setting
* the VALNOTVALID flag if necessary, and determining the correct lvb contents
* based on the lvb's of the locks held on the rsb.
*
* RSB_VALNOTVALID is set in two cases:
*
* 1. we are master, but not new, and we purged an EX/PW lock held by a
* failed node (in dlm_recover_purge which set RSB_RECOVER_LVB_INVAL)
*
* 2. we are a new master, and there are only NL/CR locks left.
* (We could probably improve this by only invaliding in this way when
* the previous master left uncleanly. VMS docs mention that.)
*
* The LVB contents are only considered for changing when this is a new master
* of the rsb (NEW_MASTER2). Then, the rsb's lvb is taken from any lkb with
* mode > CR. If no lkb's exist with mode above CR, the lvb contents are taken
* from the lkb with the largest lvb sequence number.
*/
static void recover_lvb(struct dlm_rsb *r)
{
struct dlm_lkb *lkb, *high_lkb = NULL;
uint32_t high_seq = 0;
int lock_lvb_exists = 0;
int big_lock_exists = 0;
int lvblen = r->res_ls->ls_lvblen;
if (!rsb_flag(r, RSB_NEW_MASTER2) &&
rsb_flag(r, RSB_RECOVER_LVB_INVAL)) {
/* case 1 above */
rsb_set_flag(r, RSB_VALNOTVALID);
return;
}
if (!rsb_flag(r, RSB_NEW_MASTER2))
return;
/* we are the new master, so figure out if VALNOTVALID should
be set, and set the rsb lvb from the best lkb available. */
list_for_each_entry(lkb, &r->res_grantqueue, lkb_statequeue) {
if (!(lkb->lkb_exflags & DLM_LKF_VALBLK))
continue;
lock_lvb_exists = 1;
if (lkb->lkb_grmode > DLM_LOCK_CR) {
big_lock_exists = 1;
goto setflag;
}
if (((int)lkb->lkb_lvbseq - (int)high_seq) >= 0) {
high_lkb = lkb;
high_seq = lkb->lkb_lvbseq;
}
}
list_for_each_entry(lkb, &r->res_convertqueue, lkb_statequeue) {
if (!(lkb->lkb_exflags & DLM_LKF_VALBLK))
continue;
lock_lvb_exists = 1;
if (lkb->lkb_grmode > DLM_LOCK_CR) {
big_lock_exists = 1;
goto setflag;
}
if (((int)lkb->lkb_lvbseq - (int)high_seq) >= 0) {
high_lkb = lkb;
high_seq = lkb->lkb_lvbseq;
}
}
setflag:
if (!lock_lvb_exists)
goto out;
/* lvb is invalidated if only NL/CR locks remain */
if (!big_lock_exists)
rsb_set_flag(r, RSB_VALNOTVALID);
if (!r->res_lvbptr) {
r->res_lvbptr = dlm_allocate_lvb(r->res_ls);
if (!r->res_lvbptr)
goto out;
}
if (big_lock_exists) {
r->res_lvbseq = lkb->lkb_lvbseq;
memcpy(r->res_lvbptr, lkb->lkb_lvbptr, lvblen);
} else if (high_lkb) {
r->res_lvbseq = high_lkb->lkb_lvbseq;
memcpy(r->res_lvbptr, high_lkb->lkb_lvbptr, lvblen);
} else {
r->res_lvbseq = 0;
memset(r->res_lvbptr, 0, lvblen);
}
out:
return;
}
/* All master rsb's flagged RECOVER_CONVERT need to be looked at. The locks
converting PR->CW or CW->PR need to have their lkb_grmode set. */
static void recover_conversion(struct dlm_rsb *r)
{
struct dlm_ls *ls = r->res_ls;
struct dlm_lkb *lkb;
int grmode = -1;
list_for_each_entry(lkb, &r->res_grantqueue, lkb_statequeue) {
if (lkb->lkb_grmode == DLM_LOCK_PR ||
lkb->lkb_grmode == DLM_LOCK_CW) {
grmode = lkb->lkb_grmode;
break;
}
}
list_for_each_entry(lkb, &r->res_convertqueue, lkb_statequeue) {
if (lkb->lkb_grmode != DLM_LOCK_IV)
continue;
if (grmode == -1) {
log_debug(ls, "recover_conversion %x set gr to rq %d",
lkb->lkb_id, lkb->lkb_rqmode);
lkb->lkb_grmode = lkb->lkb_rqmode;
} else {
log_debug(ls, "recover_conversion %x set gr %d",
lkb->lkb_id, grmode);
lkb->lkb_grmode = grmode;
}
}
}
/* We've become the new master for this rsb and waiting/converting locks may
need to be granted in dlm_recover_grant() due to locks that may have
existed from a removed node. */
static void recover_grant(struct dlm_rsb *r)
{
if (!list_empty(&r->res_waitqueue) || !list_empty(&r->res_convertqueue))
rsb_set_flag(r, RSB_RECOVER_GRANT);
}
void dlm_recover_rsbs(struct dlm_ls *ls)
{
struct dlm_rsb *r;
unsigned int count = 0;
down_read(&ls->ls_root_sem);
list_for_each_entry(r, &ls->ls_root_list, res_root_list) {
lock_rsb(r);
if (is_master(r)) {
if (rsb_flag(r, RSB_RECOVER_CONVERT))
recover_conversion(r);
/* recover lvb before granting locks so the updated
lvb/VALNOTVALID is presented in the completion */
recover_lvb(r);
if (rsb_flag(r, RSB_NEW_MASTER2))
recover_grant(r);
count++;
} else {
rsb_clear_flag(r, RSB_VALNOTVALID);
}
rsb_clear_flag(r, RSB_RECOVER_CONVERT);
rsb_clear_flag(r, RSB_RECOVER_LVB_INVAL);
rsb_clear_flag(r, RSB_NEW_MASTER2);
unlock_rsb(r);
}
up_read(&ls->ls_root_sem);
if (count)
log_debug(ls, "dlm_recover_rsbs %d done", count);
}
/* Create a single list of all root rsb's to be used during recovery */
int dlm_create_root_list(struct dlm_ls *ls)
{
struct rb_node *n;
struct dlm_rsb *r;
int i, error = 0;
down_write(&ls->ls_root_sem);
if (!list_empty(&ls->ls_root_list)) {
log_error(ls, "root list not empty");
error = -EINVAL;
goto out;
}
for (i = 0; i < ls->ls_rsbtbl_size; i++) {
spin_lock(&ls->ls_rsbtbl[i].lock);
for (n = rb_first(&ls->ls_rsbtbl[i].keep); n; n = rb_next(n)) {
r = rb_entry(n, struct dlm_rsb, res_hashnode);
list_add(&r->res_root_list, &ls->ls_root_list);
dlm_hold_rsb(r);
}
if (!RB_EMPTY_ROOT(&ls->ls_rsbtbl[i].toss))
log_error(ls, "dlm_create_root_list toss not empty");
spin_unlock(&ls->ls_rsbtbl[i].lock);
}
out:
up_write(&ls->ls_root_sem);
return error;
}
void dlm_release_root_list(struct dlm_ls *ls)
{
struct dlm_rsb *r, *safe;
down_write(&ls->ls_root_sem);
list_for_each_entry_safe(r, safe, &ls->ls_root_list, res_root_list) {
list_del_init(&r->res_root_list);
dlm_put_rsb(r);
}
up_write(&ls->ls_root_sem);
}
void dlm_clear_toss(struct dlm_ls *ls)
{
struct rb_node *n, *next;
struct dlm_rsb *r;
unsigned int count = 0;
int i;
for (i = 0; i < ls->ls_rsbtbl_size; i++) {
spin_lock(&ls->ls_rsbtbl[i].lock);
for (n = rb_first(&ls->ls_rsbtbl[i].toss); n; n = next) {
next = rb_next(n);
r = rb_entry(n, struct dlm_rsb, res_hashnode);
rb_erase(n, &ls->ls_rsbtbl[i].toss);
dlm_free_rsb(r);
count++;
}
spin_unlock(&ls->ls_rsbtbl[i].lock);
}
if (count)
log_debug(ls, "dlm_clear_toss %u done", count);
}