OSHW-DEIMOS/SOFTWARE/A64-TERES/linux-a64/drivers/input/touchscreen/gslx680new/gslX680.c
Dimitar Gamishev f9b0e7a283 linux
2017-10-13 14:07:04 +03:00

1920 lines
48 KiB
C
Executable File
Raw Permalink Blame History

/*
* drivers/input/touchscreen/gslX680.c
*
* Copyright (c) 2012 Shanghai Basewin
* Guan Yuwei<guanyuwei@basewin.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
/*
history:
mbgalex@163.com_2013-07-16_14:12
add tp for Q790 OGS project ,tp modules is EC8031-01
*/
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/input.h>
#include <linux/interrupt.h>
#include <linux/i2c.h>
#include <linux/delay.h>
#include <linux/jiffies.h>
#include <linux/cdev.h>
#include <asm/uaccess.h>
#include <linux/pm_runtime.h>
#include <linux/pm_runtime.h>
#include <linux/input/mt.h>
#include <linux/i2c.h>
#include <linux/input.h>
#include <linux/delay.h>
#include <linux/interrupt.h>
#include <linux/errno.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/platform_device.h>
#include <linux/async.h>
#include <linux/hrtimer.h>
#include <linux/init.h>
#include <linux/ioport.h>
#include <asm/irq.h>
#include <asm/io.h>
#include <linux/device.h>
//#include <mach/irqs.h>
//#include <mach/hardware.h>
//#include <mach/sys_config.h>
#include <linux/sys_config.h>
#include <linux/gpio.h>
#include <linux/init-input.h>
#include "gslX680.h"
#include "gslX680_inetd71.h"
#include "gsl1680e_p2.h"
#include "gslX680_m86hd.h"
#include "gslX680_m102.h"
#include "gslX680_m102gg.h"
#include "main_1680E_m320.h"
#include "gslX680_m100.h"
#include "gslX680_mq88.h"
#include "gslX680_m71.h"
#include "gslX680_m7300.h"
#include "gslX680_jinghong.h"
#include "gsl1680e_t1.h"
#include "gsl1680e_t1_v2.h"
#include "gsl1680e_a86.h"
#include "A86_GSL3676B_8001280_OGS_DZ_80A22.h"
struct gslX680_fw_array {
const char* name;
unsigned int size;
const struct fw_data *fw;
} gslx680_fw_grp[] = {
{"gslX680_inetd71" , ARRAY_SIZE(GSLX680_FW_INETD71),GSLX680_FW_INETD71},
{"gsl1680e_p2" , ARRAY_SIZE(GSL1680E_FW_P2),GSL1680E_FW_P2},
{"gsl_m86_hd" , ARRAY_SIZE(GSLX680_FW_M86HD),GSLX680_FW_M86HD},
{"gsl_m102" , ARRAY_SIZE(GSLX680_FW_M102),GSLX680_FW_M102},
{"gsl_m102gg" , ARRAY_SIZE(GSLX680_FW_M102GG),GSLX680_FW_M102GG},
{"gsl_m320" , ARRAY_SIZE(GSLX680_FW_M320),GSLX680_FW_M320},
{"gsl_m100" , ARRAY_SIZE(GSLX680_FW_M100),GSLX680_FW_M100},
{"gsl_mq88" , ARRAY_SIZE(GSLX680_FW_MQ88),GSLX680_FW_MQ88},
{"gsl_m71" , ARRAY_SIZE(GSLX680_FW_M71),GSLX680_FW_M71},
{"gsl_m7300" , ARRAY_SIZE(GSLX680_FW_M7300),GSLX680_FW_M7300},
{"gsl_jinghong" , ARRAY_SIZE(GSLX680_FW_JINGHONG),GSLX680_FW_JINGHONG},
{"gsl_t1" , ARRAY_SIZE(GSL1680E_FW_T1),GSL1680E_FW_T1},
{"gsl_t1_v2" , ARRAY_SIZE(GSL1680E_FW_T1_V2),GSL1680E_FW_T1_V2},
{"gsl_a86" , ARRAY_SIZE(GSL1680E_FW_A86),GSL1680E_FW_A86},
{"gsl_a86_ogs" , ARRAY_SIZE(A86_GSL3676B_8001280_OGS_DZ_80A22),A86_GSL3676B_8001280_OGS_DZ_80A22},
};
unsigned int *gslX680_config_data[16] = {
gsl_config_data_id_K71_OGS_1024600,
gsl_config_data_id_P2,
gsl_config_data_id_m86_1024600,
gsl_config_data_id_m102,
gsl_config_data_id_m102gg,
gsl_config_data_id_m320,
gsl_config_data_id_m100,
gsl_config_data_id_mq88,
gsl_config_data_id_m71,
gsl_config_data_id_m7300,
gsl_config_data_id_jinghong,
gsl_config_data_id_t1,
gsl_config_data_id_t1_v2,
gsl_config_data_id_a86,
gsl_config_data_id_A86_GSL3676B_8001280_OGS_DZ_80A22,
};
#define FOR_TSLIB_TEST
//#define TPD_PROC_DEBUG 1
#define HAVE_TOUCH_KEY
#ifdef TPD_PROC_DEBUG
#include <linux/proc_fs.h>
#include <asm/uaccess.h>
static struct proc_dir_entry *gsl_config_proc = NULL;
#define GSL_CONFIG_PROC_FILE "gsl_config"
#define CONFIG_LEN 31
static char gsl_read[CONFIG_LEN];
static u8 gsl_data_proc[8] = {0};
static u8 gsl_proc_flag = 0;
static unsigned int gsl_config_data_id[256];
#endif
#define GSL_DATA_REG 0x80
#define GSL_STATUS_REG 0xe0
#define GSL_PAGE_REG 0xf0
#define PRESS_MAX 255
#define MAX_FINGERS 5//5 //<2F><><EFBFBD><EFBFBD><EFBFBD><EFBFBD>Ö¸<EFBFBD><D6B8><EFBFBD><EFBFBD>
#define MAX_CONTACTS 10
#define DMA_TRANS_LEN 0x20
#define PHO_CFG2_OFFSET (0X104)
#define PHO_DAT_OFFSET (0X10C)
#define PHO_PULL1_OFFSET (0X11C)
#define GPIOF_CON 0x7f0080a0
#define GPIOF_DAT 0x7f0080a4
#define GPIOF_PUD 0x7f0080a8
#define GSL_NOID_VERSION
#ifdef GSL_MONITOR
static struct delayed_work gsl_monitor_work;
static struct workqueue_struct *gsl_monitor_workqueue = NULL;
static char int_1st[4] = {0};
static char int_2nd[4] = {0};
#endif
#ifdef HAVE_TOUCH_KEY
static u16 key = 0;
static int key_state_flag = 0;
struct key_data {
u16 key;
u16 x_min;
u16 x_max;
u16 y_min;
u16 y_max;
};
#define KEY_HOME 172
const u16 key_array[]={
KEY_BACK,
KEY_HOME,
KEY_MENU,
KEY_SEARCH,
};
#define MAX_KEY_NUM (sizeof(key_array)/sizeof(key_array[0]))
struct key_data gsl_key_data[MAX_KEY_NUM] = {
{KEY_BACK, 816, 836,115, 125},
{KEY_HOME, 64278, 64298,64758 ,64778},
{KEY_MENU, 816, 836,398, 410},
{KEY_SEARCH, 2048, 2048, 2048, 2048},
};
#endif
struct gsl_ts_data {
u8 x_index;
u8 y_index;
u8 z_index;
u8 id_index;
u8 touch_index;
u8 data_reg;
u8 status_reg;
u8 data_size;
u8 touch_bytes;
u8 update_data;
u8 touch_meta_data;
u8 finger_size;
};
static struct gsl_ts_data devices[] = {
{
.x_index = 6,
.y_index = 4,
.z_index = 5,
.id_index = 7,
.data_reg = GSL_DATA_REG,
.status_reg = GSL_STATUS_REG,
.update_data = 0x4,
.touch_bytes = 4,
.touch_meta_data = 4,
.finger_size = 70,
},
};
struct gsl_ts {
struct i2c_client *client;
struct input_dev *input;
struct work_struct work;
struct workqueue_struct *wq;
struct gsl_ts_data *dd;
u8 *touch_data;
u8 device_id;
u8 prev_touches;
bool is_suspended;
bool is_runtime_suspend;
bool try_to_runtime_suspend;
bool try_to_runtime_resume;
struct mutex sus_lock;
int irq;
int irq_is_disable;
spinlock_t irq_lock;
#ifdef GSL_TIMER
struct timer_list gsl_timer;
#endif
};
static u32 id_sign[MAX_CONTACTS+1] = {0};
static u8 id_state_flag[MAX_CONTACTS+1] = {0};
static u8 id_state_old_flag[MAX_CONTACTS+1] = {0};
static u16 x_old[MAX_CONTACTS+1] = {0};
static u16 y_old[MAX_CONTACTS+1] = {0};
static u16 x_new = 0;
static u16 y_new = 0;
///////////////////////////////////////////////
//specific tp related macro: need be configured for specific tp
#define GSLX680_I2C_NAME "gslX680"
#define CTP_IRQ_NUMBER (config_info.int_number)
#define CTP_IRQ_MODE (IRQF_TRIGGER_FALLING)
#define CTP_NAME GSLX680_I2C_NAME
#define SCREEN_MAX_X (screen_max_x)
#define SCREEN_MAX_Y (screen_max_y)
static const char* fwname;
static bool offpower;
static int fw_index = -1;
#define GSLX680_I2C_ADDR 0x40
#define GSLX680_USED "\n \
\n+++++++++++++++++++++++++++++++++ \
\n++++++ GSLX680 new used +++++++++ \
\n+++++++++++++++++++++++++++++++++ \
\n"
#define GSLX680_IC_INFO "\n============================================================== \
\nIC :GSLX680 \
\nAUTHOR :mbgalex@163.com \
\nVERSION:2013-07-20_10:41\n"
static int screen_max_x = 0;
static int screen_max_y = 0;
static int revert_x_flag = 0;
static int revert_y_flag = 0;
static int exchange_x_y_flag = 0;
struct ctp_config_info config_info = {
.input_type = CTP_TYPE,
.name = NULL,
.int_number = 0,
};
static __u32 twi_id = 0;
static u32 debug_mask = 0;
enum{
DEBUG_INIT = 1U << 0,
DEBUG_SUSPEND = 1U << 1,
DEBUG_INT_INFO = 1U << 2,
DEBUG_X_Y_INFO = 1U << 3,
DEBUG_KEY_INFO = 1U << 4,
DEBUG_WAKEUP_INFO = 1U << 5,
DEBUG_OTHERS_INFO = 1U << 6,
};
#define dprintk(level_mask,fmt,arg...) if(unlikely(debug_mask & level_mask)) \
printk("***CTP***"fmt, ## arg)
/* Addresses to scan */
static const unsigned short normal_i2c[2] = {GSLX680_I2C_ADDR, I2C_CLIENT_END};
static void glsX680_init_events(struct work_struct *work);
static void glsX680_resume_events(struct work_struct *work);
struct workqueue_struct *gslX680_wq;
struct workqueue_struct *gslX680_resume_wq;
static DECLARE_WORK(glsX680_init_work, glsX680_init_events);
static DECLARE_WORK(glsX680_resume_work, glsX680_resume_events);
struct i2c_client *glsX680_i2c;
struct gsl_ts *ts_init;
static int gsl_irq_disable(struct gsl_ts *ts);
static int gsl_irq_enable(struct gsl_ts *ts);
int ctp_i2c_write_bytes(struct i2c_client *client, uint8_t *data, uint16_t len)
{
struct i2c_msg msg;
int ret=-1;
msg.flags = !I2C_M_RD;
msg.addr = client->addr;
msg.len = len;
msg.buf = data;
ret=i2c_transfer(client->adapter, &msg,1);
return ret;
}
bool ctp_i2c_test(struct i2c_client * client)
{
int ret,retry;
uint8_t test_data[1] = { 0 }; //only write a data address.
for(retry=0; retry < 12; retry++)
{
ret =ctp_i2c_write_bytes(client, test_data, 1); //Test i2c.
if (ret == 1)
break;
msleep(50);
}
return ret==1 ? true : false;
}
static int ctp_detect(struct i2c_client *client, struct i2c_board_info *info)
{
struct i2c_adapter *adapter = client->adapter;
int ret;
if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA))
return -ENODEV;
if(twi_id == adapter->nr){
pr_info("%s: addr= %x\n",__func__,client->addr);
ret = ctp_i2c_test(client);
if(!ret){
pr_info("%s:I2C connection might be something wrong \n",__func__);
return -ENODEV;
}else{
pr_info("I2C connection sucess!\n");
strlcpy(info->type, CTP_NAME, I2C_NAME_SIZE);
pr_info("%s", GSLX680_USED);
return 0;
}
}else{
return -ENODEV;
}
}
/**
* ctp_print_info - sysconfig print function
* return value:
*
*/
void ctp_print_info(struct ctp_config_info info,int debug_level)
{
if(debug_level == DEBUG_INIT)
{
dprintk(DEBUG_INIT,"info.ctp_used:%d\n",info.ctp_used);
dprintk(DEBUG_INIT,"info.ctp_name:%s\n",info.name);
dprintk(DEBUG_INIT,"info.twi_id:%d\n",info.twi_id);
dprintk(DEBUG_INIT,"info.screen_max_x:%d\n",info.screen_max_x);
dprintk(DEBUG_INIT,"info.screen_max_y:%d\n",info.screen_max_y);
dprintk(DEBUG_INIT,"info.revert_x_flag:%d\n",info.revert_x_flag);
dprintk(DEBUG_INIT,"info.revert_y_flag:%d\n",info.revert_y_flag);
dprintk(DEBUG_INIT,"info.exchange_x_y_flag:%d\n",info.exchange_x_y_flag);
dprintk(DEBUG_INIT,"info.irq_gpio_number:%d\n",info.irq_gpio.gpio);
dprintk(DEBUG_INIT,"info.wakeup_gpio_number:%d\n",info.wakeup_gpio.gpio);
}
}
/**
* ctp_wakeup - function
*
*/
int ctp_wakeup(int status,int ms)
{
dprintk(DEBUG_INIT,"***CTP*** %s:status:%d,ms = %d\n",__func__,status,ms);
if (status == 0) {
if(ms == 0) {
__gpio_set_value(config_info.wakeup_gpio.gpio, 0);
}else {
__gpio_set_value(config_info.wakeup_gpio.gpio, 0);
msleep(ms);
__gpio_set_value(config_info.wakeup_gpio.gpio, 1);
}
}
if (status == 1) {
if(ms == 0) {
__gpio_set_value(config_info.wakeup_gpio.gpio, 1);
}else {
__gpio_set_value(config_info.wakeup_gpio.gpio, 1);
msleep(ms);
__gpio_set_value(config_info.wakeup_gpio.gpio, 0);
}
}
msleep(5);
return 0;
}
/**
Function:
Disable irq function
Input:
ts: gsl i2c_client private data
Output:
None.
**/
static int gsl_irq_disable(struct gsl_ts *ts)
{
unsigned long irqflags;
int ret = 0;
spin_lock_irqsave(&ts->irq_lock, irqflags);
if (!ts->irq_is_disable) {
ts->irq_is_disable = 1;
ret = input_set_int_enable(&(config_info.input_type), 0);
dprintk(DEBUG_INT_INFO, "%s ---gsl_irq_disable success !---\n", __func__);
}
spin_unlock_irqrestore(&ts->irq_lock, irqflags);
return ret;
}
/**
Function:
Enable irq function
Input:
ts: gsl i2c_client private data
Output:
None.
**/
static int gsl_irq_enable(struct gsl_ts *ts)
{
unsigned long irqflags;
int ret = 0;
spin_lock_irqsave(&ts->irq_lock, irqflags);
if (ts->irq_is_disable) {
ts->irq_is_disable = 0;
ret = input_set_int_enable(&(config_info.input_type), 1);
dprintk(DEBUG_INT_INFO, "%s ---gsl_irq_enable success !---\n", __func__);
}
spin_unlock_irqrestore(&ts->irq_lock, irqflags);
return ret;
}
static int gslX680_chip_init(void)
{
ctp_wakeup(1,0);
msleep(20);
return 0;
}
static int gslX680_shutdown_low(void)
{
ctp_wakeup(0,0);
return 0;
}
static int gslX680_shutdown_high(void)
{
ctp_wakeup(1,0);
return 0;
}
static inline u16 join_bytes(u8 a, u8 b)
{
u16 ab = 0;
ab = ab | a;
ab = ab << 8 | b;
return ab;
}
#if 0
static u32 gsl_read_interface(struct i2c_client *client, u8 reg, u8 *buf, u32 num)
{
struct i2c_msg xfer_msg[2];
xfer_msg[0].addr = client->addr;
xfer_msg[0].len = 1;
xfer_msg[0].flags = client->flags & I2C_M_TEN;
xfer_msg[0].buf = &reg;
xfer_msg[1].addr = client->addr;
xfer_msg[1].len = num;
xfer_msg[1].flags |= I2C_M_RD;
xfer_msg[1].buf = buf;
if (reg < 0x80) {
i2c_transfer(client->adapter, xfer_msg, ARRAY_SIZE(xfer_msg));
msleep(5);
}
return i2c_transfer(client->adapter, xfer_msg, ARRAY_SIZE(xfer_msg)) == ARRAY_SIZE(xfer_msg) ? 0 : -EFAULT;
}
#endif
static u32 gsl_write_interface(struct i2c_client *client, const u8 reg, u8 *buf, u32 num)
{
struct i2c_msg xfer_msg[1];
buf[0] = reg;
xfer_msg[0].addr = client->addr;
xfer_msg[0].len = num + 1;
xfer_msg[0].flags = client->flags & I2C_M_TEN;
xfer_msg[0].buf = buf;
return i2c_transfer(client->adapter, xfer_msg, 1) == 1 ? 0 : -EFAULT;
}
static int gsl_ts_write(struct i2c_client *client, u8 addr, u8 *pdata, int datalen)
{
int ret = 0;
u8 tmp_buf[128];
unsigned int bytelen = 0;
if (datalen > 125){
printk("%s too big datalen = %d!\n", __func__, datalen);
return -1;
}
tmp_buf[0] = addr;
bytelen++;
if (datalen != 0 && pdata != NULL){
memcpy(&tmp_buf[bytelen], pdata, datalen);
bytelen += datalen;
}
ret = i2c_master_send(client, tmp_buf, bytelen);
return ret;
}
static int gsl_ts_read(struct i2c_client *client, u8 addr, u8 *pdata, unsigned int datalen)
{
int ret = 0;
if (datalen > 126){
printk("%s too big datalen = %d!\n", __func__, datalen);
return -1;
}
ret = gsl_ts_write(client, addr, NULL, 0);
if (ret < 0){
printk("%s set data address fail!\n", __func__);
return ret;
}
return i2c_master_recv(client, pdata, datalen);
}
static ssize_t gslX680_reg_show(
struct device *dev,
struct device_attribute *attr,
char *buf)
{
u8 mem_buf[4] = {0};
u8 int_buf[4] = {0};
u8 power_buf[4] = {0};
u8 point_buf = 0;
gsl_ts_read(ts_init->client,0xb0, mem_buf, sizeof(mem_buf));
printk("check mem read 0xb0 = %x %x %x %x \n",
mem_buf[3], mem_buf[2], mem_buf[1], mem_buf[0]);
gsl_ts_read(ts_init->client,0xb4, int_buf, sizeof(int_buf));
printk("int num read 0xb4 = %d \n",
(int_buf[3]<<24) |( int_buf[2]<<16 ) |(int_buf[1]<<8) |int_buf[0]);
gsl_ts_read(ts_init->client,0xbc, power_buf, sizeof(power_buf));
printk("power check read 0xbc = %4x \n",
(power_buf[3]<<24) |( power_buf[2]<<16 ) |(power_buf[1]<<8) |power_buf[0]);
gsl_ts_read(ts_init->client,0x80, &point_buf, 1);
printk("point count read 0x80 = %d \n",point_buf);
return sprintf(buf, "[check mem read = 0x%4x ] [int num read = %d ] [power check read = 0x%4x ] [point count read = %d ] \n",
(mem_buf[3]<<24) |( mem_buf[2]<<16 ) |(mem_buf[1]<<8) |mem_buf[0] ,
(int_buf[3]<<24) |( int_buf[2]<<16 ) |(int_buf[1]<<8) |int_buf[0],
(power_buf[3]<<24) |( power_buf[2]<<16 ) |(power_buf[1]<<8) |power_buf[0],point_buf);
}
static DEVICE_ATTR(debug_reg, 0444, gslX680_reg_show, NULL);
static __inline__ void fw2buf(u8 *buf, const u32 *fw)
{
u32 *u32_buf = (int *)buf;
*u32_buf = *fw;
}
static int gsl_find_fw_idx(const char* name)
{
int i = 0;
if (NULL != name) {
for (i=0; i<ARRAY_SIZE(gslx680_fw_grp); i++) {
if (!strcmp(name, gslx680_fw_grp[i].name))
return i;
}
}
return -1;
}
static void gsl_load_fw(struct i2c_client *client)
{
u8 buf[DMA_TRANS_LEN*4 + 1] = {0};
u8 send_flag = 1;
u8 *cur = buf + 1;
u32 source_line = 0;
u32 source_len;
const struct fw_data *ptr_fw;
printk("=============gsl_load_fw start==============\n");
ptr_fw = gslx680_fw_grp[fw_index].fw;
source_len = gslx680_fw_grp[fw_index].size;
for (source_line = 0; source_line < source_len; source_line++)
{
/* init page trans, set the page val */
if (GSL_PAGE_REG == ptr_fw[source_line].offset)
{
fw2buf(cur, &ptr_fw[source_line].val);
gsl_write_interface(client, GSL_PAGE_REG, buf, 4);
send_flag = 1;
}
else
{
if (1 == send_flag % (DMA_TRANS_LEN < 0x20 ? DMA_TRANS_LEN : 0x20))
buf[0] = (u8)ptr_fw[source_line].offset;
fw2buf(cur, &ptr_fw[source_line].val);
cur += 4;
if (0 == send_flag % (DMA_TRANS_LEN < 0x20 ? DMA_TRANS_LEN : 0x20))
{
gsl_write_interface(client, buf[0], buf, cur - buf - 1);
cur = buf + 1;
}
send_flag++;
}
}
printk("=============gsl_load_fw end==============\n");
}
static void startup_chip(struct i2c_client *client)
{
u8 tmp = 0x00;
#ifdef GSL_NOID_VERSION
gsl_DataInit(gslX680_config_data[fw_index]);
#endif
gsl_ts_write(client, 0xe0, &tmp, 1);
msleep(10);
}
static void reset_chip(struct i2c_client *client)
{
u8 tmp = 0x88;
u8 buf[4] = {0x00};
gslX680_shutdown_low();
msleep(10);
gslX680_shutdown_high();
msleep(10);
gsl_ts_write(client, 0xe0, &tmp, sizeof(tmp));
msleep(10);
tmp = 0x04;
gsl_ts_write(client, 0xe4, &tmp, sizeof(tmp));
msleep(10);
gsl_ts_write(client, 0xbc, buf, sizeof(buf));
msleep(10);
}
static void clr_reg(struct i2c_client *client)
{
u8 write_buf[4] = {0};
write_buf[0] = 0x88;
gsl_ts_write(client, 0xe0, &write_buf[0], 1);
msleep(20);
write_buf[0] = 0x03;
gsl_ts_write(client, 0x80, &write_buf[0], 1);
msleep(5);
write_buf[0] = 0x04;
gsl_ts_write(client, 0xe4, &write_buf[0], 1);
msleep(5);
write_buf[0] = 0x00;
gsl_ts_write(client, 0xe0, &write_buf[0], 1);
msleep(20);
}
static void init_chip(struct i2c_client *client)
{
gslX680_shutdown_low();
msleep(50);
gslX680_shutdown_high();
msleep(30);
clr_reg(client);
reset_chip(client);
gsl_load_fw(client);
startup_chip(client);
reset_chip(client);
startup_chip(client);
}
static void check_mem_data(struct i2c_client *client)
{
u8 read_buf[4] = {0};
//if(gsl_chipType_new == 1)
{
if(ts_init->is_suspended != false || ts_init->is_runtime_suspend != false)
msleep(30);
gsl_ts_read(client,0xb0, read_buf, sizeof(read_buf));
printk("#########check mem read 0xb0 = %x %x %x %x #########\n", read_buf[3], read_buf[2], read_buf[1], read_buf[0]);
if (read_buf[3] != 0x5a || read_buf[2] != 0x5a || read_buf[1] != 0x5a || read_buf[0] != 0x5a)
{
init_chip(client);
}
}
}
#ifdef STRETCH_FRAME
static void stretch_frame(u16 *x, u16 *y)
{
u16 temp_x = *x;
u16 temp_y = *y;
u16 temp_0, temp_1, temp_2;
if(temp_x < X_STRETCH_MAX + X_STRETCH_CUST)
{
temp_0 = temp_1 = temp_2 = 0;
temp_0 = X_STRETCH_MAX + X_STRETCH_CUST - temp_x;
temp_0 = temp_0 > X_STRETCH_CUST ? X_STRETCH_CUST : temp_0;
temp_0 = temp_0*(100 + X_RATIO_CUST)/100;
if(temp_x < X_STRETCH_MAX)
{
temp_1 = X_STRETCH_MAX - temp_x;
temp_1 = temp_1 > X_STRETCH_MAX/4 ? X_STRETCH_MAX/4 : temp_1;
temp_1 = temp_1*(100 + 2*XL_RATIO_1)/100;
}
if(temp_x < 3*X_STRETCH_MAX/4)
{
temp_2 = 3*X_STRETCH_MAX/4 - temp_x;
temp_2 = temp_2*(100 + 2*XL_RATIO_2)/100;
}
*x = (temp_0 + temp_1 +temp_2) < (X_STRETCH_MAX + X_STRETCH_CUST) ? ((X_STRETCH_MAX + X_STRETCH_CUST) - (temp_0 + temp_1 +temp_2)) : 1;
}
else if(temp_x > (CTP_MAX_X -X_STRETCH_MAX - X_STRETCH_CUST))
{
temp_0 = temp_1 = temp_2 = 0;
temp_0 = temp_x - (CTP_MAX_X -X_STRETCH_MAX - X_STRETCH_CUST);
temp_0 = temp_0 > X_STRETCH_CUST ? X_STRETCH_CUST : temp_0;
temp_0 = temp_0*(100 + X_RATIO_CUST)/100;
if(temp_x > (CTP_MAX_X -X_STRETCH_MAX))
{
temp_1 = temp_x - (CTP_MAX_X -X_STRETCH_MAX);
temp_1 = temp_1 > X_STRETCH_MAX/4 ? X_STRETCH_MAX/4 : temp_1;
temp_1 = temp_1*(100 + 2*XR_RATIO_1)/100;
}
if(temp_x > (CTP_MAX_X -3*X_STRETCH_MAX/4))
{
temp_2 = temp_x - (CTP_MAX_X -3*X_STRETCH_MAX/4);
temp_2 = temp_2*(100 + 2*XR_RATIO_2)/100;
}
*x = (temp_0 + temp_1 +temp_2) < (X_STRETCH_MAX + X_STRETCH_CUST) ? ((CTP_MAX_X -X_STRETCH_MAX - X_STRETCH_CUST) + (temp_0 + temp_1 +temp_2)) : (CTP_MAX_X - 1);
}
if(temp_y < Y_STRETCH_MAX + Y_STRETCH_CUST)
{
temp_0 = temp_1 = temp_2 = 0;
temp_0 = Y_STRETCH_MAX + Y_STRETCH_CUST - temp_y;
temp_0 = temp_0 > Y_STRETCH_CUST ? Y_STRETCH_CUST : temp_0;
temp_0 = temp_0*(100 + Y_RATIO_CUST)/100;
if(temp_y < Y_STRETCH_MAX)
{
temp_1 = Y_STRETCH_MAX - temp_y;
temp_1 = temp_1 > Y_STRETCH_MAX/4 ? Y_STRETCH_MAX/4 : temp_1;
temp_1 = temp_1*(100 + 2*YL_RATIO_1)/100;
}
if(temp_y < 3*Y_STRETCH_MAX/4)
{
temp_2 = 3*Y_STRETCH_MAX/4 - temp_y;
temp_2 = temp_2*(100 + 2*YL_RATIO_2)/100;
}
*y = (temp_0 + temp_1 +temp_2) < (Y_STRETCH_MAX + Y_STRETCH_CUST) ? ((Y_STRETCH_MAX + Y_STRETCH_CUST) - (temp_0 + temp_1 +temp_2)) : 1;
}
else if(temp_y > (CTP_MAX_Y -Y_STRETCH_MAX - Y_STRETCH_CUST))
{
temp_0 = temp_1 = temp_2 = 0;
temp_0 = temp_y - (CTP_MAX_Y -Y_STRETCH_MAX - Y_STRETCH_CUST);
temp_0 = temp_0 > Y_STRETCH_CUST ? Y_STRETCH_CUST : temp_0;
temp_0 = temp_0*(100 + Y_RATIO_CUST)/100;
if(temp_y > (CTP_MAX_Y -Y_STRETCH_MAX))
{
temp_1 = temp_y - (CTP_MAX_Y -Y_STRETCH_MAX);
temp_1 = temp_1 > Y_STRETCH_MAX/4 ? Y_STRETCH_MAX/4 : temp_1;
temp_1 = temp_1*(100 + 2*YR_RATIO_1)/100;
}
if(temp_y > (CTP_MAX_Y -3*Y_STRETCH_MAX/4))
{
temp_2 = temp_y - (CTP_MAX_Y -3*Y_STRETCH_MAX/4);
temp_2 = temp_2*(100 + 2*YR_RATIO_2)/100;
}
*y = (temp_0 + temp_1 +temp_2) < (Y_STRETCH_MAX + Y_STRETCH_CUST) ? ((CTP_MAX_Y -Y_STRETCH_MAX - Y_STRETCH_CUST) + (temp_0 + temp_1 +temp_2)) : (CTP_MAX_Y - 1);
}
}
#endif
#ifdef FILTER_POINT
static void filter_point(u16 x, u16 y , u8 id)
{
u16 x_err =0;
u16 y_err =0;
u16 filter_step_x = 0, filter_step_y = 0;
id_sign[id] = id_sign[id] + 1;
if(id_sign[id] == 1)
{
x_old[id] = x;
y_old[id] = y;
}
x_err = x > x_old[id] ? (x -x_old[id]) : (x_old[id] - x);
y_err = y > y_old[id] ? (y -y_old[id]) : (y_old[id] - y);
if( (x_err > FILTER_MAX && y_err > FILTER_MAX/3) || (x_err > FILTER_MAX/3 && y_err > FILTER_MAX) )
{
filter_step_x = x_err;
filter_step_y = y_err;
}
else
{
if(x_err > FILTER_MAX)
filter_step_x = x_err;
if(y_err> FILTER_MAX)
filter_step_y = y_err;
}
if(x_err <= 2*FILTER_MAX && y_err <= 2*FILTER_MAX)
{
filter_step_x >>= 2;
filter_step_y >>= 2;
}
else if(x_err <= 3*FILTER_MAX && y_err <= 3*FILTER_MAX)
{
filter_step_x >>= 1;
filter_step_y >>= 1;
}
else if(x_err <= 4*FILTER_MAX && y_err <= 4*FILTER_MAX)
{
filter_step_x = filter_step_x*3/4;
filter_step_y = filter_step_y*3/4;
}
x_new = x > x_old[id] ? (x_old[id] + filter_step_x) : (x_old[id] - filter_step_x);
y_new = y > y_old[id] ? (y_old[id] + filter_step_y) : (y_old[id] - filter_step_y);
x_old[id] = x_new;
y_old[id] = y_new;
}
#else
static void record_point(u16 x, u16 y , u8 id)
{
u16 x_err =0;
u16 y_err =0;
id_sign[id]=id_sign[id]+1;
if(id_sign[id]==1){
x_old[id]=x;
y_old[id]=y;
}
x = (x_old[id] + x)/2;
y = (y_old[id] + y)/2;
if(x>x_old[id]){
x_err=x -x_old[id];
}
else{
x_err=x_old[id]-x;
}
if(y>y_old[id]){
y_err=y -y_old[id];
}
else{
y_err=y_old[id]-y;
}
if( (x_err > 3 && y_err > 1) || (x_err > 1 && y_err > 3) ){
x_new = x; x_old[id] = x;
y_new = y; y_old[id] = y;
}
else{
if(x_err > 3){
x_new = x; x_old[id] = x;
}
else
x_new = x_old[id];
if(y_err> 3){
y_new = y; y_old[id] = y;
}
else
y_new = y_old[id];
}
if(id_sign[id]==1){
x_new= x_old[id];
y_new= y_old[id];
}
}
#endif
#ifdef TPD_PROC_DEBUG
static int char_to_int(char ch)
{
if(ch>='0' && ch<='9')
return (ch-'0');
else
return (ch-'a'+10);
}
//static int gsl_config_read_proc(char *page, char **start, off_t off, int count, int *eof, void *data)
static int gsl_config_read_proc(struct seq_file *m,void *v)
{
//char *ptr = page;
char temp_data[5] = {0};
unsigned int tmp=0;
unsigned int *ptr_fw;
if('v'==gsl_read[0]&&'s'==gsl_read[1])
{
#ifdef GSL_NOID_VERSION
tmp=gsl_version_id();
#else
tmp=0x20121215;
#endif
//ptr += sprintf(ptr,"version:%x\n",tmp);
seq_printf(m,"version:%x\n",tmp);
}
else if('r'==gsl_read[0]&&'e'==gsl_read[1])
{
if('i'==gsl_read[3])
{
#ifdef GSL_NOID_VERSION
tmp=(gsl_data_proc[5]<<8) | gsl_data_proc[4];
//ptr +=sprintf(ptr,"gsl_config_data_id[%u] = ",tmp);
seq_printf(m,"gsl_config_data_id[%u] = ",tmp);
if(tmp>=0&&tmp<512) //gslX680_config_data[fw_index]
//ptr +=sprintf(ptr,"%d\n",gsl_config_data_id[tmp]);
seq_printf(m,"%d\n",gsl_config_data_id[tmp]);
#endif
}
else
{
gsl_ts_write(glsX680_i2c,0xf0,&gsl_data_proc[4],4);
gsl_read_interface(glsX680_i2c,gsl_data_proc[0],temp_data,4);
//ptr +=sprintf(ptr,"offset : {0x%02x,0x",gsl_data_proc[0]);
//ptr +=sprintf(ptr,"%02x",temp_data[3]);
//ptr +=sprintf(ptr,"%02x",temp_data[2]);
//ptr +=sprintf(ptr,"%02x",temp_data[1]);
//ptr +=sprintf(ptr,"%02x};\n",temp_data[0]);
seq_printf(m,"offset : {0x%02x,0x",gsl_data_proc[0]);
seq_printf(m,"%02x",temp_data[3]);
seq_printf(m,"%02x",temp_data[2]);
seq_printf(m,"%02x",temp_data[1]);
seq_printf(m,"%02x};\n",temp_data[0]);
}
}
//*eof = 1;
//return (ptr - page);
return 0;
}
static int gsl_config_write_proc(struct file *file, const char *buffer, unsigned long count, void *data)
{
u8 buf[8] = {0};
int tmp = 0;
int tmp1 = 0;
if(count > CONFIG_LEN)
{
printk("size not match [%d:%ld]\n", CONFIG_LEN, count);
return -EFAULT;
}
if(copy_from_user(gsl_read, buffer, (count<CONFIG_LEN?count:CONFIG_LEN)))
{
printk("copy from user fail\n");
return -EFAULT;
}
dprintk(DEBUG_OTHERS_INFO,"[tp-gsl][%s][%s]\n",__func__,gsl_read);
buf[3]=char_to_int(gsl_read[14])<<4 | char_to_int(gsl_read[15]);
buf[2]=char_to_int(gsl_read[16])<<4 | char_to_int(gsl_read[17]);
buf[1]=char_to_int(gsl_read[18])<<4 | char_to_int(gsl_read[19]);
buf[0]=char_to_int(gsl_read[20])<<4 | char_to_int(gsl_read[21]);
buf[7]=char_to_int(gsl_read[5])<<4 | char_to_int(gsl_read[6]);
buf[6]=char_to_int(gsl_read[7])<<4 | char_to_int(gsl_read[8]);
buf[5]=char_to_int(gsl_read[9])<<4 | char_to_int(gsl_read[10]);
buf[4]=char_to_int(gsl_read[11])<<4 | char_to_int(gsl_read[12]);
if('v'==gsl_read[0]&& 's'==gsl_read[1])//version //vs
{
printk("gsl version\n");
}
else if('s'==gsl_read[0]&& 't'==gsl_read[1])//start //st
{
gsl_proc_flag = 1;
reset_chip(glsX680_i2c);
}
else if('e'==gsl_read[0]&&'n'==gsl_read[1])//end //en
{
msleep(20);
reset_chip(glsX680_i2c);
startup_chip(glsX680_i2c);
#ifdef GSL_NOID_VERSION
gsl_DataInit(gslX680_config_data[fw_index]);
#endif
gsl_proc_flag = 0;
}
else if('r'==gsl_read[0]&&'e'==gsl_read[1])//read buf //
{
memcpy(gsl_data_proc,buf,8);
}
else if('w'==gsl_read[0]&&'r'==gsl_read[1])//write buf
{
gsl_ts_write(glsX680_i2c,buf[4],buf,4);
}
#ifdef GSL_NOID_VERSION
else if('i'==gsl_read[0]&&'d'==gsl_read[1])//write id config //
{
tmp1=(buf[7]<<24)|(buf[6]<<16)|(buf[5]<<8)|buf[4];
tmp=(buf[3]<<24)|(buf[2]<<16)|(buf[1]<<8)|buf[0];
if(tmp1>=0 && tmp1<512)
{
gslX680_config_data[fw_index][tmp1] = tmp;
}
}
#endif
return count;
}
static int gsl_server_list_open(struct inode *inode,struct file *file)
{
return single_open(file,gsl_config_read_proc,NULL);
}
static const struct file_operations gsl_seq_fops = {
.open = gsl_server_list_open,
.read = seq_read,
.release = single_release,
.write = gsl_config_write_proc,
.owner = THIS_MODULE,
};
#endif
#ifdef HAVE_TOUCH_KEY
static void report_key(struct gsl_ts *ts, u16 x, u16 y)
{
u16 i = 0;
for(i = 0; i < MAX_KEY_NUM; i++) {
if((gsl_key_data[i].x_min < x) && (x < gsl_key_data[i].x_max)&&(gsl_key_data[i].y_min < y) &&\
(y < gsl_key_data[i].y_max)){
key = gsl_key_data[i].key;
dprintk(DEBUG_KEY_INFO,"key=%d\n",key);
input_report_key(ts->input, key, 1);
input_sync(ts->input);
key_state_flag = 1;
break;
}
}
}
#endif
static void report_data(struct gsl_ts *ts, u16 x, u16 y, u8 pressure, u8 id)
{
dprintk(DEBUG_X_Y_INFO,"source data:ID:%d, X:%d, Y:%d, W:%d\n", id, x, y,pressure);
if(1 == exchange_x_y_flag){
swap(x, y);
}
if(1 == revert_x_flag){
x = SCREEN_MAX_X - x;
}
if(1 == revert_y_flag){
y = SCREEN_MAX_Y - y;
}
dprintk(DEBUG_X_Y_INFO,"report data:ID:%d, X:%d, Y:%d, W:%d\n", id, x, y, pressure);
if(x>SCREEN_MAX_X||y>SCREEN_MAX_Y)
{
#ifdef HAVE_TOUCH_KEY
report_key(ts,x,y);
#endif
return;
}
#ifdef REPORT_DATA_ANDROID_4_0
input_mt_slot(ts->input, id);
input_report_abs(ts->input, ABS_MT_TRACKING_ID, id);
input_report_abs(ts->input, ABS_MT_TOUCH_MAJOR, pressure);
input_report_abs(ts->input, ABS_MT_POSITION_X, x);
input_report_abs(ts->input, ABS_MT_POSITION_Y, y);
input_report_abs(ts->input, ABS_MT_WIDTH_MAJOR, 1);
#else
input_report_abs(ts->input, ABS_MT_TRACKING_ID, id);
input_report_abs(ts->input, ABS_MT_TOUCH_MAJOR, pressure);
input_report_abs(ts->input, ABS_MT_POSITION_X,x);
input_report_abs(ts->input, ABS_MT_POSITION_Y, y);
input_report_abs(ts->input, ABS_MT_WIDTH_MAJOR, 1);
input_mt_sync(ts->input);
#endif
}
static void process_gslX680_data(struct gsl_ts *ts)
{
u8 id, touches;
u16 x, y;
int i = 0;
//int tmp1 = 0;
//u8 buf[4]={0};
#ifdef GSL_NOID_VERSION
struct gsl_touch_info cinfo;
#endif
touches = ts->touch_data[ts->dd->touch_index];
#ifdef GSL_NOID_VERSION
cinfo.finger_num = touches;
dprintk(DEBUG_OTHERS_INFO,"tp-gsl finger_num = %d\n",cinfo.finger_num);
for(i = 0; i < (touches < MAX_CONTACTS ? touches : MAX_CONTACTS); i ++)
{
cinfo.x[i] = join_bytes( ( ts->touch_data[ts->dd->x_index + 4 * i + 1] & 0xf),
ts->touch_data[ts->dd->x_index + 4 * i]);
cinfo.y[i] = join_bytes(ts->touch_data[ts->dd->y_index + 4 * i + 1],
ts->touch_data[ts->dd->y_index + 4 * i ]);
}
cinfo.finger_num = ts->touch_data[0] | (ts->touch_data[1]<<8)|(ts->touch_data[2]<<16)|
(ts->touch_data[3]<<24);
gsl_alg_id_main(&cinfo);
dprintk(DEBUG_OTHERS_INFO,"tp-gsl finger_num = %d\n",cinfo.finger_num);
#if 0
tmp1=gsl_mask_tiaoping();
if(tmp1>0&&tmp1<0xffffffff)
{
buf[0]=0xa;
buf[1]=0;
buf[2]=0;
buf[3]=0;
gsl_ts_write(ts->client,0xf0,buf,4);
buf[0]=(u8)(tmp1 & 0xff);
buf[1]=(u8)((tmp1>>8) & 0xff);
buf[2]=(u8)((tmp1>>16) & 0xff);
buf[3]=(u8)((tmp1>>24) & 0xff);
printk("tmp1=%08x,buf[0]=%02x,buf[1]=%02x,buf[2]=%02x,buf[3]=%02x\n",
tmp1,buf[0],buf[1],buf[2],buf[3]);
gsl_write_interface(ts->client,0x8,buf,4);
}
#endif
touches = cinfo.finger_num;
#endif
for(i=1;i<=MAX_CONTACTS;i++){
if(touches == 0)
id_sign[i] = 0;
id_state_flag[i] = 0;
}
for(i= 0;i < (touches > MAX_FINGERS ? MAX_FINGERS : touches);i++)
{
#ifdef GSL_NOID_VERSION
id = cinfo.id[i];
x = cinfo.x[i];
y = cinfo.y[i];
#else
x = join_bytes( ( ts->touch_data[ts->dd->x_index + 4 * i + 1] & 0xf),
ts->touch_data[ts->dd->x_index + 4 * i]);
y = join_bytes(ts->touch_data[ts->dd->y_index + 4 * i + 1],
ts->touch_data[ts->dd->y_index + 4 * i ]);
id = ts->touch_data[ts->dd->id_index + 4 * i] >> 4;
#endif
if(1 <=id && id <= MAX_CONTACTS)
{
#ifdef STRETCH_FRAME
stretch_frame(&x, &y);
#endif
#ifdef FILTER_POINT
filter_point(x, y ,id);
#else
record_point(x, y , id);
#endif
report_data(ts, x_new, y_new, 10, id);
id_state_flag[id] = 1;
}
}
for(i = 1;i <= MAX_CONTACTS ; i++)
{
if( (0 == touches) || ((0 != id_state_old_flag[i]) && (0 == id_state_flag[i])) ){
#ifdef REPORT_DATA_ANDROID_4_0
input_mt_slot(ts->input, i);
input_report_abs(ts->input, ABS_MT_TRACKING_ID, -1);
input_mt_report_slot_state(ts->input, MT_TOOL_FINGER, false);
#endif
id_sign[i]=0;
}
id_state_old_flag[i] = id_state_flag[i];
}
#ifndef REPORT_DATA_ANDROID_4_0
if(0 == touches){
input_report_abs(ts->input, ABS_MT_TOUCH_MAJOR, 0);
input_report_abs(ts->input, ABS_MT_WIDTH_MAJOR, 0);
input_mt_sync(ts->input);
#ifdef HAVE_TOUCH_KEY
if(key_state_flag){
input_report_key(ts->input, key, 0);
input_sync(ts->input);
key_state_flag = 0;
}
#endif
}
#endif
input_sync(ts->input);
ts->prev_touches = touches;
}
static void gsl_ts_xy_worker(struct work_struct *work)
{
int ret;
u8 read_buf[4] = {0};
struct gsl_ts *ts = container_of(work, struct gsl_ts,work);
dprintk(DEBUG_X_Y_INFO,"---gsl_ts_xy_worker---\n");
#ifdef TPD_PROC_DEBUG
if(gsl_proc_flag == 1){
goto schedule;
}
#endif
/* read data from DATA_REG */
ret = gsl_ts_read(ts->client, 0x80, ts->touch_data, ts->dd->data_size);
dprintk(DEBUG_X_Y_INFO,"---touches: %d ---\n",ts->touch_data[0]);
if (ret < 0) {
dev_err(&ts->client->dev, "read failed\n");
goto schedule;
}
if (ts->touch_data[ts->dd->touch_index] == 0xff) {
goto schedule;
}
ret = gsl_ts_read( ts->client, 0xbc, read_buf, sizeof(read_buf));
if (ret < 0) {
dev_err(&ts->client->dev, "read 0xbc failed\n");
goto schedule;
}
dprintk(DEBUG_X_Y_INFO,"reg %x : %x %x %x %x\n",0xbc, read_buf[3], read_buf[2], read_buf[1], read_buf[0]);
if (read_buf[3] == 0 && read_buf[2] == 0 && read_buf[1] == 0 && read_buf[0] == 0){
process_gslX680_data(ts);
}
else
{
reset_chip(ts->client);
startup_chip(ts->client);
}
schedule:
#ifndef GSL_TIMER
ret = gsl_irq_enable(ts);
if (ret < 0)
dprintk(DEBUG_SUSPEND,"%s irq enable failed\n", __func__);
#endif
}
#ifdef GSL_MONITOR
static void gsl_monitor_worker(struct work_struct *work)
{
char read_buf[4] = {0};
dprintk(DEBUG_OTHERS_INFO,"---------------gsl_monitor_worker-----------------\n");
gsl_ts_read(glsX680_i2c, 0xb4, read_buf, 4);
int_2nd[3] = int_1st[3];
int_2nd[2] = int_1st[2];
int_2nd[1] = int_1st[1];
int_2nd[0] = int_1st[0];
int_1st[3] = read_buf[3];
int_1st[2] = read_buf[2];
int_1st[1] = read_buf[1];
int_1st[0] = read_buf[0];
if (int_1st[3] == int_2nd[3] && int_1st[2] == int_2nd[2] &&int_1st[1] == int_2nd[1] && int_1st[0] == int_2nd[0])
{
printk("======int_1st: %x %x %x %x , int_2nd: %x %x %x %x ======\n",int_1st[3], int_1st[2], int_1st[1], int_1st[0], int_2nd[3], int_2nd[2],int_2nd[1],int_2nd[0]);
init_chip(glsX680_i2c);
}
queue_delayed_work(gsl_monitor_workqueue, &gsl_monitor_work, 300);
}
#endif
irqreturn_t gsl_ts_irq(int irq, void *dev_id)
{
int ret;
struct gsl_ts *ts = (struct gsl_ts *)dev_id;
dprintk(DEBUG_INT_INFO,"==========GSLX680 Interrupt============\n");
#ifndef GSL_TIMER
ret = gsl_irq_disable(ts);
if (ret < 0)
dprintk(DEBUG_SUSPEND,"%s irq disable failed\n", __func__);
#endif
queue_work(ts->wq, &ts->work);
#ifdef GSL_TIMER
mod_timer(&ts->gsl_timer, jiffies + msecs_to_jiffies(30));
#endif
return IRQ_HANDLED;
}
#ifdef GSL_TIMER
static void gsl_timer_handle(unsigned long data)
{
struct gsl_ts *ts = (struct gsl_ts *)data;
#ifdef GSL_DEBUG
printk("----------------gsl_timer_handle-----------------\n");
#endif
ret = gsl_irq_enable(ts);
if (ret < 0)
dprintk(DEBUG_SUSPEND,"%s irq enable failed\n", __func__);
check_mem_data(ts->client);
ts->gsl_timer.expires = jiffies + 3 * HZ;
add_timer(&ts->gsl_timer);
//enable_irq(ts->irq);
}
#endif
static int gsl_ts_init_ts(struct i2c_client *client, struct gsl_ts *ts)
{
struct input_dev *input_device;
int rc = 0;
#ifdef HAVE_TOUCH_KEY
int i= 0;
#endif
printk("[GSLX680] Enter %s\n", __func__);
ts->dd = &devices[ts->device_id];
if (ts->device_id == 0) {
ts->dd->data_size = MAX_FINGERS * ts->dd->touch_bytes + ts->dd->touch_meta_data;
ts->dd->touch_index = 0;
}
ts->touch_data = kzalloc(ts->dd->data_size, GFP_KERNEL);
if (!ts->touch_data) {
pr_err("%s: Unable to allocate memory\n", __func__);
return -ENOMEM;
}
ts->prev_touches = 0;
input_device = input_allocate_device();
if (!input_device) {
rc = -ENOMEM;
goto error_alloc_dev;
}
ts->input = input_device;
input_device->name = GSLX680_I2C_NAME;
input_device->id.bustype = BUS_I2C;
input_device->dev.parent = &client->dev;
input_set_drvdata(input_device, ts);
#ifdef REPORT_DATA_ANDROID_4_0
__set_bit(EV_ABS, input_device->evbit);
__set_bit(EV_KEY, input_device->evbit);
__set_bit(EV_REP, input_device->evbit);
__set_bit(INPUT_PROP_DIRECT, input_device->propbit);
input_mt_init_slots(input_device, (MAX_CONTACTS+1));
#else
input_set_abs_params(input_device,ABS_MT_TRACKING_ID, 0, (MAX_CONTACTS+1), 0, 0);
set_bit(EV_ABS, input_device->evbit);
set_bit(EV_KEY, input_device->evbit);
__set_bit(INPUT_PROP_DIRECT, input_device->propbit);
input_device->keybit[BIT_WORD(BTN_TOUCH)] = BIT_MASK(BTN_TOUCH);
#endif
#ifdef HAVE_TOUCH_KEY
//input_device->evbit[0] = BIT_MASK(EV_KEY);
for (i = 0; i < MAX_KEY_NUM; i++)
set_bit(key_array[i] & KEY_MAX, input_device->keybit);
#endif
set_bit(ABS_MT_POSITION_X, input_device->absbit);
set_bit(ABS_MT_POSITION_Y, input_device->absbit);
set_bit(ABS_MT_TOUCH_MAJOR, input_device->absbit);
set_bit(ABS_MT_WIDTH_MAJOR, input_device->absbit);
input_set_abs_params(input_device,ABS_MT_POSITION_X, 0, SCREEN_MAX_X, 0, 0);
input_set_abs_params(input_device,ABS_MT_POSITION_Y, 0, SCREEN_MAX_Y, 0, 0);
input_set_abs_params(input_device,ABS_MT_TOUCH_MAJOR, 0, PRESS_MAX, 0, 0);
input_set_abs_params(input_device,ABS_MT_WIDTH_MAJOR, 0, 200, 0, 0);
ts->wq = create_singlethread_workqueue("kworkqueue_ts");
if (!ts->wq) {
dev_err(&client->dev, "Could not create workqueue\n");
goto error_wq_create;
}
flush_workqueue(ts->wq);
INIT_WORK(&ts->work, gsl_ts_xy_worker);
rc = input_register_device(input_device);
if (rc)
goto error_unreg_device;
return 0;
error_unreg_device:
destroy_workqueue(ts->wq);
error_wq_create:
input_free_device(input_device);
error_alloc_dev:
kfree(ts->touch_data);
return rc;
}
static void glsX680_resume_events (struct work_struct *work)
{
#ifndef GSL_TIMER
int ret;
struct gsl_ts *ts = i2c_get_clientdata(glsX680_i2c);
#endif
dprintk(DEBUG_SUSPEND, "@@@@@@@@gsl_ts_resume_event start @@@@@@@@@@@@@\n");
gslX680_shutdown_high();
msleep(10);
reset_chip(glsX680_i2c);
startup_chip(glsX680_i2c);
check_mem_data(glsX680_i2c);
#ifndef GSL_TIMER
ret = gsl_irq_enable(ts);
if (ret < 0)
dprintk(DEBUG_SUSPEND,"%s irq enable failed\n", __func__);
#endif
dprintk(DEBUG_SUSPEND, "@@@@@@@@gsl_ts_resume_event end @@@@@@@@@@@@@\n");
}
#ifdef CONFIG_PM
static int gsl_ts_suspend(struct device *dev)
{
dprintk(DEBUG_SUSPEND, "@@@@@@@@gsl_ts_suspend start @@@@@@@@@@@@@\n");
#ifndef GSL_TIMER
int ret;
#endif
struct gsl_ts *ts = dev_get_drvdata(dev);
cancel_work_sync(&glsX680_resume_work);
flush_workqueue(gslX680_resume_wq);
//if already do runtime suspend,and try to do suspend,then return
if(pm_runtime_suspended(dev)){
dprintk(DEBUG_SUSPEND,"do suspend\n");
ts->is_suspended = true;
return 0;
}
#ifdef GSL_TIMER
dprintk(DEBUG_SUSPEND,"gsl_ts_suspend () : delete gsl_timer\n");
del_timer(&ts->gsl_timer);
#endif
flush_workqueue(gslX680_resume_wq);
cancel_work_sync(&ts->work);
flush_workqueue(ts->wq);
gslX680_shutdown_low();
if(ts->try_to_runtime_suspend){
dprintk(DEBUG_SUSPEND,"do runtime_suspend\n");
ts->is_runtime_suspend = true;
}
else{
dprintk(DEBUG_SUSPEND,"do suspend\n");
ts->is_suspended = true;
}
#ifndef GSL_TIMER
ret = gsl_irq_disable(ts);
if (ret < 0)
dprintk(DEBUG_SUSPEND,"%s irq disable failed\n", __func__);
#endif
if(offpower) {
input_set_power_enable(&(config_info.input_type), 0);
}
dprintk(DEBUG_SUSPEND, "@@@@@@@@gsl_ts_suspend end @@@@@@@@@@@@@\n");
return 0;
}
static int gsl_ts_resume(struct device *dev)
{
struct gsl_ts *ts = dev_get_drvdata(dev);
if(offpower) {
input_set_power_enable(&(config_info.input_type), 1);
}
if(ts->is_runtime_suspend && ts->is_suspended){
dprintk(DEBUG_SUSPEND,"do resume\n");
ts->is_suspended = false;
return 0;
}
dprintk(DEBUG_SUSPEND,"I'am in gsl_ts_resume() start\n");
cancel_work_sync(&ts->work);
flush_workqueue(ts->wq);
queue_work(gslX680_resume_wq, &glsX680_resume_work);
if(ts->try_to_runtime_suspend && ts->is_runtime_suspend && !ts->is_suspended){
dprintk(DEBUG_SUSPEND,"do runtime_resume\n");
ts->try_to_runtime_suspend = false;
ts->is_runtime_suspend = false;
}else if(ts->is_suspended){
dprintk(DEBUG_SUSPEND,"do resume\n");
ts->is_suspended = false;
}
#ifdef GSL_TIMER
dprintk(DEBUG_SUSPEND, "gsl_ts_resume () : add gsl_timer\n");
init_timer(&ts->gsl_timer);
ts->gsl_timer.expires = jiffies + 3 * HZ;
ts->gsl_timer.function = &gsl_timer_handle;
ts->gsl_timer.data = (unsigned long)ts;
add_timer(&ts->gsl_timer);
#endif
return 0;
}
#endif
static void glsX680_init_events (struct work_struct *work)
{
int ret = 0;
gslX680_chip_init();
init_chip(glsX680_i2c);
check_mem_data(glsX680_i2c);
#ifndef GSL_TIMER
config_info.dev = &(ts_init->input->dev);
ret = input_request_int(&(config_info.input_type), gsl_ts_irq,
CTP_IRQ_MODE, ts_init);
if (ret) {
printk( "glsX680_init_events: request irq failed\n");
}
#else
printk( "add gsl_timer\n");
init_timer(&ts_init->gsl_timer);
ts_init->gsl_timer.expires = jiffies + msecs_to_jiffies(500);
ts_init->gsl_timer.function = &gsl_ts_irq;
ts_init->gsl_timer.data = (unsigned long)ts_init;
add_timer(&ts_init->gsl_timer);
#endif
return;
}
static unsigned long data_save;
static ssize_t gsl_enable_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
return sprintf(buf, "%d\n", (int)data_save);
}
static ssize_t gsl_enable_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
int error;
struct i2c_client *client = to_i2c_client(dev);
error = strict_strtoul(buf, 10, &data_save);
if (error)
return error;
dprintk(DEBUG_SUSPEND,"data_save = %ld, ts_init->is_runtime_suspend = %d\n", data_save,ts_init->is_runtime_suspend);
if (data_save == 0 && !ts_init->is_runtime_suspend) {
dprintk(DEBUG_SUSPEND,"[fish] go to runtime_suspend\n");
ts_init->try_to_runtime_suspend = true;
pm_runtime_put(&client->dev);
}else if (data_save == 1 && ts_init->is_runtime_suspend){
dprintk(DEBUG_SUSPEND,"[fish] go to runtime_resume\n");
pm_runtime_get_sync(&client->dev);
}
return count;
}
static DEVICE_ATTR(runtime_suspend, S_IRUGO | S_IWUSR,
gsl_enable_show, gsl_enable_store);
static struct attribute *gsl_attributes[] = {
&dev_attr_runtime_suspend.attr,
NULL
};
static struct attribute_group gsl_attr_group = {
.attrs = gsl_attributes,
};
static int gsl_ts_probe(struct i2c_client *client,
const struct i2c_device_id *id)
{
struct gsl_ts *ts;
int rc = 0;
int ret=0;
printk("GSLX680 Enter %s\n", __func__);
if (!i2c_check_functionality(client->adapter, I2C_FUNC_I2C)) {
dev_err(&client->dev, "I2C functionality not supported\n");
return -ENODEV;
}
ts = kzalloc(sizeof(*ts), GFP_KERNEL);
if (!ts){
printk("allocate data fail!\n");
return -ENOMEM;
}
gslX680_wq = create_singlethread_workqueue("gslX680_init");
if (gslX680_wq == NULL) {
printk("create gslX680_wq fail!\n");
return -ENOMEM;
}
gslX680_resume_wq = create_singlethread_workqueue("gslX680_resume");
if (gslX680_resume_wq == NULL) {
printk("create gslX680_resume_wq fail!\n");
return -ENOMEM;
}
glsX680_i2c = client;
ts->client = client;
i2c_set_clientdata(client, ts);
ts->device_id = id->driver_data;
ts->is_suspended = false;
ts->is_runtime_suspend = false;
mutex_init(&ts->sus_lock);
rc = gsl_ts_init_ts(client, ts);
if (rc < 0) {
dev_err(&client->dev, "GSLX680 init failed\n");
goto error_mutex_destroy;
}
ts_init = ts;
queue_work(gslX680_wq, &glsX680_init_work);
device_create_file(&ts->input->dev, &dev_attr_debug_reg);
device_enable_async_suspend(&client->dev);
ret = sysfs_create_group(&client->dev.kobj,&gsl_attr_group);
if (ret < 0)
{
dev_err(&client->dev,"gsl: sysfs_create_group err\n");
goto error_mutex_destroy;
}
pm_runtime_set_active(&client->dev);
pm_runtime_get(&client->dev);
pm_runtime_enable(&client->dev);
#ifdef TPD_PROC_DEBUG
#if 0
gsl_config_proc = create_proc_entry(GSL_CONFIG_PROC_FILE, 0666, NULL);
if (gsl_config_proc == NULL)
{
printk("create_proc_entry %s failed\n", GSL_CONFIG_PROC_FILE);
}
else
{
gsl_config_proc->read_proc = gsl_config_read_proc;
gsl_config_proc->write_proc = gsl_config_write_proc;
}
#else
proc_create(GSL_CONFIG_PROC_FILE,0666,NULL,&gsl_seq_fops);
#endif
gsl_proc_flag = 0;
#endif
#ifdef GSL_MONITOR
printk( "gsl_ts_probe () : queue gsl_monitor_workqueue\n");
INIT_DELAYED_WORK(&gsl_monitor_work, gsl_monitor_worker);
gsl_monitor_workqueue = create_singlethread_workqueue("gsl_monitor_workqueue");
queue_delayed_work(gsl_monitor_workqueue, &gsl_monitor_work, 1000);
#endif
dprintk(DEBUG_INIT,"[GSLX680] End %s\n", __func__);
return 0;
error_mutex_destroy:
mutex_destroy(&ts->sus_lock);
input_free_device(ts->input);
kfree(ts);
return rc;
}
static int gsl_ts_remove(struct i2c_client *client)
{
struct gsl_ts *ts = i2c_get_clientdata(client);
printk("==gsl_ts_remove=\n");
pm_runtime_disable(&client->dev);
pm_runtime_set_suspended(&client->dev);
sysfs_remove_group(&client->dev.kobj, &gsl_attr_group);
device_remove_file(&ts->input->dev, &dev_attr_debug_reg);
#ifdef GSL_MONITOR
cancel_delayed_work_sync(&gsl_monitor_work);
destroy_workqueue(gsl_monitor_workqueue);
#endif
device_init_wakeup(&client->dev, 0);
cancel_work_sync(&ts->work);
cancel_work_sync(&glsX680_init_work);
cancel_work_sync(&glsX680_resume_work);
#ifndef GSL_TIMER
input_free_int(&(config_info.input_type), ts);
#else
del_timer(&ts->gsl_timer);
#endif
destroy_workqueue(ts->wq);
destroy_workqueue(gslX680_wq);
destroy_workqueue(gslX680_resume_wq);
input_unregister_device(ts->input);
mutex_destroy(&ts->sus_lock);
kfree(ts->touch_data);
kfree(ts);
return 0;
}
static const struct i2c_device_id gsl_ts_id[] = {
{GSLX680_I2C_NAME, 0},
{}
};
MODULE_DEVICE_TABLE(i2c, gsl_ts_id);
static UNIVERSAL_DEV_PM_OPS(gsl_pm_ops, gsl_ts_suspend,
gsl_ts_resume, NULL);
#define GSL_PM_OPS (&gsl_pm_ops)
static struct i2c_driver gsl_ts_driver = {
.class = I2C_CLASS_HWMON,
.driver = {
.name = GSLX680_I2C_NAME,
.owner = THIS_MODULE,
.pm = GSL_PM_OPS,
},
.probe = gsl_ts_probe,
.remove = gsl_ts_remove,
.id_table = gsl_ts_id,
.address_list = normal_i2c,
.detect = ctp_detect,
};
static int ctp_get_system_config(void)
{
ctp_print_info(config_info,DEBUG_INIT);
fwname = config_info.name;
if (!strcmp(fwname, "gsl_a86_ogs")) {
offpower = 0;
}
else {
offpower = 1;
}
dprintk(DEBUG_INIT,"%s:fwname:%s\n",__func__,fwname);
fw_index = gsl_find_fw_idx(fwname);
if (fw_index == -1) {
printk("gslx680: no matched TP firmware(%s)!\n", fwname);
return 0;
}
dprintk(DEBUG_INIT,"fw_index = %d\n",fw_index);
twi_id = config_info.twi_id;
screen_max_x = config_info.screen_max_x;
screen_max_y = config_info.screen_max_y;
revert_x_flag = config_info.revert_x_flag;
revert_y_flag = config_info.revert_y_flag;
exchange_x_y_flag = config_info.exchange_x_y_flag;
if((screen_max_x == 0) || (screen_max_y == 0)){
printk("%s:read config error!\n",__func__);
return 0;
}
return 1;
}
static int __init gsl_ts_init(void)
{
int ret = -1;
dprintk(DEBUG_INIT,"**************************start gsl_CTP _init**************************************\n");
if (input_fetch_sysconfig_para(&(config_info.input_type))) {
printk("%s: ctp_fetch_sysconfig_para err.\n", __func__);
return 0;
} else {
ret = input_init_platform_resource(&(config_info.input_type));
if (0 != ret) {
printk("%s:ctp_ops.init_platform_resource err. \n", __func__);
}
}
if (config_info.ctp_used == 0) {
printk("*** ctp_used set to 0 !\n");
printk("*** if use ctp,please put the sys_config.fex ctp_used set to 1. \n");
return 0;
}
if (!ctp_get_system_config()) {
printk("%s:read config fail!\n",__func__);
return ret;
}
input_set_power_enable(&(config_info.input_type), 1);
msleep(20);
ctp_wakeup(1,0);
ret = i2c_add_driver(&gsl_ts_driver);
dprintk(DEBUG_INIT,"*************************end gsl_CTP _init***************************************\n");
return ret;
}
static void __exit gsl_ts_exit(void)
{
i2c_del_driver(&gsl_ts_driver);
input_free_platform_resource(&(config_info.input_type));
input_set_power_enable(&(config_info.input_type), 0);
dprintk(DEBUG_INIT,"============gsl_CTP _exit==============\n");
return;
}
module_init(gsl_ts_init);
module_exit(gsl_ts_exit);
module_param_named(debug_mask,debug_mask,int,S_IRUGO | S_IWUSR | S_IWGRP);
MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("GSLX680 touchscreen controller driver");
MODULE_AUTHOR("Given He, heguangneng@allwinnertech.com");
MODULE_ALIAS("platform:gsl_ts");