OSHW-DEIMOS/SOFTWARE/A64-TERES/linux-a64/drivers/input/touchscreen/gt9xxf/gt9xxf.c
Dimitar Gamishev f9b0e7a283 linux
2017-10-13 14:07:04 +03:00

2872 lines
66 KiB
C
Executable File

/* drivers/input/touchscreen/gt9xx.c
*
* 2010 - 2013 Goodix Technology.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be a reference
* to you, when you are integrating the GOODiX's CTP IC into your system,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* Version: 2.0
* Authors: andrew@goodix.com, meta@goodix.com
* Release Date: 2013/04/25
* Revision record:
* V1.0:
* first Release. By Andrew, 2012/08/31
* V1.2:
* modify gtp_reset_guitar,slot report,tracking_id & 0x0F. By Andrew, 2012/10/15
* V1.4:
* modify gt9xx_update.c. By Andrew, 2012/12/12
* V1.6:
* 1. new heartbeat/esd_protect mechanism(add external watchdog)
* 2. doze mode, sliding wakeup
* 3. 3 more cfg_group(GT9 Sensor_ID: 0~5)
* 3. config length verification
* 4. names & comments
* By Meta, 2013/03/11
* V1.8:
* 1. pen/stylus identification
* 2. read double check & fixed config support
* 3. new esd & slide wakeup optimization
* By Meta, 2013/06/08
* V2.0:
* 1. compatible with GT9XXF
* 2. send config after resume
* By Meta, 2013/08/06
*/
#include <linux/irq.h>
#include "gt9xxf.h"
#if GTP_ICS_SLOT_REPORT
#include <linux/input/mt.h>
#endif
static void goodix_init_events(struct work_struct *work);
static void goodix_resume_events(struct work_struct *work);
struct workqueue_struct *goodix_init_wq;
struct workqueue_struct *goodix_resume_wq;
static DECLARE_WORK(goodix_init_work, goodix_init_events);
static DECLARE_WORK(goodix_resume_work, goodix_resume_events);
struct goodix_ts_data *ts_init;
static struct workqueue_struct *goodix_wq;
struct i2c_client * i2c_connect_client = NULL;
u8 config[GTP_CONFIG_MAX_LENGTH + GTP_ADDR_LENGTH]
= {GTP_REG_CONFIG_DATA >> 8, GTP_REG_CONFIG_DATA & 0xff};
#if GTP_HAVE_TOUCH_KEY
static const u16 touch_key_array[] = GTP_KEY_TAB;
#define GTP_MAX_KEY_NUM (sizeof(touch_key_array)/sizeof(touch_key_array[0]))
#if GTP_DEBUG_ON
static const int key_codes[] = {KEY_HOME, KEY_BACK, KEY_MENU, KEY_SEARCH};
static const char *key_names[] = {"Key_Home", "Key_Back", "Key_Menu", "Key_Search"};
#endif
#endif
static s8 gtp_i2c_test(struct i2c_client *client);
void gtp_reset_guitar(struct i2c_client *client, s32 ms);
s32 gtp_send_cfg(struct i2c_client *client);
void gtp_int_sync(s32 ms);
#include <linux/pm_runtime.h>
#ifdef CONFIG_PM
#include <linux/pm.h>
#endif
#if GTP_CREATE_WR_NODE
extern s32 init_wr_node(struct i2c_client*);
extern void uninit_wr_node(void);
#endif
#if GTP_AUTO_UPDATE
extern u8 gup_init_update_proc(struct goodix_ts_data *);
#endif
#if GTP_ESD_PROTECT
static struct delayed_work gtp_esd_check_work;
static struct workqueue_struct * gtp_esd_check_workqueue = NULL;
static void gtp_esd_check_func(struct work_struct *);
static s32 gtp_init_ext_watchdog(struct i2c_client *client);
void gtp_esd_switch(struct i2c_client *, s32);
#endif
#define CTP_IRQ_NUMBER (config_info.int_number)
#define CTP_RST_NUMBER (config_info.wakeup_gpio.gpio)
#define CTP_IRQ_MODE (IRQF_TRIGGER_FALLING)
#define CTP_NAME GTP_I2C_NAME
#define SCREEN_MAX_HEIGHT (screen_max_x)
#define SCREEN_MAX_WIDTH (screen_max_y)
#define PRESS_MAX (255)
#define PRINT_POINT_INFO
struct ctp_config_info config_info = {
.input_type = CTP_TYPE,
.name = NULL,
.int_number = 0,
};
static const unsigned short normal_i2c[2] = {0x5d,I2C_CLIENT_END};
const char *goodix_ts_name="gt9xxf_ts";
//static int gtp_ref_retries = 0;
static int screen_max_x = 0;
static int screen_max_y = 0;
static int revert_x_flag = 0;
static int revert_y_flag = 0;
static int exchange_x_y_flag = 0;
//static int ctp_firm = 0;
static __u32 twi_id = 0;
//static u32 io_gpio_number=0;
static char irq_pin_name[8];
static char rst_pin_name[8];
static u32 debug_mask = 0;
enum{
DEBUG_INIT = 1U << 0,
DEBUG_SUSPEND = 1U << 1,
DEBUG_INT_INFO = 1U << 2,
DEBUG_X_Y_INFO = 1U << 3,
DEBUG_KEY_INFO = 1U << 4,
DEBUG_WAKEUP_INFO = 1U << 5,
DEBUG_OTHERS_INFO = 1U << 6,
};
#define dprintk(level_mask,fmt,arg...) if(unlikely(debug_mask & level_mask)) \
printk("***CTP***"fmt, ## arg)
module_param_named(debug_mask,debug_mask,int,S_IRUGO | S_IWUSR | S_IWGRP);
//*********** For GT9XXF Start **********//
#if GTP_COMPATIBLE_MODE
extern s32 i2c_read_bytes(struct i2c_client *client, u16 addr, u8 *buf, s32 len);
extern s32 i2c_write_bytes(struct i2c_client *client, u16 addr, u8 *buf, s32 len);
extern s32 gup_clk_calibration(void);
extern s32 gup_fw_download_proc(void *dir, u8 dwn_mode);
extern u8 gup_check_fs_mounted(char *path_name);
void gtp_recovery_reset(struct i2c_client *client);
static s32 gtp_esd_recovery(struct i2c_client *client);
s32 gtp_fw_startup(struct i2c_client *client);
static s32 gtp_main_clk_proc(struct goodix_ts_data *ts);
static s32 gtp_bak_ref_proc(struct goodix_ts_data *ts, u8 mode);
#endif
//********** For GT9XXF End **********//
#if GTP_SLIDE_WAKEUP
typedef enum
{
DOZE_DISABLED = 0,
DOZE_ENABLED = 1,
DOZE_WAKEUP = 2,
}DOZE_T;
static DOZE_T doze_status = DOZE_DISABLED;
static s8 gtp_enter_doze(struct goodix_ts_data *ts);
#endif
static u8 chip_gt9xxs = 0; // true if ic is gt9xxs, like gt915s
u8 grp_cfg_version = 0;
/**
* ctp_detect - Device detection callback for automatic device creation
* return value:
* = 0; success;
* < 0; err
*/
int ctp_detect(struct i2c_client *client, struct i2c_board_info *info)
{
struct i2c_adapter *adapter = client->adapter;
//u8 buf[8] = {GTP_REG_VERSION >> 8, GTP_REG_VERSION & 0xff};
if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA)){
printk("======return=====\n");
return -ENODEV;
}
if(twi_id == adapter->nr){
strlcpy(info->type, CTP_NAME, I2C_NAME_SIZE);
return 0;
}else{
return -ENODEV;
}
}
/**
* ctp_print_info - sysconfig print function
* return value:
*
*/
void ctp_print_info(struct ctp_config_info info,int debug_level)
{
if(debug_level == DEBUG_INIT)
{
dprintk(DEBUG_INIT,"info.ctp_used:%d\n",info.ctp_used);
dprintk(DEBUG_INIT,"info.twi_id:%d\n",info.twi_id);
dprintk(DEBUG_INIT,"info.screen_max_x:%d\n",info.screen_max_x);
dprintk(DEBUG_INIT,"info.screen_max_y:%d\n",info.screen_max_y);
dprintk(DEBUG_INIT,"info.revert_x_flag:%d\n",info.revert_x_flag);
dprintk(DEBUG_INIT,"info.revert_y_flag:%d\n",info.revert_y_flag);
dprintk(DEBUG_INIT,"info.exchange_x_y_flag:%d\n",info.exchange_x_y_flag);
dprintk(DEBUG_INIT,"info.irq_gpio_number:%d\n",info.irq_gpio.gpio);
dprintk(DEBUG_INIT,"info.wakeup_gpio_number:%d\n",info.wakeup_gpio.gpio);
}
}
/**
* ctp_wakeup - function
*
*/
int ctp_wakeup(int status,int ms)
{
dprintk(DEBUG_INIT,"***CTP*** %s:status:%d,ms = %d\n",__func__,status,ms);
if (status == 0) {
if(ms == 0) {
__gpio_set_value(config_info.wakeup_gpio.gpio, 0);
}else {
__gpio_set_value(config_info.wakeup_gpio.gpio, 0);
msleep(ms);
__gpio_set_value(config_info.wakeup_gpio.gpio, 1);
}
}
if (status == 1) {
if(ms == 0) {
__gpio_set_value(config_info.wakeup_gpio.gpio, 1);
}else {
__gpio_set_value(config_info.wakeup_gpio.gpio, 1);
msleep(ms);
__gpio_set_value(config_info.wakeup_gpio.gpio, 0);
}
}
msleep(5);
return 0;
}
void gtp_set_int_value(int status)
{
long unsigned int config;
config = SUNXI_PINCFG_PACK(SUNXI_PINCFG_TYPE_FUNC,0xFFFF);
pin_config_get(SUNXI_PINCTRL,irq_pin_name,&config);
if (1 != SUNXI_PINCFG_UNPACK_VALUE(config)){
config = SUNXI_PINCFG_PACK(SUNXI_PINCFG_TYPE_FUNC,1);
pin_config_set(SUNXI_PINCTRL,irq_pin_name,config);
}
__gpio_set_value(CTP_IRQ_NUMBER, status);
}
void gtp_set_io_int(void)
{
long unsigned int config;
config = SUNXI_PINCFG_PACK(SUNXI_PINCFG_TYPE_FUNC,0xFFFF);
pin_config_get(SUNXI_PINCTRL,irq_pin_name,&config);
if (6 != SUNXI_PINCFG_UNPACK_VALUE(config)){
config = SUNXI_PINCFG_PACK(SUNXI_PINCFG_TYPE_FUNC,6);
pin_config_set(SUNXI_PINCTRL,irq_pin_name,config);
}
}
void gtp_set_rst_in(void)
{
long unsigned int config;
config = SUNXI_PINCFG_PACK(SUNXI_PINCFG_TYPE_FUNC,0xFFFF);
pin_config_get(SUNXI_PINCTRL,rst_pin_name,&config);
if (0 != SUNXI_PINCFG_UNPACK_VALUE(config)){
config = SUNXI_PINCFG_PACK(SUNXI_PINCFG_TYPE_FUNC,0);
pin_config_set(SUNXI_PINCTRL,rst_pin_name,config);
}
}
void gtp_io_init(int ms)
{
ctp_wakeup(0, 0);
msleep(ms);
gtp_set_int_value(1);
msleep(2);
ctp_wakeup(1, 0);
msleep(6);
#if GTP_ESD_PROTECT
// gtp_init_ext_watchdog(i2c_connect_client);
#endif
}
/*******************************************************
Function:
Read data from the i2c slave device.
Input:
client: i2c device.
buf[0~1]: read start address.
buf[2~len-1]: read data buffer.
len: GTP_ADDR_LENGTH + read bytes count
Output:
numbers of i2c_msgs to transfer:
2: succeed, otherwise: failed
*********************************************************/
s32 gtp_i2c_read(struct i2c_client *client, u8 *buf, s32 len)
{
struct i2c_msg msgs[2];
s32 ret=-1;
s32 retries = 0;
GTP_DEBUG_FUNC();
msgs[0].flags = !I2C_M_RD;
msgs[0].addr = client->addr;
msgs[0].len = GTP_ADDR_LENGTH;
msgs[0].buf = &buf[0];
//msgs[0].scl_rate = 300 * 1000; // for Rockchip, etc.
msgs[1].flags = I2C_M_RD;
msgs[1].addr = client->addr;
msgs[1].len = len - GTP_ADDR_LENGTH;
msgs[1].buf = &buf[GTP_ADDR_LENGTH];
//msgs[1].scl_rate = 300 * 1000;
while(retries < 5)
{
ret = i2c_transfer(client->adapter, msgs, 2);
if(ret == 2)break;
retries++;
}
if((retries >= 5))
{
#if GTP_COMPATIBLE_MODE
struct goodix_ts_data *ts = i2c_get_clientdata(client);
#endif
#if GTP_SLIDE_WAKEUP
// reset chip would quit doze mode
if (DOZE_ENABLED == doze_status)
{
return ret;
}
#endif
GTP_ERROR("I2C Read: 0x%04X, %d bytes failed, errcode: %d! Process reset.", (((u16)(buf[0] << 8)) | buf[1]), len-2, ret);
#if GTP_COMPATIBLE_MODE
if (CHIP_TYPE_GT9F == ts->chip_type)
{
gtp_recovery_reset(client);
}
else
#endif
{
gtp_reset_guitar(client, 10);
}
}
return ret;
}
/*******************************************************
Function:
Write data to the i2c slave device.
Input:
client: i2c device.
buf[0~1]: write start address.
buf[2~len-1]: data buffer
len: GTP_ADDR_LENGTH + write bytes count
Output:
numbers of i2c_msgs to transfer:
1: succeed, otherwise: failed
*********************************************************/
s32 gtp_i2c_write(struct i2c_client *client,u8 *buf,s32 len)
{
struct i2c_msg msg;
s32 ret = -1;
s32 retries = 0;
GTP_DEBUG_FUNC();
msg.flags = !I2C_M_RD;
msg.addr = client->addr;
msg.len = len;
msg.buf = buf;
//msg.scl_rate = 300 * 1000; // for Rockchip, etc
while(retries < 5)
{
ret = i2c_transfer(client->adapter, &msg, 1);
if (ret == 1)break;
retries++;
}
if((retries >= 5))
{
#if GTP_COMPATIBLE_MODE
struct goodix_ts_data *ts = i2c_get_clientdata(client);
#endif
#if GTP_SLIDE_WAKEUP
if (DOZE_ENABLED == doze_status)
{
return ret;
}
#endif
GTP_ERROR("I2C Write: 0x%04X, %d bytes failed, errcode: %d! Process reset.", (((u16)(buf[0] << 8)) | buf[1]), len-2, ret);
#if GTP_COMPATIBLE_MODE
if (CHIP_TYPE_GT9F == ts->chip_type)
{
gtp_recovery_reset(client);
}
else
#endif
{
gtp_reset_guitar(client, 10);
}
}
return ret;
}
/*******************************************************
Function:
i2c read twice, compare the results
Input:
client: i2c device
addr: operate address
rxbuf: read data to store, if compare successful
len: bytes to read
Output:
FAIL: read failed
SUCCESS: read successful
*********************************************************/
s32 gtp_i2c_read_dbl_check(struct i2c_client *client, u16 addr, u8 *rxbuf, int len)
{
u8 buf[16] = {0};
u8 confirm_buf[16] = {0};
u8 retry = 0;
while (retry++ < 3)
{
memset(buf, 0xAA, 16);
buf[0] = (u8)(addr >> 8);
buf[1] = (u8)(addr & 0xFF);
gtp_i2c_read(client, buf, len + 2);
memset(confirm_buf, 0xAB, 16);
confirm_buf[0] = (u8)(addr >> 8);
confirm_buf[1] = (u8)(addr & 0xFF);
gtp_i2c_read(client, confirm_buf, len + 2);
if (!memcmp(buf, confirm_buf, len+2))
{
memcpy(rxbuf, confirm_buf+2, len);
return SUCCESS;
}
}
GTP_ERROR("I2C read 0x%04X, %d bytes, double check failed!", addr, len);
return FAIL;
}
/*******************************************************
Function:
Send config.
Input:
client: i2c device.
Output:
result of i2c write operation.
1: succeed, otherwise: failed
*********************************************************/
s32 gtp_send_cfg(struct i2c_client *client)
{
s32 ret = 2;
#if GTP_DRIVER_SEND_CFG
s32 retry = 0;
struct goodix_ts_data *ts = i2c_get_clientdata(client);
if (ts->fixed_cfg)
{
GTP_INFO("Ic fixed config, no config sent!");
return 0;
}
else if (ts->pnl_init_error)
{
GTP_INFO("Error occured in init_panel, no config sent");
return 0;
}
GTP_INFO("Driver send config.");
for (retry = 0; retry < 5; retry++)
{
ret = gtp_i2c_write(client, config , GTP_CONFIG_MAX_LENGTH + GTP_ADDR_LENGTH);
if (ret > 0)
{
break;
}
}
#endif
return ret;
}
/*******************************************************
Function:
Disable IRQ Function.
Input:
ts: i2c client private struct.
Output:
None.
*******************************************************/
void gtp_irq_disable(struct goodix_ts_data *ts)
{
unsigned long irqflags;
int ret;
dprintk(DEBUG_INT_INFO, "%s ---start!---\n", __func__);
spin_lock_irqsave(&ts->irq_lock, irqflags);
if (!ts->irq_is_disable) {
ts->irq_is_disable = 1;
ret = input_set_int_enable(&(config_info.input_type), 0);
if (ret < 0)
dprintk(DEBUG_OTHERS_INFO,"%s irq disable failed\n", goodix_ts_name);
}
spin_unlock_irqrestore(&ts->irq_lock, irqflags);
}
/*******************************************************
Function:
Disable IRQ Function.
Input:
ts: i2c client private struct.
Output:
None.
*******************************************************/
void gtp_irq_enable(struct goodix_ts_data *ts)
{
unsigned long irqflags = 0;
int ret;
dprintk(DEBUG_INT_INFO, "%s ---start!---\n", __func__);
spin_lock_irqsave(&ts->irq_lock, irqflags);
if (ts->irq_is_disable) {
ts->irq_is_disable = 0;
ret = input_set_int_enable(&(config_info.input_type), 1);
if (ret < 0)
dprintk(DEBUG_OTHERS_INFO,"%s irq enable failed\n", goodix_ts_name);
}
spin_unlock_irqrestore(&ts->irq_lock, irqflags);
}
/*******************************************************
Function:
Report touch point event
Input:
ts: goodix i2c_client private data
id: trackId
x: input x coordinate
y: input y coordinate
w: input pressure
Output:
None.
*********************************************************/
static void gtp_touch_down(struct goodix_ts_data* ts,s32 id,s32 x,s32 y,s32 w)
{
#if GTP_ICS_SLOT_REPORT
input_mt_slot(ts->input_dev, id);
input_report_abs(ts->input_dev, ABS_MT_TRACKING_ID, id);
input_report_abs(ts->input_dev, ABS_MT_POSITION_X, x);
input_report_abs(ts->input_dev, ABS_MT_POSITION_Y, y);
input_report_abs(ts->input_dev, ABS_MT_TOUCH_MAJOR, w);
input_report_abs(ts->input_dev, ABS_MT_WIDTH_MAJOR, w);
#else
input_report_abs(ts->input_dev, ABS_MT_POSITION_X, x);
input_report_abs(ts->input_dev, ABS_MT_POSITION_Y, y);
input_report_abs(ts->input_dev, ABS_MT_TOUCH_MAJOR, w);
input_report_abs(ts->input_dev, ABS_MT_WIDTH_MAJOR, w);
input_report_abs(ts->input_dev, ABS_MT_TRACKING_ID, id);
input_mt_sync(ts->input_dev);
#endif
GTP_DEBUG("ID:%d, X:%d, Y:%d, W:%d", id, x, y, w);
}
/*******************************************************
Function:
Report touch release event
Input:
ts: goodix i2c_client private data
Output:
None.
*********************************************************/
static void gtp_touch_up(struct goodix_ts_data* ts, s32 id)
{
#if GTP_ICS_SLOT_REPORT
input_mt_slot(ts->input_dev, id);
input_report_abs(ts->input_dev, ABS_MT_TRACKING_ID, -1);
GTP_DEBUG("Touch id[%2d] release!", id);
#else
input_report_abs(ts->input_dev, ABS_MT_TOUCH_MAJOR, 0);
input_report_abs(ts->input_dev, ABS_MT_WIDTH_MAJOR, 0);
input_mt_sync(ts->input_dev);
#endif
}
/*******************************************************
Function:
Goodix touchscreen work function
Input:
work: work struct of goodix_workqueue
Output:
None.
*********************************************************/
static void goodix_ts_work_func(struct work_struct *work)
{
u8 end_cmd[3] = {GTP_READ_COOR_ADDR >> 8, GTP_READ_COOR_ADDR & 0xFF, 0};
u8 point_data[2 + 1 + 8 * GTP_MAX_TOUCH + 1]={GTP_READ_COOR_ADDR >> 8, GTP_READ_COOR_ADDR & 0xFF};
u8 touch_num = 0;
u8 finger = 0;
static u16 pre_touch = 0;
static u8 pre_key = 0;
u8 key_value = 0;
u8* coor_data = NULL;
s32 input_x = 0;
s32 input_y = 0;
s32 input_w = 0;
s32 id = 0;
s32 i = 0;
s32 ret = -1;
struct goodix_ts_data *ts = NULL;
#if GTP_COMPATIBLE_MODE
u8 rqst_buf[3] = {0x80, 0x43}; // for GT9XXF
#endif
#if GTP_SLIDE_WAKEUP
u8 doze_buf[3] = {0x81, 0x4B};
#endif
GTP_DEBUG_FUNC();
ts = container_of(work, struct goodix_ts_data, work);
if (ts->enter_update)
{
return;
}
#if GTP_SLIDE_WAKEUP
if (DOZE_ENABLED == doze_status)
{
ret = gtp_i2c_read(i2c_connect_client, doze_buf, 3);
GTP_DEBUG("0x814B = 0x%02X", doze_buf[2]);
if (ret > 0)
{
if (doze_buf[2] == 0xAA)
{
GTP_INFO("Forward slide to light up the screen!");
doze_status = DOZE_WAKEUP;
input_report_key(ts->input_dev, KEY_POWER, 1);
input_sync(ts->input_dev);
input_report_key(ts->input_dev, KEY_POWER, 0);
input_sync(ts->input_dev);
// clear 0x814B
doze_buf[2] = 0x00;
gtp_i2c_write(i2c_connect_client, doze_buf, 3);
}
else if (doze_buf[2] == 0xBB)
{
GTP_INFO("Backward slide to light up the screen!");
doze_status = DOZE_WAKEUP;
input_report_key(ts->input_dev, KEY_POWER, 1);
input_sync(ts->input_dev);
input_report_key(ts->input_dev, KEY_POWER, 0);
input_sync(ts->input_dev);
// clear 0x814B
doze_buf[2] = 0x00;
gtp_i2c_write(i2c_connect_client, doze_buf, 3);
}
else if (0xC0 == (doze_buf[2] & 0xC0))
{
GTP_INFO("Double click to light up the screen!");
doze_status = DOZE_WAKEUP;
input_report_key(ts->input_dev, KEY_POWER, 1);
input_sync(ts->input_dev);
input_report_key(ts->input_dev, KEY_POWER, 0);
input_sync(ts->input_dev);
// clear 0x814B
doze_buf[2] = 0x00;
gtp_i2c_write(i2c_connect_client, doze_buf, 3);
}
else
{
gtp_enter_doze(ts);
}
}
if (ts->use_irq)
{
gtp_irq_enable(ts);
}
return;
}
#endif
ret = gtp_i2c_read(ts->client, point_data, 12);
if (ret < 0)
{
GTP_ERROR("I2C transfer error. errno:%d\n ", ret);
goto exit_work_func;
}
finger = point_data[GTP_ADDR_LENGTH];
#if GTP_COMPATIBLE_MODE
// GT9XXF
if ((finger == 0x00) && (CHIP_TYPE_GT9F == ts->chip_type)) // request arrived
{
ret = gtp_i2c_read(ts->client, rqst_buf, 3);
if (ret < 0)
{
GTP_ERROR("Read request status error!");
goto exit_work_func;
}
switch (rqst_buf[2] & 0x0F)
{
case GTP_RQST_CONFIG:
GTP_INFO("Request for config.");
ret = gtp_send_cfg(ts->client);
if (ret < 0)
{
GTP_ERROR("Request for config unresponded!");
}
else
{
rqst_buf[2] = GTP_RQST_RESPONDED;
gtp_i2c_write(ts->client, rqst_buf, 3);
GTP_INFO("Request for config responded!");
}
break;
case GTP_RQST_BAK_REF:
GTP_INFO("Request for backup reference.");
ret = gtp_bak_ref_proc(ts, GTP_BAK_REF_SEND);
if (SUCCESS == ret)
{
rqst_buf[2] = GTP_RQST_RESPONDED;
gtp_i2c_write(ts->client, rqst_buf, 3);
GTP_INFO("Request for backup reference responded!");
}
else
{
GTP_ERROR("Requeset for backup reference unresponed!");
}
break;
case GTP_RQST_RESET:
GTP_INFO("Request for reset.");
gtp_recovery_reset(ts->client);
break;
case GTP_RQST_MAIN_CLOCK:
GTP_INFO("Request for main clock.");
ts->rqst_processing = 1;
ret = gtp_main_clk_proc(ts);
if (FAIL == ret)
{
GTP_ERROR("Request for main clock unresponded!");
}
else
{
GTP_INFO("Request for main clock responded!");
rqst_buf[2] = GTP_RQST_RESPONDED;
gtp_i2c_write(ts->client, rqst_buf, 3);
ts->rqst_processing = 0;
ts->clk_chk_fs_times = 0;
}
break;
case GTP_RQST_IDLE:
default:
break;
}
}
#endif
if((finger & 0x80) == 0)
{
goto exit_work_func;
}
touch_num = finger & 0x0f;
if (touch_num > GTP_MAX_TOUCH)
{
goto exit_work_func;
}
if (touch_num > 1)
{
u8 buf[8 * GTP_MAX_TOUCH] = {(GTP_READ_COOR_ADDR + 10) >> 8, (GTP_READ_COOR_ADDR + 10) & 0xff};
ret = gtp_i2c_read(ts->client, buf, 2 + 8 * (touch_num - 1));
memcpy(&point_data[12], &buf[2], 8 * (touch_num - 1));
}
#if GTP_HAVE_TOUCH_KEY
key_value = point_data[3 + 8 * touch_num];
if(key_value || pre_key)
{
for (i = 0; i < GTP_MAX_KEY_NUM; i++)
{
input_report_key(ts->input_dev, touch_key_array[i], key_value & (0x01<<i));
}
touch_num = 0;
pre_touch = 0;
}
#endif
pre_key = key_value;
GTP_DEBUG("pre_touch:%02x, finger:%02x.", pre_touch, finger);
#if GTP_ICS_SLOT_REPORT
if (pre_touch || touch_num)
{
s32 pos = 0;
u16 touch_index = 0;
u8 report_num = 0;
coor_data = &point_data[3];
if(touch_num)
{
id = coor_data[pos] & 0x0F;
touch_index |= (0x01<<id);
}
GTP_DEBUG("id = %d,touch_index = 0x%x, pre_touch = 0x%x\n",id, touch_index,pre_touch);
for (i = 0; i < GTP_MAX_TOUCH; i++)
{
if ((touch_index & (0x01<<i)))
{
input_x = coor_data[pos + 1] | (coor_data[pos + 2] << 8);
input_y = coor_data[pos + 3] | (coor_data[pos + 4] << 8);
input_w = coor_data[pos + 5] | (coor_data[pos + 6] << 8);
if(exchange_x_y_flag)
GTP_SWAP(input_x,input_y);
if(revert_x_flag)
input_x = screen_max_x - input_x;
if(revert_y_flag)
input_y = screen_max_y - input_y;
gtp_touch_down(ts, id, input_x, input_y, input_w);
pre_touch |= 0x01 << i;
report_num++;
if (report_num < touch_num)
{
pos += 8;
id = coor_data[pos] & 0x0F;
touch_index |= (0x01<<id);
}
}
else
{
gtp_touch_up(ts, i);
pre_touch &= ~(0x01 << i);
}
}
}
#else
input_report_key(ts->input_dev, BTN_TOUCH, (touch_num || key_value));
if (touch_num)
{
for (i = 0; i < touch_num; i++)
{
coor_data = &point_data[i * 8 + 3];
id = coor_data[0] & 0x0F;
input_x = coor_data[1] | (coor_data[2] << 8);
input_y = coor_data[3] | (coor_data[4] << 8);
input_w = coor_data[5] | (coor_data[6] << 8);
if(exchange_x_y_flag)
GTP_SWAP(input_x,input_y);
if(revert_x_flag)
input_x = screen_max_x - input_x;
if(revert_y_flag)
input_y = screen_max_y - input_y;
gtp_touch_down(ts, id, input_x, input_y, input_w);
}
}
else if (pre_touch)
{
GTP_DEBUG("Touch Release!");
gtp_touch_up(ts, 0);
}
pre_touch = touch_num;
#endif
input_sync(ts->input_dev);
exit_work_func:
if(!ts->gtp_rawdiff_mode)
{
ret = gtp_i2c_write(ts->client, end_cmd, 3);
if (ret < 0)
{
GTP_INFO("I2C write end_cmd error!");
}
}
if (ts->use_irq)
{
gtp_irq_enable(ts);
}
}
#if 0
/*******************************************************
Function:
Timer interrupt service routine for polling mode.
Input:
timer: timer struct pointer
Output:
Timer work mode.
HRTIMER_NORESTART: no restart mode
*********************************************************/
static enum hrtimer_restart goodix_ts_timer_handler(struct hrtimer *timer)
{
struct goodix_ts_data *ts = container_of(timer, struct goodix_ts_data, timer);
GTP_DEBUG_FUNC();
queue_work(goodix_wq, &ts->work);
hrtimer_start(&ts->timer, ktime_set(0, (GTP_POLL_TIME+6)*1000000), HRTIMER_MODE_REL);
return HRTIMER_NORESTART;
}
#endif
/*******************************************************
Function:
External interrupt service routine for interrupt mode.
Input:
irq: interrupt number.
dev_id: private data pointer
Output:
Handle Result.
IRQ_HANDLED: interrupt handled successfully
*********************************************************/
irqreturn_t goodix_ts_irq_handler(int irq, void *dev_id)
{
struct goodix_ts_data *ts = (struct goodix_ts_data *)dev_id;
dprintk(DEBUG_INT_INFO, "==========------TS Interrupt-----============\n");
queue_work(goodix_wq, &ts->work);
return 0;
}
/*******************************************************
Function:
Synchronization.
Input:
ms: synchronization time in millisecond.
Output:
None.
*******************************************************/
void gtp_int_sync(s32 ms)
{
GTP_GPIO_OUTPUT(GTP_INT_PORT, 0);
msleep(ms);
GTP_GPIO_AS_INT(GTP_INT_PORT);
}
/*******************************************************
Function:
Reset chip.
Input:
ms: reset time in millisecond
Output:
None.
*******************************************************/
void gtp_reset_guitar(struct i2c_client *client, s32 ms)
{
GTP_DEBUG_FUNC();
//sun4i_gpio_free(&gpio_wakeup_hdle);
GTP_GPIO_OUTPUT(GTP_RST_PORT, 0); // begin select I2C slave addr
//ctp_wakeup(0,0);
msleep(ms); // T2: > 10ms
// HIGH: 0x28/0x29, LOW: 0xBA/0xBB
GTP_GPIO_OUTPUT(GTP_INT_PORT, client->addr == 0x14);
//ctp_wakeup((client->addr == 0x14),0);
msleep(2); // T3: > 100us
GTP_GPIO_OUTPUT(GTP_RST_PORT, 1);
//ctp_wakeup(1,0);
msleep(6); // T4: > 5ms
GTP_GPIO_AS_INPUT(GTP_RST_PORT); // end select I2C slave addr
#if 0
#if GTP_COMPATIBLE_MODE
if (CHIP_TYPE_GT9F == ts->chip_type)
{
return;
}
#endif
gtp_int_sync(50);
#if GTP_ESD_PROTECT
gtp_init_ext_watchdog(client);
#endif
#endif
}
#if GTP_SLIDE_WAKEUP
/*******************************************************
Function:
Enter doze mode for sliding wakeup.
Input:
ts: goodix tp private data
Output:
1: succeed, otherwise failed
*******************************************************/
static s8 gtp_enter_doze(struct goodix_ts_data *ts)
{
s8 ret = -1;
s8 retry = 0;
u8 i2c_control_buf[3] = {(u8)(GTP_REG_SLEEP >> 8), (u8)GTP_REG_SLEEP, 8};
GTP_DEBUG_FUNC();
#if GTP_DBL_CLK_WAKEUP
i2c_control_buf[2] = 0x09;
#endif
gtp_irq_disable(ts);
GTP_DEBUG("Entering doze mode.");
while(retry++ < 5)
{
i2c_control_buf[0] = 0x80;
i2c_control_buf[1] = 0x46;
ret = gtp_i2c_write(ts->client, i2c_control_buf, 3);
if (ret < 0)
{
GTP_DEBUG("failed to set doze flag into 0x8046, %d", retry);
continue;
}
i2c_control_buf[0] = 0x80;
i2c_control_buf[1] = 0x40;
ret = gtp_i2c_write(ts->client, i2c_control_buf, 3);
if (ret > 0)
{
doze_status = DOZE_ENABLED;
GTP_INFO("GTP has been working in doze mode!");
gtp_irq_enable(ts);
return ret;
}
msleep(10);
}
GTP_ERROR("GTP send doze cmd failed.");
gtp_irq_enable(ts);
return ret;
}
#else
/*******************************************************
Function:
Enter sleep mode.
Input:
ts: private data.
Output:
Executive outcomes.
1: succeed, otherwise failed.
*******************************************************/
static s8 gtp_enter_sleep(struct goodix_ts_data * ts)
{
s8 ret = -1;
s8 retry = 0;
u8 i2c_control_buf[3] = {(u8)(GTP_REG_SLEEP >> 8), (u8)GTP_REG_SLEEP, 5};
#if GTP_COMPATIBLE_MODE
u8 status_buf[3] = {0x80, 0x44};
#endif
GTP_DEBUG_FUNC();
#if GTP_COMPATIBLE_MODE
if (CHIP_TYPE_GT9F == ts->chip_type)
{
// GT9XXF: host interact with ic
ret = gtp_i2c_read(ts->client, status_buf, 3);
if (ret < 0)
{
GTP_ERROR("failed to get backup-reference status");
}
if (status_buf[2] & 0x80)
{
ret = gtp_bak_ref_proc(ts, GTP_BAK_REF_STORE);
if (FAIL == ret)
{
GTP_ERROR("failed to store bak_ref");
}
}
}
#endif
GTP_GPIO_OUTPUT(GTP_INT_PORT, 0);
msleep(5);
while(retry++ < 5)
{
ret = gtp_i2c_write(ts->client, i2c_control_buf, 3);
if (ret > 0)
{
GTP_INFO("GTP enter sleep!");
return ret;
}
msleep(10);
}
GTP_ERROR("GTP send sleep cmd failed.");
return ret;
}
#endif
/*******************************************************
Function:
Wakeup from sleep.
Input:
ts: private data.
Output:
Executive outcomes.
>0: succeed, otherwise: failed.
*******************************************************/
static s8 gtp_wakeup_sleep(struct goodix_ts_data * ts)
{
u8 retry = 0;
s8 ret = -1;
GTP_DEBUG_FUNC();
gtp_io_init(20);
gtp_set_io_int();
#if GTP_COMPATIBLE_MODE
if (CHIP_TYPE_GT9F == ts->chip_type)
{
u8 opr_buf[3] = {0x41, 0x80};
GTP_GPIO_OUTPUT(GTP_INT_PORT, 1);
msleep(5);
for (retry = 0; retry < 20; ++retry)
{
// hold ss51 & dsp
opr_buf[2] = 0x0C;
ret = gtp_i2c_write(ts->client, opr_buf, 3);
if (FAIL == ret)
{
GTP_ERROR("failed to hold ss51 & dsp!");
continue;
}
opr_buf[2] = 0x00;
ret = gtp_i2c_read(ts->client, opr_buf, 3);
if (FAIL == ret)
{
GTP_ERROR("failed to get ss51 & dsp status!");
continue;
}
if (0x0C != opr_buf[2])
{
GTP_DEBUG("ss51 & dsp not been hold, %d", retry+1);
continue;
}
GTP_DEBUG("ss51 & dsp confirmed hold");
ret = gtp_fw_startup(ts->client);
if (FAIL == ret)
{
GTP_ERROR("failed to startup GT9XXF, process recovery");
gtp_esd_recovery(ts->client);
}
break;
}
if (retry >= 10)
{
GTP_ERROR("failed to wakeup, processing esd recovery");
gtp_esd_recovery(ts->client);
}
else
{
GTP_INFO("GT9XXF gtp wakeup success");
}
return ret;
}
#endif
#if GTP_POWER_CTRL_SLEEP
while(retry++ < 5)
{
gtp_reset_guitar(ts->client, 20);
GTP_INFO("GTP wakeup sleep.");
return 1;
}
#else
while(retry++ < 10)
{
#if GTP_SLIDE_WAKEUP
if (DOZE_WAKEUP != doze_status) // wakeup not by slide
{
GTP_DEBUG("wakeup by power, reset guitar");
doze_status = DOZE_DISABLED;
gtp_irq_disable(ts);
gtp_reset_guitar(ts->client, 10);
gtp_irq_enable(ts);
}
else // wakeup by slide
{
GTP_DEBUG("wakeup by slide/double-click, no reset guitar");
doze_status = DOZE_DISABLED;
#if GTP_ESD_PROTECT
gtp_init_ext_watchdog(ts->client);
#endif
}
#else
if (chip_gt9xxs == 1)
{
gtp_reset_guitar(ts->client, 10);
}
else
{
GTP_GPIO_OUTPUT(GTP_INT_PORT, 1);
msleep(5);
}
#endif
ret = gtp_i2c_test(ts->client);
if (ret > 0)
{
GTP_INFO("GTP wakeup sleep.");
#if (!GTP_SLIDE_WAKEUP)
if (chip_gt9xxs == 0)
{
gtp_int_sync(25);
#if GTP_ESD_PROTECT
gtp_init_ext_watchdog(ts->client);
#endif
}
#endif
return ret;
}
gtp_reset_guitar(ts->client, 20);
}
#endif
GTP_ERROR("GTP wakeup sleep failed.");
return ret;
}
#if GTP_DRIVER_SEND_CFG
static s32 gtp_get_info(struct goodix_ts_data *ts)
{
u8 opr_buf[6] = {0};
s32 ret = 0;
opr_buf[0] = (u8)((GTP_REG_CONFIG_DATA+1) >> 8);
opr_buf[1] = (u8)((GTP_REG_CONFIG_DATA+1) & 0xFF);
ret = gtp_i2c_read(ts->client, opr_buf, 6);
if (ret < 0)
{
return FAIL;
}
ts->abs_x_max = (opr_buf[3] << 8) + opr_buf[2];
ts->abs_y_max = (opr_buf[5] << 8) + opr_buf[4];
opr_buf[0] = (u8)((GTP_REG_CONFIG_DATA+6) >> 8);
opr_buf[1] = (u8)((GTP_REG_CONFIG_DATA+6) & 0xFF);
ret = gtp_i2c_read(ts->client, opr_buf, 3);
if (ret < 0)
{
return FAIL;
}
ts->int_trigger_type = opr_buf[2] & 0x03;
GTP_INFO("X_MAX = %d, Y_MAX = %d, TRIGGER = 0x%02x",
ts->abs_x_max,ts->abs_y_max,ts->int_trigger_type);
return SUCCESS;
}
#endif
/*******************************************************
Function:
Initialize gtp.
Input:
ts: goodix private data
Output:
Executive outcomes.
0: succeed, otherwise: failed
*******************************************************/
static s32 gtp_init_panel(struct goodix_ts_data *ts)
{
s32 ret = -1;
#if GTP_DRIVER_SEND_CFG
s32 i = 0;
u8 check_sum = 0;
u8 opr_buf[16] = {0};
u8 sensor_id = 0;
u8 index = 0;
static u8 cfg_info_group1[] = CTP_CFG_GROUP1;
static u8 cfg_info_group2[] = CTP_CFG_GROUP2;
static u8 cfg_info_group3[] = CTP_CFG_GROUP3;
static u8 cfg_info_group4[] = CTP_CFG_GROUP4;
static u8 cfg_info_group5[] = CTP_CFG_GROUP5;
static u8 cfg_info_group6[] = CTP_CFG_GROUP6;
u8 *send_cfg_buf[] = {cfg_info_group1, cfg_info_group2, cfg_info_group3,
cfg_info_group4, cfg_info_group5, cfg_info_group6};
u8 cfg_info_len[] = { CFG_GROUP_LEN(cfg_info_group1),
CFG_GROUP_LEN(cfg_info_group2),
CFG_GROUP_LEN(cfg_info_group3),
CFG_GROUP_LEN(cfg_info_group4),
CFG_GROUP_LEN(cfg_info_group5),
CFG_GROUP_LEN(cfg_info_group6)};
GTP_DEBUG_FUNC();
GTP_DEBUG("Config Groups\' Lengths: %d, %d, %d, %d, %d, %d",
cfg_info_len[0], cfg_info_len[1], cfg_info_len[2], cfg_info_len[3],
cfg_info_len[4], cfg_info_len[5]);
#if GTP_COMPATIBLE_MODE
if (CHIP_TYPE_GT9F == ts->chip_type)
{
ts->fw_error = 0;
}
else
#endif
{
ret = gtp_i2c_read_dbl_check(ts->client, 0x41E4, opr_buf, 1);
if (SUCCESS == ret)
{
if (opr_buf[0] != 0xBE)
{
ts->fw_error = 1;
GTP_ERROR("Firmware error, no config sent!");
return -1;
}
}
}
#if 1
if ((!cfg_info_len[0]))
{
sensor_id = 0;
}
else
{
#if GTP_COMPATIBLE_MODE
msleep(50);
#endif
// ret = gtp_i2c_read_dbl_check(ts->client, GTP_REG_SENSOR_ID, &sensor_id, 1);
// if (SUCCESS == ret)
// {
// if (sensor_id >= 0x06)
// {
// GTP_ERROR("Invalid sensor_id(0x%02X), No Config Sent!", sensor_id);
// ts->pnl_init_error = 1;
//#if GTP_COMPATIBLE_MODE
// if (CHIP_TYPE_GT9F == ts->chip_type)
// {
// return -1;
// }
// else
//#endif
// {
// gtp_get_info(ts);
// }
// return 0;
// }
// }
// else
// {
// GTP_ERROR("Failed to get sensor_id, No config sent!");
// ts->pnl_init_error = 1;
// return -1;
// }
GTP_DEBUG("CTP name : %s\n",config_info.name);
if (!strcmp(config_info.name,"gt9271_1024_600")){
index = 0;
GTP_DEBUG("gt9xx:index = %d\n",index);
}
if (!strcmp(config_info.name,"gt9271_D116")){
index = 1;
GTP_DEBUG("gt9xx:index = %d\n",index);
}
if (!strcmp(config_info.name,"gt911_DB")){
index = 3;
GTP_INFO("gt9xx:index = %d\n",index);
}
if (!strcmp(config_info.name,"gt911_DB2")){
index = 4;
GTP_INFO("gt9xx:index = %d\n",index);
}
}
#endif
sensor_id = index;
ts->gtp_cfg_len = cfg_info_len[sensor_id];
GTP_INFO("CTP_CONFIG_GROUP%d used, config length: %d", sensor_id + 1, ts->gtp_cfg_len);
if (ts->gtp_cfg_len < GTP_CONFIG_MIN_LENGTH)
{
GTP_ERROR("Config Group%d is INVALID CONFIG GROUP(Len: %d)! NO Config Sent! You need to check you header file CFG_GROUP section!", sensor_id+1, ts->gtp_cfg_len);
ts->pnl_init_error = 1;
return -1;
}
#if GTP_COMPATIBLE_MODE
if (CHIP_TYPE_GT9F == ts->chip_type)
{
ts->fixed_cfg = 0;
}
else
#endif
{
ret = gtp_i2c_read_dbl_check(ts->client, GTP_REG_CONFIG_DATA, &opr_buf[0], 1);
if (ret == SUCCESS)
{
GTP_DEBUG("CFG_GROUP%d Config Version: %d, 0x%02X; IC Config Version: %d, 0x%02X", index+1,
send_cfg_buf[index][0], send_cfg_buf[index][0], opr_buf[0], opr_buf[0]);
if (opr_buf[0] < 90)
{
grp_cfg_version = send_cfg_buf[index][0]; // backup group config version
send_cfg_buf[index][0] = 0x00;
ts->fixed_cfg = 0;
}
else // treated as fixed config, not send config
{
GTP_INFO("Ic fixed config with config version(%d, 0x%02X)", opr_buf[0], opr_buf[0]);
ts->fixed_cfg = 1;
gtp_get_info(ts);
return 0;
}
}
else
{
GTP_ERROR("Failed to get ic config version!No config sent!");
return -1;
}
}
memset(&config[GTP_ADDR_LENGTH], 0, GTP_CONFIG_MAX_LENGTH);
memcpy(&config[GTP_ADDR_LENGTH], send_cfg_buf[sensor_id], ts->gtp_cfg_len);
#if GTP_CUSTOM_CFG
config[RESOLUTION_LOC] = (u8)GTP_MAX_WIDTH;
config[RESOLUTION_LOC + 1] = (u8)(GTP_MAX_WIDTH>>8);
config[RESOLUTION_LOC + 2] = (u8)GTP_MAX_HEIGHT;
config[RESOLUTION_LOC + 3] = (u8)(GTP_MAX_HEIGHT>>8);
if (GTP_INT_TRIGGER == 0) //RISING
{
config[TRIGGER_LOC] &= 0xfe;
}
else if (GTP_INT_TRIGGER == 1) //FALLING
{
config[TRIGGER_LOC] |= 0x01;
}
#endif // GTP_CUSTOM_CFG
check_sum = 0;
for (i = GTP_ADDR_LENGTH; i < ts->gtp_cfg_len; i++)
{
check_sum += config[i];
}
config[ts->gtp_cfg_len] = (~check_sum) + 1;
#else // driver not send config
ts->gtp_cfg_len = GTP_CONFIG_MAX_LENGTH;
ret = gtp_i2c_read(ts->client, config, ts->gtp_cfg_len + GTP_ADDR_LENGTH);
if (ret < 0)
{
GTP_ERROR("Read Config Failed, Using Default Resolution & INT Trigger!");
ts->abs_x_max = GTP_MAX_WIDTH;
ts->abs_y_max = GTP_MAX_HEIGHT;
ts->int_trigger_type = GTP_INT_TRIGGER;
}
#endif // GTP_DRIVER_SEND_CFG
if ((ts->abs_x_max == 0) && (ts->abs_y_max == 0))
{
ts->abs_x_max = (config[RESOLUTION_LOC + 1] << 8) + config[RESOLUTION_LOC];
ts->abs_y_max = (config[RESOLUTION_LOC + 3] << 8) + config[RESOLUTION_LOC + 2];
ts->int_trigger_type = (config[TRIGGER_LOC]) & 0x03;
}
#if GTP_COMPATIBLE_MODE
if (CHIP_TYPE_GT9F == ts->chip_type)
{
u8 sensor_num = 0;
u8 driver_num = 0;
u8 have_key = 0;
have_key = (config[GTP_REG_HAVE_KEY - GTP_REG_CONFIG_DATA + 2] & 0x01);
if (1 == ts->is_950)
{
driver_num = config[GTP_REG_MATRIX_DRVNUM - GTP_REG_CONFIG_DATA + 2];
sensor_num = config[GTP_REG_MATRIX_SENNUM - GTP_REG_CONFIG_DATA + 2];
if (have_key)
{
driver_num--;
}
ts->bak_ref_len = (driver_num * (sensor_num - 1) + 2) * 2 * 6;
}
else
{
driver_num = (config[CFG_LOC_DRVA_NUM] & 0x1F) + (config[CFG_LOC_DRVB_NUM]&0x1F);
if (have_key)
{
driver_num--;
}
sensor_num = (config[CFG_LOC_SENS_NUM] & 0x0F) + ((config[CFG_LOC_SENS_NUM] >> 4) & 0x0F);
ts->bak_ref_len = (driver_num * (sensor_num - 2) + 2) * 2;
}
GTP_INFO("Drv * Sen: %d * %d(key: %d), X_MAX: %d, Y_MAX: %d, TRIGGER: 0x%02x",
driver_num, sensor_num, have_key, ts->abs_x_max,ts->abs_y_max,ts->int_trigger_type);
return 0;
}
else
#endif
{
#if GTP_DRIVER_SEND_CFG
ret = gtp_send_cfg(ts->client);
if (ret < 0)
{
GTP_ERROR("Send config error.");
}
// set config version to CTP_CFG_GROUP, for resume to send config
config[GTP_ADDR_LENGTH] = grp_cfg_version;
check_sum = 0;
for (i = GTP_ADDR_LENGTH; i < ts->gtp_cfg_len; i++)
{
check_sum += config[i];
}
config[ts->gtp_cfg_len] = (~check_sum) + 1;
#endif
GTP_INFO("X_MAX: %d, Y_MAX: %d, TRIGGER: 0x%02x", ts->abs_x_max,ts->abs_y_max,ts->int_trigger_type);
}
msleep(10);
return 0;
}
/*******************************************************
Function:
Read chip version.
Input:
client: i2c device
version: buffer to keep ic firmware version
Output:
read operation return.
2: succeed, otherwise: failed
*******************************************************/
s32 gtp_read_version(struct i2c_client *client, u16* version)
{
s32 ret = -1;
u8 buf[8] = {GTP_REG_VERSION >> 8, GTP_REG_VERSION & 0xff};
GTP_DEBUG_FUNC();
ret = gtp_i2c_read(client, buf, sizeof(buf));
if (ret < 0)
{
GTP_ERROR("GTP read version failed");
return ret;
}
if (version)
{
*version = (buf[7] << 8) | buf[6];
}
if (buf[5] == 0x00)
{
GTP_INFO("IC Version: %c%c%c_%02x%02x", buf[2], buf[3], buf[4], buf[7], buf[6]);
}
else
{
if (buf[5] == 'S' || buf[5] == 's')
{
chip_gt9xxs = 1;
}
GTP_INFO("IC ), X_MAX: 480, Y_MAX: 800, TRIGGER: 0x01: %c%c%c%c_%02x%02x", buf[2], buf[3], buf[4], buf[5], buf[7], buf[6]);
}
return ret;
}
/*******************************************************
Function:
I2c test Function.
Input:
client:i2c client.
Output:
Executive outcomes.
2: succeed, otherwise failed.
*******************************************************/
static s8 gtp_i2c_test(struct i2c_client *client)
{
u8 test[3] = {GTP_REG_CONFIG_DATA >> 8, GTP_REG_CONFIG_DATA & 0xff};
u8 retry = 0;
s8 ret = -1;
GTP_DEBUG_FUNC();
while(retry++ < 5)
{
ret = gtp_i2c_read(client, test, 3);
if (ret > 0)
{
GTP_INFO("GTP i2c test OK.");
return ret;
}
GTP_ERROR("GTP i2c test failed time %d.",retry);
msleep(10);
}
return ret;
}
/*******************************************************
Function:
Request input device Function.
Input:
ts:private data.
Output:
Executive outcomes.
0: succeed, otherwise: failed.
*******************************************************/
static s8 gtp_request_input_dev(struct goodix_ts_data *ts)
{
s8 ret = -1;
#if GTP_HAVE_TOUCH_KEY
u8 index = 0;
#endif
GTP_DEBUG_FUNC();
ts->input_dev = input_allocate_device();
if (ts->input_dev == NULL)
{
GTP_ERROR("Failed to allocate input device.");
return -ENOMEM;
}
ts->input_dev->evbit[0] = BIT_MASK(EV_SYN) | BIT_MASK(EV_KEY) | BIT_MASK(EV_ABS) ;
#if GTP_ICS_SLOT_REPORT
__set_bit(INPUT_PROP_DIRECT, ts->input_dev->propbit);
input_mt_init_slots(ts->input_dev, 16); // in case of "out of memory"
#else
ts->input_dev->keybit[BIT_WORD(BTN_TOUCH)] = BIT_MASK(BTN_TOUCH);
#endif
#if GTP_HAVE_TOUCH_KEY
for (index = 0; index < GTP_MAX_KEY_NUM; index++)
{
input_set_capability(ts->input_dev, EV_KEY, touch_key_array[index]);
}
#endif
#if GTP_SLIDE_WAKEUP
input_set_capability(ts->input_dev, EV_KEY, KEY_POWER);
#endif
#if GTP_WITH_PEN
// pen support
__set_bit(BTN_TOOL_PEN, ts->input_dev->keybit);
__set_bit(INPUT_PROP_DIRECT, ts->input_dev->propbit);
//__set_bit(INPUT_PROP_POINTER, ts->input_dev->propbit);
#endif
#if GTP_CHANGE_X2Y
GTP_SWAP(ts->abs_x_max, ts->abs_y_max);
#endif
set_bit(INPUT_PROP_DIRECT, ts->input_dev->propbit);
input_set_abs_params(ts->input_dev, ABS_MT_POSITION_X, 0,screen_max_x , 0, 0);
input_set_abs_params(ts->input_dev, ABS_MT_POSITION_Y, 0, screen_max_y, 0, 0);
input_set_abs_params(ts->input_dev, ABS_MT_WIDTH_MAJOR, 0, 255, 0, 0);
input_set_abs_params(ts->input_dev, ABS_MT_TOUCH_MAJOR, 0, 255, 0, 0);
input_set_abs_params(ts->input_dev, ABS_MT_TRACKING_ID, 0, 255, 0, 0);
ts->input_dev->name = CTP_NAME;
ts->input_dev->phys = "input/goodix-ts";
ts->input_dev->id.bustype = BUS_I2C;
ts->input_dev->id.vendor = 0xDEAD;
ts->input_dev->id.product = 0xBEEF;
ts->input_dev->id.version = 10427;
ret = input_register_device(ts->input_dev);
if (ret)
{
GTP_ERROR("Register %s input device failed", ts->input_dev->name);
return -ENODEV;
}
input_set_drvdata(ts->input_dev, i2c_connect_client);
return 0;
}
//************** For GT9XXF Start *************//
#if GTP_COMPATIBLE_MODE
s32 gtp_fw_startup(struct i2c_client *client)
{
u8 opr_buf[4];
s32 ret = 0;
//init sw WDT
opr_buf[0] = 0xAA;
ret = i2c_write_bytes(client, 0x8041, opr_buf, 1);
if (ret < 0)
{
return FAIL;
}
//release SS51 & DSP
opr_buf[0] = 0x00;
ret = i2c_write_bytes(client, 0x4180, opr_buf, 1);
if (ret < 0)
{
return FAIL;
}
//int sync
gtp_int_sync(25);
//check fw run status
ret = i2c_read_bytes(client, 0x8041, opr_buf, 1);
if (ret < 0)
{
return FAIL;
}
if(0xAA == opr_buf[0])
{
GTP_ERROR("IC works abnormally,startup failed.");
return FAIL;
}
else
{
GTP_INFO("IC works normally, Startup success.");
opr_buf[0] = 0xAA;
i2c_write_bytes(client, 0x8041, opr_buf, 1);
return SUCCESS;
}
}
static s32 gtp_esd_recovery(struct i2c_client *client)
{
s32 retry = 0;
s32 ret = 0;
struct goodix_ts_data *ts;
ts = i2c_get_clientdata(client);
gtp_irq_disable(ts);
GTP_INFO("GT9XXF esd recovery mode");
gtp_reset_guitar(client, 20); // reset & select I2C addr
for (retry = 0; retry < 5; ++retry)
{
ret = gup_fw_download_proc(NULL, GTP_FL_ESD_RECOVERY);
if (FAIL == ret)
{
GTP_ERROR("esd recovery failed %d", retry+1);
continue;
}
ret = gtp_fw_startup(ts->client);
if (FAIL == ret)
{
GTP_ERROR("GT9XXF start up failed %d", retry+1);
continue;
}
break;
}
gtp_irq_enable(ts);
if (retry >= 5)
{
GTP_ERROR("failed to esd recovery");
return FAIL;
}
GTP_INFO("Esd recovery successful");
return SUCCESS;
}
void gtp_recovery_reset(struct i2c_client *client)
{
#if GTP_ESD_PROTECT
gtp_esd_switch(client, SWITCH_OFF);
#endif
GTP_DEBUG_FUNC();
gtp_esd_recovery(client);
#if GTP_ESD_PROTECT
gtp_esd_switch(client, SWITCH_ON);
#endif
}
static s32 gtp_bak_ref_proc(struct goodix_ts_data *ts, u8 mode)
{
s32 ret = 0;
s32 i = 0;
s32 j = 0;
u16 ref_sum = 0;
u16 learn_cnt = 0;
u16 chksum = 0;
s32 ref_seg_len = 0;
s32 ref_grps = 0;
struct file *ref_filp = NULL;
u8 *p_bak_ref;
ret = gup_check_fs_mounted("/sensors_cache");
if (FAIL == ret)
{
ts->ref_chk_fs_times++;
GTP_DEBUG("Ref check /data times/MAX_TIMES: %d / %d", ts->ref_chk_fs_times, GTP_CHK_FS_MNT_MAX);
if (ts->ref_chk_fs_times < GTP_CHK_FS_MNT_MAX)
{
msleep(50);
GTP_INFO("/data not mounted.");
return FAIL;
}
GTP_INFO("check /data mount timeout...");
}
else
{
GTP_INFO("/data mounted!!!(%d/%d)", ts->ref_chk_fs_times, GTP_CHK_FS_MNT_MAX);
}
p_bak_ref = (u8 *)kzalloc(ts->bak_ref_len, GFP_KERNEL);
if (NULL == p_bak_ref)
{
GTP_ERROR("Allocate memory for p_bak_ref failed!");
return FAIL;
}
if (ts->is_950)
{
ref_seg_len = ts->bak_ref_len / 6;
ref_grps = 6;
}
else
{
ref_seg_len = ts->bak_ref_len;
ref_grps = 1;
}
ref_filp = filp_open(GTP_BAK_REF_PATH, O_RDWR | O_CREAT, 0666);
if (IS_ERR(ref_filp))
{
GTP_INFO("%s is unavailable, default backup-reference used", GTP_BAK_REF_PATH);
goto bak_ref_default;
}
switch (mode)
{
case GTP_BAK_REF_SEND:
GTP_INFO("Send backup-reference");
ref_filp->f_op->llseek(ref_filp, 0, SEEK_SET);
ret = ref_filp->f_op->read(ref_filp, (char*)p_bak_ref, ts->bak_ref_len, &ref_filp->f_pos);
if (ret < 0)
{
GTP_ERROR("failed to read bak_ref info from file, sending defualt bak_ref");
goto bak_ref_default;
}
for (j = 0; j < ref_grps; ++j)
{
ref_sum = 0;
for (i = 0; i < (ref_seg_len); i += 2)
{
ref_sum += (p_bak_ref[i + j * ref_seg_len] << 8) + p_bak_ref[i+1 + j * ref_seg_len];
}
learn_cnt = (p_bak_ref[j * ref_seg_len + ref_seg_len -4] << 8) + (p_bak_ref[j * ref_seg_len + ref_seg_len -3]);
chksum = (p_bak_ref[j * ref_seg_len + ref_seg_len -2] << 8) + (p_bak_ref[j * ref_seg_len + ref_seg_len -1]);
GTP_DEBUG("learn count = %d", learn_cnt);
GTP_DEBUG("chksum = %d", chksum);
GTP_DEBUG("ref_sum = 0x%04X", ref_sum & 0xFFFF);
// Sum(1~ref_seg_len) == 1
if (1 != ref_sum)
{
GTP_INFO("wrong chksum for bak_ref, reset to 0x00 bak_ref");
memset(&p_bak_ref[j * ref_seg_len], 0, ref_seg_len);
p_bak_ref[ref_seg_len + j * ref_seg_len - 1] = 0x01;
}
else
{
if (j == (ref_grps - 1))
{
GTP_INFO("backup-reference data in %s used", GTP_BAK_REF_PATH);
}
}
}
ret = i2c_write_bytes(ts->client, GTP_REG_BAK_REF, p_bak_ref, ts->bak_ref_len);
if (FAIL == ret)
{
GTP_ERROR("failed to send bak_ref because of iic comm error");
filp_close(ref_filp, NULL);
return FAIL;
}
break;
case GTP_BAK_REF_STORE:
GTP_INFO("Store backup-reference");
ret = i2c_read_bytes(ts->client, GTP_REG_BAK_REF, p_bak_ref, ts->bak_ref_len);
if (ret < 0)
{
GTP_ERROR("failed to read bak_ref info, sending default back-reference");
goto bak_ref_default;
}
ref_filp->f_op->llseek(ref_filp, 0, SEEK_SET);
ref_filp->f_op->write(ref_filp, (char*)p_bak_ref, ts->bak_ref_len, &ref_filp->f_pos);
break;
default:
GTP_ERROR("invalid backup-reference request");
break;
}
filp_close(ref_filp, NULL);
return SUCCESS;
bak_ref_default:
for (j = 0; j < ref_grps; ++j)
{
memset(&p_bak_ref[j * ref_seg_len], 0, ref_seg_len);
p_bak_ref[j * ref_seg_len + ref_seg_len - 1] = 0x01; // checksum = 1
}
ret = i2c_write_bytes(ts->client, GTP_REG_BAK_REF, p_bak_ref, ts->bak_ref_len);
if (!IS_ERR(ref_filp))
{
GTP_INFO("write backup-reference data into %s", GTP_BAK_REF_PATH);
ref_filp->f_op->llseek(ref_filp, 0, SEEK_SET);
ref_filp->f_op->write(ref_filp, (char*)p_bak_ref, ts->bak_ref_len, &ref_filp->f_pos);
filp_close(ref_filp, NULL);
}
if (ret == FAIL)
{
GTP_ERROR("failed to load the default backup reference");
return FAIL;
}
return SUCCESS;
}
static s32 gtp_verify_main_clk(u8 *p_main_clk)
{
u8 chksum = 0;
u8 main_clock = p_main_clk[0];
s32 i = 0;
if (main_clock < 50 || main_clock > 120)
{
return FAIL;
}
for (i = 0; i < 5; ++i)
{
if (main_clock != p_main_clk[i])
{
return FAIL;
}
chksum += p_main_clk[i];
}
chksum += p_main_clk[5];
if ( (chksum) == 0)
{
return SUCCESS;
}
else
{
return FAIL;
}
}
static s32 gtp_main_clk_proc(struct goodix_ts_data *ts)
{
s32 ret = 0;
s32 i = 0;
s32 clk_chksum = 0;
struct file *clk_filp = NULL;
u8 p_main_clk[6] = {0};
ret = gup_check_fs_mounted("/sensors_cache");
if (FAIL == ret)
{
ts->clk_chk_fs_times++;
GTP_DEBUG("Clock check /data times/MAX_TIMES: %d / %d", ts->clk_chk_fs_times, GTP_CHK_FS_MNT_MAX);
if (ts->clk_chk_fs_times < GTP_CHK_FS_MNT_MAX)
{
msleep(50);
GTP_INFO("/data not mounted.");
return FAIL;
}
GTP_INFO("Check /data mount timeout!");
}
else
{
GTP_INFO("/data mounted!!!(%d/%d)", ts->clk_chk_fs_times, GTP_CHK_FS_MNT_MAX);
}
clk_filp = filp_open(GTP_MAIN_CLK_PATH, O_RDWR | O_CREAT, 0666);
if (IS_ERR(clk_filp))
{
GTP_ERROR("%s is unavailable, calculate main clock", GTP_MAIN_CLK_PATH);
}
else
{
clk_filp->f_op->llseek(clk_filp, 0, SEEK_SET);
clk_filp->f_op->read(clk_filp, (char *)p_main_clk, 6, &clk_filp->f_pos);
ret = gtp_verify_main_clk(p_main_clk);
if (FAIL == ret)
{
// recalculate main clock & rewrite main clock data to file
GTP_ERROR("main clock data in %s is wrong, recalculate main clock", GTP_MAIN_CLK_PATH);
}
else
{
GTP_INFO("main clock data in %s used, main clock freq: %d", GTP_MAIN_CLK_PATH, p_main_clk[0]);
filp_close(clk_filp, NULL);
goto update_main_clk;
}
}
#if GTP_ESD_PROTECT
gtp_esd_switch(ts->client, SWITCH_OFF);
#endif
ret = gup_clk_calibration();
gtp_esd_recovery(ts->client);
#if GTP_ESD_PROTECT
gtp_esd_switch(ts->client, SWITCH_ON);
#endif
GTP_INFO("calibrate main clock: %d", ret);
if (ret < 50 || ret > 120)
{
GTP_ERROR("wrong main clock: %d", ret);
goto exit_main_clk;
}
// Sum{0x8020~0x8025} = 0
for (i = 0; i < 5; ++i)
{
p_main_clk[i] = ret;
clk_chksum += p_main_clk[i];
}
p_main_clk[5] = 0 - clk_chksum;
if (!IS_ERR(clk_filp))
{
GTP_DEBUG("write main clock data into %s", GTP_MAIN_CLK_PATH);
clk_filp->f_op->llseek(clk_filp, 0, SEEK_SET);
clk_filp->f_op->write(clk_filp, (char *)p_main_clk, 6, &clk_filp->f_pos);
filp_close(clk_filp, NULL);
}
update_main_clk:
ret = i2c_write_bytes(ts->client, GTP_REG_MAIN_CLK, p_main_clk, 6);
if (FAIL == ret)
{
GTP_ERROR("update main clock failed!");
return FAIL;
}
return SUCCESS;
exit_main_clk:
if (!IS_ERR(clk_filp))
{
filp_close(clk_filp, NULL);
}
return FAIL;
}
s32 gtp_gt9xxf_init(struct i2c_client *client)
{
s32 ret = 0;
ret = gup_fw_download_proc(NULL, GTP_FL_FW_BURN);
if (FAIL == ret)
{
return FAIL;
}
ret = gtp_fw_startup(client);
if (FAIL == ret)
{
return FAIL;
}
return SUCCESS;
}
void gtp_get_chip_type(struct goodix_ts_data *ts)
{
u8 opr_buf[10] = {0x00};
s32 ret = 0;
msleep(10);
ret = gtp_i2c_read_dbl_check(ts->client, GTP_REG_CHIP_TYPE, opr_buf, 10);
if (FAIL == ret)
{
GTP_ERROR("Failed to get chip-type, set chip type default: GOODIX_GT9");
ts->chip_type = CHIP_TYPE_GT9;
return;
}
if (!memcmp(opr_buf, "GOODIX_GT9", 10))
{
ts->chip_type = CHIP_TYPE_GT9;
}
else // GT9XXF
{
ts->chip_type = CHIP_TYPE_GT9F;
}
GTP_INFO("Chip Type: %s", (ts->chip_type == CHIP_TYPE_GT9) ? "GOODIX_GT9" : "GOODIX_GT9F");
}
#endif
//************* For GT9XXF End ************//
static void goodix_init_events (struct work_struct *work)
{
int ret;
u16 version_info;
#if GTP_COMPATIBLE_MODE
gtp_get_chip_type(ts_init);
if (CHIP_TYPE_GT9F == ts_init->chip_type)
{
ret = gtp_gt9xxf_init(ts_init->client);
if (FAIL == ret)
{
GTP_INFO("Failed to init GT9XXF.");
}
}
#endif
#if GTP_ESD_PROTECT
INIT_DELAYED_WORK(&gtp_esd_check_work, gtp_esd_check_func);
gtp_esd_check_workqueue = create_workqueue("gtp_esd_check");
#endif
ret = gtp_init_panel(ts_init);
if (ret < 0)
{
GTP_ERROR("GTP init chip failed.");
}
#if GTP_AUTO_UPDATE
ret = gup_init_update_proc(ts_init);
if (ret < 0)
{
GTP_ERROR("Create update thread error.");
}
#endif
ret = gtp_request_input_dev(ts_init);
if (ret < 0)
{
GTP_ERROR("GTP request input dev failed");
}
ret = gtp_read_version(i2c_connect_client, &version_info);
if (ret < 0)
{
GTP_ERROR("Read version failed.");
}
config_info.dev = &(ts_init->input_dev->dev);
ret = input_request_int(&(config_info.input_type), goodix_ts_irq_handler,CTP_IRQ_MODE, ts_init);
if (ret) {
printk("Request irq fail!.\n");
}
ts_init->use_irq = 1;
if (ts_init->use_irq)
{
gtp_irq_enable(ts_init);
}
#if GTP_CREATE_WR_NODE
init_wr_node(i2c_connect_client);
#endif
#if GTP_ESD_PROTECT
gtp_esd_switch(i2c_connect_client, SWITCH_ON);
#endif
return;
}
/*******************************************************
Function:
I2c probe.
Input:
client: i2c device struct.
id: device id.
Output:
Executive outcomes.
0: succeed.
*******************************************************/
static int goodix_ts_probe(struct i2c_client *client, const struct i2c_device_id *id)
{
s32 ret = -1;
struct goodix_ts_data *ts;
GTP_DEBUG_FUNC();
//do NOT remove these logs
GTP_INFO("GTP Driver Version: %s", GTP_DRIVER_VERSION);
GTP_INFO("GTP Driver Built@%s, %s", __TIME__, __DATE__);
GTP_INFO("GTP I2C Address: 0x%02x", client->addr);
i2c_connect_client = client;
if (!i2c_check_functionality(client->adapter, I2C_FUNC_I2C))
{
GTP_ERROR("I2C check functionality failed.");
return -ENODEV;
}
ts = kzalloc(sizeof(*ts), GFP_KERNEL);
if (ts == NULL)
{
GTP_ERROR("Alloc GFP_KERNEL memory failed.");
return -ENOMEM;
}
memset(ts, 0, sizeof(*ts));
INIT_WORK(&ts->work, goodix_ts_work_func);
ts->client = client;
spin_lock_init(&ts->irq_lock); // 2.6.39 later
// ts->irq_lock = SPIN_LOCK_UNLOCKED; // 2.6.39 & before
#if GTP_ESD_PROTECT
ts->clk_tick_cnt = 2 * HZ; // HZ: clock ticks in 1 second generated by system
GTP_DEBUG("Clock ticks for an esd cycle: %d", ts->clk_tick_cnt);
spin_lock_init(&ts->esd_lock);
// ts->esd_lock = SPIN_LOCK_UNLOCKED;
#endif
i2c_set_clientdata(client, ts);
ts->gtp_rawdiff_mode = 0;
ret = gtp_i2c_test(client);
if (ret < 0)
{
GTP_ERROR("I2C communication ERROR!");
goto I2C_TEST_FAIL;
}
printk("======detect ok !=====");
ts_init = ts;
ts->is_suspended = false;
goodix_wq = create_singlethread_workqueue("goodix_wq");
if (!goodix_wq) {
printk(KERN_ALERT "Creat %s workqueue failed.\n", goodix_ts_name);
return -ENOMEM;
}
goodix_init_wq = create_singlethread_workqueue("goodix_init");
if (goodix_init_wq == NULL) {
printk("create goodix_wq fail!\n");
return -ENOMEM;
}
goodix_resume_wq = create_singlethread_workqueue("goodix_resume");
if (goodix_resume_wq == NULL) {
printk("create goodix_resume_wq fail!\n");
return -ENOMEM;
}
queue_work(goodix_init_wq, &goodix_init_work);
// input_set_drvdata(ts->input_dev, client);
pm_runtime_set_active(&client->dev);
pm_runtime_get(&client->dev);
pm_runtime_enable(&client->dev);
return 0;
I2C_TEST_FAIL:
kfree(ts);
return -1;
}
/*******************************************************
Function:
Goodix touchscreen driver release function.
Input:
client: i2c device struct.
Output:
Executive outcomes. 0---succeed.
*******************************************************/
static int goodix_ts_remove(struct i2c_client *client)
{
struct goodix_ts_data *ts = i2c_get_clientdata(client);
GTP_DEBUG_FUNC();
cancel_work_sync(&goodix_init_work);
cancel_work_sync(&goodix_resume_work);
if (goodix_resume_wq)
destroy_workqueue(goodix_resume_wq);
if (goodix_init_wq)
destroy_workqueue(goodix_init_wq);
#if GTP_CREATE_WR_NODE
uninit_wr_node();
#endif
#if GTP_ESD_PROTECT
destroy_workqueue(gtp_esd_check_workqueue);
#endif
if (ts)
{
if (ts->use_irq)
{
// GTP_GPIO_AS_INPUT(GTP_INT_PORT);
// GTP_GPIO_FREE(GTP_INT_PORT);
input_free_int(&(config_info.input_type), ts);
}
else
{
hrtimer_cancel(&ts->timer);
}
}
GTP_INFO("GTP driver removing...");
i2c_set_clientdata(client, NULL);
pm_runtime_disable(&client->dev);
pm_runtime_set_suspended(&client->dev);
input_unregister_device(ts->input_dev);
kfree(ts);
return 0;
}
static void goodix_resume_events (struct work_struct *work)
{
int ret;
ret = gtp_wakeup_sleep(ts_init);
#if GTP_SLIDE_WAKEUP
doze_status = DOZE_DISABLED;
#endif
if (ret < 0)
{
GTP_ERROR("GTP later resume failed.");
}
#if (GTP_COMPATIBLE_MODE)
if (CHIP_TYPE_GT9F == ts_init->chip_type)
{
// do nothing
}
else
#endif
{
gtp_send_cfg(ts_init->client);
}
if (ts_init->use_irq)
{
gtp_irq_enable(ts_init);
}
else
{
hrtimer_start(&ts_init->timer, ktime_set(1, 0), HRTIMER_MODE_REL);
}
ts_init->gtp_is_suspend = 0;
#if GTP_ESD_PROTECT
gtp_esd_switch(ts_init->client, SWITCH_ON);
#endif
return;
}
/*******************************************************
Function:
suspend function.
Input:
h: early_suspend struct.
Output:
None.
*******************************************************/
static int goodix_ts_suspend(struct device *dev)
{
struct goodix_ts_data *ts = dev_get_drvdata(dev);
s8 ret = -1;
GTP_DEBUG_FUNC();
pm_runtime_suspended(dev);
// if (false == ts->is_suspended) {
#if GTP_ESD_PROTECT
gtp_esd_switch(ts->client, SWITCH_OFF);
#endif
ts->gtp_is_suspend = 1;
#if GTP_SLIDE_WAKEUP
ret = gtp_enter_doze(ts);
#else
if (ts->use_irq)
{
gtp_irq_disable(ts);
}
else
{
hrtimer_cancel(&ts->timer);
}
ret = gtp_enter_sleep(ts);
#endif
if (ret < 0)
{
GTP_ERROR("GTP early suspend failed.");
}
// to avoid waking up while not sleeping
// delay 48 + 10ms to ensure reliability
msleep(58);
// }
ts->is_suspended = true;
input_set_power_enable(&(config_info.input_type), 0);
return 0;
}
/*******************************************************
Function:
resume function.
Input:
h: early_suspend struct.
Output:
None.
*******************************************************/
static int goodix_ts_resume(struct device *dev)
{
struct goodix_ts_data *ts = dev_get_drvdata(dev);
input_set_power_enable(&(config_info.input_type), 1);
GTP_DEBUG_FUNC();
pm_runtime_suspended(dev);
// if (ts->is_suspended == true) {
queue_work(goodix_resume_wq, &goodix_resume_work);
// }
ts->is_suspended = false;
printk("ts->is_suspended:%d\n",ts->is_suspended);
return 0;
}
#if GTP_ESD_PROTECT
s32 gtp_i2c_read_no_rst(struct i2c_client *client, u8 *buf, s32 len)
{
struct i2c_msg msgs[2];
s32 ret=-1;
s32 retries = 0;
GTP_DEBUG_FUNC();
msgs[0].flags = !I2C_M_RD;
msgs[0].addr = client->addr;
msgs[0].len = GTP_ADDR_LENGTH;
msgs[0].buf = &buf[0];
//msgs[0].scl_rate = 300 * 1000; // for Rockchip, etc.
msgs[1].flags = I2C_M_RD;
msgs[1].addr = client->addr;
msgs[1].len = len - GTP_ADDR_LENGTH;
msgs[1].buf = &buf[GTP_ADDR_LENGTH];
//msgs[1].scl_rate = 300 * 1000;
while(retries < 5)
{
ret = i2c_transfer(client->adapter, msgs, 2);
if(ret == 2)break;
retries++;
}
if ((retries >= 5))
{
GTP_ERROR("I2C Read: 0x%04X, %d bytes failed, errcode: %d!", (((u16)(buf[0] << 8)) | buf[1]), len-2, ret);
}
return ret;
}
s32 gtp_i2c_write_no_rst(struct i2c_client *client,u8 *buf,s32 len)
{
struct i2c_msg msg;
s32 ret = -1;
s32 retries = 0;
GTP_DEBUG_FUNC();
msg.flags = !I2C_M_RD;
msg.addr = client->addr;
msg.len = len;
msg.buf = buf;
//msg.scl_rate = 300 * 1000; // for Rockchip, etc
while(retries < 5)
{
ret = i2c_transfer(client->adapter, &msg, 1);
if (ret == 1)break;
retries++;
}
if((retries >= 5))
{
GTP_ERROR("I2C Write: 0x%04X, %d bytes failed, errcode: %d!", (((u16)(buf[0] << 8)) | buf[1]), len-2, ret);
}
return ret;
}
/*******************************************************
Function:
switch on & off esd delayed work
Input:
client: i2c device
on: SWITCH_ON / SWITCH_OFF
Output:
void
*********************************************************/
void gtp_esd_switch(struct i2c_client *client, s32 on)
{
struct goodix_ts_data *ts;
ts = i2c_get_clientdata(client);
spin_lock(&ts->esd_lock);
if (SWITCH_ON == on) // switch on esd
{
if (!ts->esd_running)
{
ts->esd_running = 1;
spin_unlock(&ts->esd_lock);
GTP_INFO("Esd started");
queue_delayed_work(gtp_esd_check_workqueue, &gtp_esd_check_work, ts->clk_tick_cnt);
}
else
{
spin_unlock(&ts->esd_lock);
}
}
else // switch off esd
{
if (ts->esd_running)
{
ts->esd_running = 0;
spin_unlock(&ts->esd_lock);
GTP_INFO("Esd cancelled");
cancel_delayed_work_sync(&gtp_esd_check_work);
}
else
{
spin_unlock(&ts->esd_lock);
}
}
}
/*******************************************************
Function:
Initialize external watchdog for esd protect
Input:
client: i2c device.
Output:
result of i2c write operation.
1: succeed, otherwise: failed
*********************************************************/
static s32 gtp_init_ext_watchdog(struct i2c_client *client)
{
u8 opr_buffer[3] = {0x80, 0x41, 0xAA};
GTP_DEBUG("[Esd]Init external watchdog");
return gtp_i2c_write_no_rst(client, opr_buffer, 3);
}
/*******************************************************
Function:
Esd protect function.
External watchdog added by meta, 2013/03/07
Input:
work: delayed work
Output:
None.
*******************************************************/
static void gtp_esd_check_func(struct work_struct *work)
{
s32 i;
s32 ret = -1;
struct goodix_ts_data *ts = NULL;
u8 esd_buf[4] = {0x80, 0x40};
GTP_DEBUG_FUNC();
ts = i2c_get_clientdata(i2c_connect_client);
if (ts->gtp_is_suspend)
{
GTP_INFO("Esd suspended!");
return;
}
for (i = 0; i < 3; i++)
{
ret = gtp_i2c_read_no_rst(ts->client, esd_buf, 4);
GTP_DEBUG("[Esd]0x8040 = 0x%02X, 0x8041 = 0x%02X", esd_buf[2], esd_buf[3]);
if ((ret < 0))
{
// IIC communication problem
continue;
}
else
{
if ((esd_buf[2] == 0xAA) || (esd_buf[3] != 0xAA))
{
// IC works abnormally..
u8 chk_buf[4] = {0x80, 0x40};
gtp_i2c_read_no_rst(ts->client, chk_buf, 4);
GTP_DEBUG("[Check]0x8040 = 0x%02X, 0x8041 = 0x%02X", chk_buf[2], chk_buf[3]);
if ((chk_buf[2] == 0xAA) || (chk_buf[3] != 0xAA))
{
i = 3;
break;
}
else
{
continue;
}
}
else
{
// IC works normally, Write 0x8040 0xAA, feed the dog
esd_buf[2] = 0xAA;
gtp_i2c_write_no_rst(ts->client, esd_buf, 3);
break;
}
}
}
if (i >= 3)
{
#if GTP_COMPATIBLE_MODE
if (CHIP_TYPE_GT9F == ts->chip_type)
{
if (ts->rqst_processing)
{
GTP_INFO("Request processing, no esd recovery");
}
else
{
GTP_ERROR("IC working abnormally! Process esd recovery.");
gtp_esd_recovery(ts->client);
}
}
else
#endif
{
GTP_ERROR("IC working abnormally! Process reset guitar.");
gtp_reset_guitar(ts->client, 50);
}
}
if(!ts->gtp_is_suspend)
{
queue_delayed_work(gtp_esd_check_workqueue, &gtp_esd_check_work, ts->clk_tick_cnt);
}
else
{
GTP_INFO("Esd suspended!");
}
return;
}
#endif
static const struct i2c_device_id goodix_ts_id[] = {
{ GTP_I2C_NAME, 0 },
{ }
};
static UNIVERSAL_DEV_PM_OPS(gt9xx_pm_ops, goodix_ts_suspend,
goodix_ts_resume, NULL);
#define GT9XX_PM_OPS (&gt9xx_pm_ops)
static struct i2c_driver goodix_ts_driver = {
.class = I2C_CLASS_HWMON,
.probe = goodix_ts_probe,
.remove = goodix_ts_remove,
.id_table = goodix_ts_id,
.driver = {
.name = GTP_I2C_NAME,
.owner = THIS_MODULE,
.pm = GT9XX_PM_OPS,
},
.address_list = normal_i2c,
};
static int ctp_get_system_config(void)
{
ctp_print_info(config_info,DEBUG_INIT);
twi_id = config_info.twi_id;
screen_max_x = config_info.screen_max_x;
screen_max_y = config_info.screen_max_y;
revert_x_flag = config_info.revert_x_flag;
revert_y_flag = config_info.revert_y_flag;
exchange_x_y_flag = config_info.exchange_x_y_flag;
if((screen_max_x == 0) || (screen_max_y == 0)){
printk("%s:read config error!\n",__func__);
return 0;
}
return 1;
}
/*******************************************************
Function:
Driver Install function.
Input:
None.
Output:
Executive Outcomes. 0---succeed.
********************************************************/
static int __init goodix_ts_init(void)
{
s32 ret = -1;
GTP_DEBUG_FUNC();
GTP_INFO("GTP driver installing...");
dprintk(DEBUG_INIT,"****************************************************************\n");
if (input_fetch_sysconfig_para(&(config_info.input_type))) {
printk("%s: ctp_fetch_sysconfig_para err.\n", __func__);
return 0;
} else {
ret = input_init_platform_resource(&(config_info.input_type));
if (0 != ret) {
printk("%s:ctp_ops.init_platform_resource err. \n", __func__);
goto init_err;
}
input_set_power_enable(&(config_info.input_type),1);
}
if(config_info.ctp_used == 0){
printk("*** ctp_used set to 0 !\n");
printk("*** if use ctp,please put the sys_config.fex ctp_used set to 1. \n");
ret = 0;
goto init_err;
}
if(!ctp_get_system_config()){
printk("%s:read config fail!\n",__func__);
goto init_err;
}
sunxi_gpio_to_name(CTP_IRQ_NUMBER,irq_pin_name);
sunxi_gpio_to_name(CTP_RST_NUMBER,rst_pin_name);
gtp_io_init(20);
goodix_ts_driver.detect = ctp_detect;
ret = i2c_add_driver(&goodix_ts_driver);
if(ret)
goto init_err;
dprintk(DEBUG_INIT,"****************************************************************\n");
return ret;
init_err:
input_set_power_enable(&(config_info.input_type),0);
return ret;
}
/*******************************************************
Function:
Driver uninstall function.
Input:
None.
Output:
Executive Outcomes. 0---succeed.
********************************************************/
static void __exit goodix_ts_exit(void)
{
GTP_DEBUG_FUNC();
GTP_INFO("GTP driver exited.");
i2c_del_driver(&goodix_ts_driver);
if (goodix_wq)
{
destroy_workqueue(goodix_wq);
}
input_set_power_enable(&(config_info.input_type), 0);
input_free_platform_resource(&(config_info.input_type));
}
late_initcall(goodix_ts_init);
module_exit(goodix_ts_exit);
MODULE_DESCRIPTION("GTP Series Driver");
MODULE_LICENSE("GPL");