OSHW-DEIMOS/SOFTWARE/A64-TERES/linux-a64/drivers/input/touchscreen/gslx680/gslX680.c
Dimitar Gamishev f9b0e7a283 linux
2017-10-13 14:07:04 +03:00

1335 lines
32 KiB
C
Executable File
Raw Permalink Blame History

/*
* drivers/input/touchscreen/gslX680.c
*
* Copyright (c) 2012 Shanghai Basewin
* Guan Yuwei<guanyuwei@basewin.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/input.h>
#include <linux/interrupt.h>
#include <linux/i2c.h>
#include <linux/delay.h>
#include <linux/jiffies.h>
#include <linux/cdev.h>
#include <asm/uaccess.h>
#include <linux/pm_runtime.h>
#if defined(CONFIG_HAS_EARLYSUSPEND)
#include <linux/earlysuspend.h>
#endif
#include <linux/input/mt.h>
#include <linux/i2c.h>
#include <linux/input.h>
#include <linux/interrupt.h>
#include <linux/delay.h>
#include <linux/interrupt.h>
#include <linux/errno.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/platform_device.h>
#include <linux/async.h>
#include <linux/hrtimer.h>
#include <linux/init.h>
#include <linux/ioport.h>
#include <linux/init-input.h>
#include <linux/gpio.h>
#include <asm/irq.h>
#include <asm/io.h>
#include <mach/irqs.h>
#include <mach/hardware.h>
#include "gslX680.h"
#include "gsl2681_d786.h" //resolution:1024*768
#include "gsl1680_k70.h" //resolution:800x480
#include "gsl1688_a70.h" //
#include "gsl1680e_700.h"
#include "gsl1680e_702g.h"
#include "gsl1680e_q11.h"
static struct gslX680_fw_array {
const char* name;
unsigned int size;
const struct fw_data *fw;
} gslx680_fw_grp[] = {
{"gsl2681_d786" , ARRAY_SIZE(GSL2681_D786_FW) , GSL2681_D786_FW },
{"gsl1680_k70" , ARRAY_SIZE(GSL1680_K70_FW) , GSL1680_K70_FW },
{"gsl1688_a70" , ARRAY_SIZE(GSL1688_A70_FW) , GSL1688_A70_FW },
{"gsl1680e_700" , ARRAY_SIZE(GSL1680E_700_FW) , GSL1680E_700_FW },
{"gsl1680e_702g" , ARRAY_SIZE(GSL1680E_702G_FW) , GSL1680E_702G_FW },
{"gsl1680e_q11" , ARRAY_SIZE(GSL1680E_Q11_FW) , GSL1680E_Q11_FW },
};
#define FOR_TSLIB_TEST
//#define GSL_TIMER
//#define PRINT_POINT_INFO
//#define REPORT_DATA_ANDROID_4_0
static u32 gslX680_debug_mask = 1;
//#define HAVE_TOUCH_KEY
#define GSLX680_I2C_NAME "gslX680"
#define GSLX680_I2C_ADDR 0x40
#define GSL_DATA_REG 0x80
#define GSL_STATUS_REG 0xe0
#define GSL_PAGE_REG 0xf0
#define PRESS_MAX 255
#define MAX_FINGERS 5//5 //<2F><><EFBFBD><EFBFBD><EFBFBD>ΦΈ<EFBFBD><D6B8><EFBFBD><EFBFBD>
#define MAX_CONTACTS 10
#define DMA_TRANS_LEN 0x20
#define PHO_CFG2_OFFSET (0X104)
#define PHO_DAT_OFFSET (0X10C)
#define PHO_PULL1_OFFSET (0X11C)
#define GPIOF_CON 0x7f0080a0
#define GPIOF_DAT 0x7f0080a4
#define GPIOF_PUD 0x7f0080a8
#ifdef HAVE_TOUCH_KEY
static u16 key = 0;
static int key_state_flag = 0;
struct key_data {
u16 key;
u16 x_min;
u16 x_max;
u16 y_min;
u16 y_max;
};
#define KEY_BACK 1
#define KEY_HOME 2
#define KEY_MENU 3
#define KEY_SEARCH 4
const u16 key_array[]={
KEY_BACK,
KEY_HOME,
KEY_MENU,
KEY_SEARCH,
};
#define MAX_KEY_NUM (sizeof(key_array)/sizeof(key_array[0]))
struct key_data gsl_key_data[MAX_KEY_NUM] = {
{KEY_BACK, 2048, 2048, 2048, 2048},
{KEY_HOME, 2048, 2048, 2048, 2048},
{KEY_MENU, 2048, 2048, 2048, 2048},
{KEY_SEARCH, 2048, 2048, 2048, 2048},
};
#endif
static struct ctp_config_info config_info = {
.input_type = CTP_TYPE,
.name = NULL,
.int_number = 0,
};
struct gsl_ts_data {
u8 x_index;
u8 y_index;
u8 z_index;
u8 id_index;
u8 touch_index;
u8 data_reg;
u8 status_reg;
u8 data_size;
u8 touch_bytes;
u8 update_data;
u8 touch_meta_data;
u8 finger_size;
};
static struct gsl_ts_data devices[] = {
{
.x_index = 6,
.y_index = 4,
.z_index = 5,
.id_index = 7,
.data_reg = GSL_DATA_REG,
.status_reg = GSL_STATUS_REG,
.update_data = 0x4,
.touch_bytes = 4,
.touch_meta_data = 4,
.finger_size = 70,
},
};
struct gsl_ts {
struct i2c_client *client;
struct input_dev *input_dev;
struct work_struct work;
struct workqueue_struct *wq;
struct gsl_ts_data *dd;
u8 *touch_data;
u8 device_id;
u8 prev_touches;
bool is_suspended;
bool int_pending;
struct mutex sus_lock;
int irq;
#if defined(CONFIG_HAS_EARLYSUSPEND)
struct early_suspend early_suspend;
#endif
#ifdef GSL_TIMER
struct timer_list gsl_timer;
#endif
};
static u32 debug_mask = 0;
enum{
DEBUG_INIT = 1U << 0,
DEBUG_SUSPEND = 1U << 1,
DEBUG_INT_INFO = 1U << 2,
DEBUG_X_Y_INFO = 1U << 3,
DEBUG_KEY_INFO = 1U << 4,
DEBUG_WAKEUP_INFO = 1U << 5,
DEBUG_OTHERS_INFO = 1U << 6,
};
#define dprintk(level_mask,fmt,arg...) if(unlikely(debug_mask & level_mask)) \
printk("***CTP***"fmt, ## arg)
static u32 id_sign[MAX_CONTACTS+1] = {0};
static u8 id_state_flag[MAX_CONTACTS+1] = {0};
static u8 id_state_old_flag[MAX_CONTACTS+1] = {0};
static u16 x_old[MAX_CONTACTS+1] = {0};
static u16 y_old[MAX_CONTACTS+1] = {0};
static u16 x_new = 0;
static u16 y_new = 0;
///////////////////////////////////////////////
//specific tp related macro: need be configured for specific tp
#define CTP_IRQ_NUMBER (config_info.irq_gpio_number)
#define CTP_IRQ_MODE (IRQF_TRIGGER_FALLING)
#define CTP_NAME GSLX680_I2C_NAME
#define SCREEN_MAX_X (screen_max_x)
#define SCREEN_MAX_Y (screen_max_y)
static int screen_max_x = 0;
static int screen_max_y = 0;
static int revert_x_flag = 0;
static int revert_y_flag = 0;
static int exchange_x_y_flag = 0;
static char* fwname;
static int fw_index = -1;
static __u32 twi_id = 0;
/* Addresses to scan */
static const unsigned short normal_i2c[2] = {0x40,I2C_CLIENT_END};
static void glsX680_init_events(struct work_struct *work);
static void glsX680_resume_events(struct work_struct *work);
static struct workqueue_struct *gslX680_wq;
static struct workqueue_struct *gslX680_resume_wq;
static DECLARE_WORK(glsX680_init_work, glsX680_init_events);
static DECLARE_WORK(glsX680_resume_work, glsX680_resume_events);
static struct i2c_client *glsX680_i2c;
static struct gsl_ts *ts_init;
static int ctp_i2c_write_bytes(struct i2c_client *client, uint8_t *data, uint16_t len)
{
struct i2c_msg msg;
int ret=-1;
msg.flags = !I2C_M_RD;
msg.addr = client->addr;
msg.len = len;
msg.buf = data;
ret=i2c_transfer(client->adapter, &msg,1);
return ret;
}
static bool ctp_i2c_test(struct i2c_client * client)
{
int ret,retry;
uint8_t test_data[1] = { 0 }; //only write a data address.
for(retry=0; retry < 2; retry++)
{
ret =ctp_i2c_write_bytes(client, test_data, 1); //Test i2c.
if (ret == 1)
break;
msleep(50);
}
return ret==1 ? true : false;
}
static int ctp_detect(struct i2c_client *client, struct i2c_board_info *info)
{
struct i2c_adapter *adapter = client->adapter;
int ret;
if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA))
return -ENODEV;
if(twi_id == adapter->nr){
dprintk(DEBUG_INIT,"%s: addr= %x\n",__func__,client->addr);
ret = ctp_i2c_test(client);
if(!ret){
printk("%s:I2C connection might be something wrong \n",__func__);
return -ENODEV;
}else{
strlcpy(info->type, CTP_NAME, I2C_NAME_SIZE);
return 0;
}
}else{
return -ENODEV;
}
}
/**
* ctp_print_info - sysconfig print function
* return value:
*
*/
static void ctp_print_info(struct ctp_config_info info,int debug_level)
{
if(debug_level == DEBUG_INIT)
{
dprintk(DEBUG_INIT,"info.ctp_used:%d\n",info.ctp_used);
dprintk(DEBUG_INIT,"info.ctp_name:%s\n",info.name);
dprintk(DEBUG_INIT,"info.twi_id:%d\n",info.twi_id);
dprintk(DEBUG_INIT,"info.screen_max_x:%d\n",info.screen_max_x);
dprintk(DEBUG_INIT,"info.screen_max_y:%d\n",info.screen_max_y);
dprintk(DEBUG_INIT,"info.revert_x_flag:%d\n",info.revert_x_flag);
dprintk(DEBUG_INIT,"info.revert_y_flag:%d\n",info.revert_y_flag);
dprintk(DEBUG_INIT,"info.exchange_x_y_flag:%d\n",info.exchange_x_y_flag);
dprintk(DEBUG_INIT,"info.irq_gpio_number:%d\n",info.irq_gpio.gpio);
dprintk(DEBUG_INIT,"info.wakeup_gpio_number:%d\n",info.wakeup_gpio.gpio);
}
}
/**
* ctp_wakeup - function
*
*/
static int ctp_wakeup(int status,int ms)
{
dprintk(DEBUG_INIT,"***CTP*** %s:status:%d,ms = %d\n",__func__,status,ms);
if (status == 0) {
if(ms == 0) {
__gpio_set_value(config_info.wakeup_gpio.gpio, 0);
}else {
__gpio_set_value(config_info.wakeup_gpio.gpio, 0);
msleep(ms);
__gpio_set_value(config_info.wakeup_gpio.gpio, 1);
}
}
if (status == 1) {
if(ms == 0) {
__gpio_set_value(config_info.wakeup_gpio.gpio, 1);
}else {
__gpio_set_value(config_info.wakeup_gpio.gpio, 1);
msleep(ms);
__gpio_set_value(config_info.wakeup_gpio.gpio, 0);
}
}
msleep(5);
return 0;
}
static ssize_t gslX680_debug_enable_show(
struct device *dev,
struct device_attribute *attr,
char *buf)
{
return sprintf(buf, "0x%x", gslX680_debug_mask);
}
static ssize_t gslX680_debug_enable_store(
struct device *dev,
struct device_attribute *attr,
const char *buf,
size_t count)
{
if (buf[0] >= '0' && buf[0] <= '9')
{
gslX680_debug_mask = (buf[0] - '0');
}
else if (buf[0] >= 'a' && buf[0] <= 'f')
{
gslX680_debug_mask = 0x0A + (buf[0] - 'a');
}
else
{
gslX680_debug_mask = 0;
}
return count;
}
static DEVICE_ATTR(debug_enable, 0664, gslX680_debug_enable_show, gslX680_debug_enable_store);
static int gslX680_chip_init(void)
{
ctp_wakeup(1,0);
msleep(20);
return 0;
}
static int gslX680_shutdown_low(void)
{
ctp_wakeup(0,0);
return 0;
}
static int gslX680_shutdown_high(void)
{
ctp_wakeup(1,0);
return 0;
}
static inline u16 join_bytes(u8 a, u8 b)
{
u16 ab = 0;
ab = ab | a;
ab = ab << 8 | b;
return ab;
}
static u32 gsl_write_interface(struct i2c_client *client, const u8 reg, u8 *buf, u32 num)
{
struct i2c_msg xfer_msg[1];
buf[0] = reg;
xfer_msg[0].addr = client->addr;
xfer_msg[0].len = num + 1;
xfer_msg[0].flags = client->flags & I2C_M_TEN;
xfer_msg[0].buf = buf;
return i2c_transfer(client->adapter, xfer_msg, 1) == 1 ? 0 : -EFAULT;
}
static __inline__ void fw2buf(u8 *buf, const u32 *fw)
{
u32 *u32_buf = (int *)buf;
*u32_buf = *fw;
}
static int gsl_find_fw_idx(const char* name)
{
int i = 0;
if (NULL != name) {
for (i=0; i<ARRAY_SIZE(gslx680_fw_grp); i++) {
if (!strcmp(name, gslx680_fw_grp[i].name))
return i;
}
}
return -1;
}
static void gsl_load_fwx680(struct i2c_client *client)
{
u8 buf[DMA_TRANS_LEN*4 + 1] = {0};
u8 send_flag = 1;
u8 *cur = buf + 1;
u32 source_line = 0;
u32 source_len = gslx680_fw_grp[fw_index].size;
const struct fw_data *fw = gslx680_fw_grp[fw_index].fw;
dprintk(DEBUG_INIT,"=============gsl_load_fw start==============\n");
for (source_line = 0; source_line < source_len; source_line++) {
/* init page trans, set the page val */
if (GSL_PAGE_REG == fw[source_line].offset){
fw2buf(cur, &fw[source_line].val);
gsl_write_interface(client, GSL_PAGE_REG, buf, 4);
send_flag = 1;
}
else {
if (1 == send_flag % (DMA_TRANS_LEN < 0x20 ? DMA_TRANS_LEN : 0x20))
buf[0] = (u8)fw[source_line].offset;
fw2buf(cur, &fw[source_line].val);
cur += 4;
if (0 == send_flag % (DMA_TRANS_LEN < 0x20 ? DMA_TRANS_LEN : 0x20)) {
gsl_write_interface(client, buf[0], buf, cur - buf - 1);
cur = buf + 1;
}
send_flag++;
}
}
dprintk(DEBUG_INIT,"=============gsl_load_fw end==============\n");
}
static int gsl_ts_write(struct i2c_client *client, u8 addr, u8 *pdata, int datalen)
{
int ret = 0;
u8 tmp_buf[128];
unsigned int bytelen = 0;
if (datalen > 125){
printk("%s too big datalen = %d!\n", __func__, datalen);
return -1;
}
tmp_buf[0] = addr;
bytelen++;
if (datalen != 0 && pdata != NULL){
memcpy(&tmp_buf[bytelen], pdata, datalen);
bytelen += datalen;
}
ret = i2c_master_send(client, tmp_buf, bytelen);
return ret;
}
static int gsl_ts_read(struct i2c_client *client, u8 addr, u8 *pdata, unsigned int datalen)
{
int ret = 0;
if (datalen > 126){
printk("%s too big datalen = %d!\n", __func__, datalen);
return -1;
}
ret = gsl_ts_write(client, addr, NULL, 0);
if (ret < 0){
printk("%s set data address fail!\n", __func__);
return ret;
}
return i2c_master_recv(client, pdata, datalen);
}
static void startup_chip(struct i2c_client *client)
{
u8 tmp = 0x00;
gsl_ts_write(client, 0xe0, &tmp, 1);
msleep(10);
}
static void reset_chip(struct i2c_client *client)
{
u8 buf[4] = {0x00};
u8 tmp = 0x88;
gsl_ts_write(client, 0xe0, &tmp, sizeof(tmp));
msleep(10);
tmp = 0x04;
gsl_ts_write(client, 0xe4, &tmp, sizeof(tmp));
msleep(10);
gsl_ts_write(client, 0xbc, buf, sizeof(buf));
msleep(10);
}
static void clr_reg(struct i2c_client *client)
{
u8 write_buf[4] = {0};
write_buf[0] = 0x88;
gsl_ts_write(client, 0xe0, &write_buf[0], 1);
msleep(20);
write_buf[0] = 0x01;
gsl_ts_write(client, 0x80, &write_buf[0], 1);
msleep(5);
write_buf[0] = 0x04;
gsl_ts_write(client, 0xe4, &write_buf[0], 1);
msleep(5);
write_buf[0] = 0x00;
gsl_ts_write(client, 0xe0, &write_buf[0], 1);
msleep(20);
}
static void init_chip(struct i2c_client *client)
{
gslX680_shutdown_low();
msleep(50);
gslX680_shutdown_high();
msleep(30);
//test_i2c(client);
clr_reg(client);
reset_chip(client);
gsl_load_fwx680(client);
startup_chip(client);
reset_chip(client);
startup_chip(client);
}
static void check_mem_data(struct i2c_client *client)
{
u8 read_buf[4] = {0};
msleep(30);
gsl_ts_read(client,0xb0, read_buf, sizeof(read_buf));
if (read_buf[3] != 0x5a || read_buf[2] != 0x5a || read_buf[1] != 0x5a || read_buf[0] != 0x5a)
{
printk("#########check mem read 0xb0 = %x %x %x %x #########\n", read_buf[3], read_buf[2], read_buf[1], read_buf[0]);
init_chip(client);
}
}
#if 1
static const u16 coordinate_adjust_x_left[] = {
/*0, 1, 2, 3, 4, 5, 6, 7, 8, 9*/
16, 16, 16, 16, 16, 16, 16, 16, 17, 18,
19, 21, 23, 28, 33, 38, 40, 42, 43, 43,
44, 44, 44, 44, 44, 45, 45, 45, 45, 45,
46, 46, 46, 46, 46, 47, 47, 47, 47, 47,
48, 48, 48, 48, 48, 49, 49, 49, 49, 49,
50, 50, 51, 51, 52, 52, 53, 53, 54, 54,
55, 56, 57, 58, 59, 60, 61, 62, 63, 64,
65, 66, 67, 68, 69, 70, 71, 72, 73, 74,
76, 77, 79, 80, 81, 82, 83, 85, 86, 87,
88, 90, 91, 92, 93, 94, 96, 97, 98, 99
};
static const u16 coordinate_adjust_x_right[] = {
};
static void adjust_edge(u16 *x)
{
u16 temp_x = *x;
if(0 <= temp_x && temp_x < 100)
{
temp_x = coordinate_adjust_x_left[temp_x];
}
if((SCREEN_MAX_X - 100) <= temp_x && temp_x < SCREEN_MAX_X)
{
temp_x = SCREEN_MAX_X - coordinate_adjust_x_left[SCREEN_MAX_X - temp_x];
}
*x = temp_x;
}
#endif
#ifdef FILTER_POINT
static void filter_point(u16 x, u16 y , u8 id)
{
u16 x_err =0;
u16 y_err =0;
u16 filter_step_x = 0, filter_step_y = 0;
id_sign[id] = id_sign[id] + 1;
if(id_sign[id] == 1)
{
x_old[id] = x;
y_old[id] = y;
}
x_err = x > x_old[id] ? (x -x_old[id]) : (x_old[id] - x);
y_err = y > y_old[id] ? (y -y_old[id]) : (y_old[id] - y);
if( (x_err > FILTER_MAX && y_err > FILTER_MAX/3) || (x_err > FILTER_MAX/3 && y_err > FILTER_MAX) )
{
filter_step_x = x_err;
filter_step_y = y_err;
}
else
{
if(x_err > FILTER_MAX)
filter_step_x = x_err;
if(y_err> FILTER_MAX)
filter_step_y = y_err;
}
if(x_err <= 2*FILTER_MAX && y_err <= 2*FILTER_MAX)
{
filter_step_x >>= 2;
filter_step_y >>= 2;
}
else if(x_err <= 3*FILTER_MAX && y_err <= 3*FILTER_MAX)
{
filter_step_x >>= 1;
filter_step_y >>= 1;
}
else if(x_err <= 4*FILTER_MAX && y_err <= 4*FILTER_MAX)
{
filter_step_x = filter_step_x*3/4;
filter_step_y = filter_step_y*3/4;
}
x_new = x > x_old[id] ? (x_old[id] + filter_step_x) : (x_old[id] - filter_step_x);
y_new = y > y_old[id] ? (y_old[id] + filter_step_y) : (y_old[id] - filter_step_y);
x_old[id] = x_new;
y_old[id] = y_new;
}
#else
static void filter_point(u16 x, u16 y , u8 id)
{
}
#endif
static void record_point(u16 x, u16 y , u8 id)
{
u16 x_err =0;
u16 y_err =0;
id_sign[id]=id_sign[id]+1;
if(id_sign[id]==1){
x_old[id]=x;
y_old[id]=y;
}
x = (x_old[id] + x)/2;
y = (y_old[id] + y)/2;
if(x>x_old[id]){
x_err=x -x_old[id];
}
else{
x_err=x_old[id]-x;
}
if(y>y_old[id]){
y_err=y -y_old[id];
}
else{
y_err=y_old[id]-y;
}
if( (x_err > 3 && y_err > 1) || (x_err > 1 && y_err > 3) ){
x_new = x; x_old[id] = x;
y_new = y; y_old[id] = y;
}
else{
if(x_err > 3){
x_new = x; x_old[id] = x;
}
else
x_new = x_old[id];
if(y_err> 3){
y_new = y; y_old[id] = y;
}
else
y_new = y_old[id];
}
if(id_sign[id]==1){
x_new= x_old[id];
y_new= y_old[id];
}
}
#ifdef HAVE_TOUCH_KEY
static void report_key(struct gsl_ts *ts, u16 x, u16 y)
{
u16 i = 0;
for(i = 0; i < MAX_KEY_NUM; i++) {
if((gsl_key_data[i].x_min < x) && (x < gsl_key_data[i].x_max)&&(gsl_key_data[i].y_min < y) &&\
(y < gsl_key_data[i].y_max)){
key = gsl_key_data[i].key;
input_report_key(ts->input_dev, key, 1);
input_sync(ts->input_dev);
key_state_flag = 1;
break;
}
}
}
#endif
static void report_data(struct gsl_ts *ts, u16 x, u16 y, u8 pressure, u8 id)
{
dprintk(DEBUG_X_Y_INFO,"source data :id=%d,x=%d,y=%d\n",id,x,y);
if(1 == exchange_x_y_flag){
swap(x, y);
}
if(1 == revert_x_flag){
x = SCREEN_MAX_X - x;
}
if(1 == revert_y_flag){
y = SCREEN_MAX_Y - y;
}
dprintk(DEBUG_X_Y_INFO," report data :id=%d,x=%d,y=%d\n",id,x,y);
if(x>=SCREEN_MAX_X||y>=SCREEN_MAX_Y)
{
#ifdef HAVE_TOUCH_KEY
report_key(ts,x,y);
#endif
return;
}
#ifdef REPORT_DATA_ANDROID_4_0
input_mt_slot(ts->input_dev, id);
input_report_abs(ts->input_dev, ABS_MT_TRACKING_ID, id);
input_report_abs(ts->input_dev, ABS_MT_TOUCH_MAJOR, pressure);
input_report_abs(ts->input_dev, ABS_MT_POSITION_X, x);
input_report_abs(ts->input_dev, ABS_MT_POSITION_Y, y);
input_report_abs(ts->input_dev, ABS_MT_WIDTH_MAJOR, 1);
#else
input_report_abs(ts->input_dev, ABS_MT_TRACKING_ID, id);
input_report_abs(ts->input_dev, ABS_MT_TOUCH_MAJOR, pressure);
input_report_abs(ts->input_dev, ABS_MT_POSITION_X,x);
input_report_abs(ts->input_dev, ABS_MT_POSITION_Y, y);
input_report_abs(ts->input_dev, ABS_MT_WIDTH_MAJOR, 1);
input_mt_sync(ts->input_dev);
#endif
}
static void process_gslX680_data(struct gsl_ts *ts)
{
u8 id, touches;
u16 x, y;
int i = 0;
touches = ts->touch_data[ts->dd->touch_index];
for(i=1;i<=MAX_CONTACTS;i++){
if(touches == 0)
id_sign[i] = 0;
id_state_flag[i] = 0;
}
for(i= 0;i < (touches > MAX_FINGERS ? MAX_FINGERS : touches);i ++){
x = join_bytes( ( ts->touch_data[ts->dd->x_index + 4 * i + 1] & 0xf),
ts->touch_data[ts->dd->x_index + 4 * i]);
y = join_bytes(ts->touch_data[ts->dd->y_index + 4 * i + 1],
ts->touch_data[ts->dd->y_index + 4 * i ]);
id = ts->touch_data[ts->dd->id_index + 4 * i] >> 4;
if(1 <=id && id <= MAX_CONTACTS){
if (4 == fw_index)
{
adjust_edge(&x);
}
if (3 == fw_index || 4 == fw_index)
filter_point(x, y ,id);
else
record_point(x, y ,id);
report_data(ts, x_new, y_new, 10, id);
id_state_flag[id] = 1;
}
}
for(i=1;i<=MAX_CONTACTS;i++){
if( (0 == touches) || ((0 != id_state_old_flag[i]) && (0 == id_state_flag[i])) ){
#ifdef REPORT_DATA_ANDROID_4_0
input_mt_slot(ts->input_dev, i);
input_report_abs(ts->input_dev, ABS_MT_TRACKING_ID, -1);
input_mt_report_slot_state(ts->input_dev, MT_TOOL_FINGER, false);
#endif
id_sign[i]=0;
}
id_state_old_flag[i] = id_state_flag[i];
}
#ifndef REPORT_DATA_ANDROID_4_0
if(0 == touches){
input_report_abs(ts->input_dev, ABS_MT_TOUCH_MAJOR, 0);
input_mt_sync(ts->input_dev);
#ifdef HAVE_TOUCH_KEY
if(key_state_flag){
input_report_key(ts->input_dev, key, 0);
input_sync(ts->input_dev);
key_state_flag = 0;
}
#endif
}
#endif
input_sync(ts->input_dev);
ts->prev_touches = touches;
}
static void gsl_ts_xy_worker(struct work_struct *work)
{
int rc;
u8 read_buf[4] = {0};
struct gsl_ts *ts = container_of(work, struct gsl_ts,work);
#ifndef GSL_TIMER
int ret;
input_set_int_enable(&(config_info.input_type), 0);
#endif
dprintk(DEBUG_X_Y_INFO,"---gsl_ts_xy_worker---\n");
/* read data from DATA_REG */
rc = gsl_ts_read(ts->client, 0x80, ts->touch_data, ts->dd->data_size);
dprintk(DEBUG_X_Y_INFO,"---touches: %d ---\n",ts->touch_data[0]);
if (rc < 0) {
dev_err(&ts->client->dev, "read failed\n");
goto schedule;
}
if (ts->touch_data[ts->dd->touch_index] == 0xff) {
goto schedule;
}
rc = gsl_ts_read( ts->client, 0xbc, read_buf, sizeof(read_buf));
if (rc < 0) {
dev_err(&ts->client->dev, "read 0xbc failed\n");
goto schedule;
}
dprintk(DEBUG_X_Y_INFO,"reg %x : %x %x %x %x\n",0xbc, read_buf[3], read_buf[2], read_buf[1], read_buf[0]);
if (read_buf[3] == 0 && read_buf[2] == 0 && read_buf[1] == 0 && read_buf[0] == 0){
process_gslX680_data(ts);
}
else
{
reset_chip(ts->client);
startup_chip(ts->client);
}
schedule:
#ifndef GSL_TIMER
ret = input_set_int_enable(&(config_info.input_type), 1);
if (ret < 0)
dprintk(DEBUG_SUSPEND,"%s irq disable failed\n", __func__);
#endif
}
static irqreturn_t gsl_ts_irq(int irq, void *dev_id)
{
struct gsl_ts *ts = (struct gsl_ts *)dev_id;
dprintk(DEBUG_INT_INFO,"==========GSLX680 Interrupt============\n");
queue_work(ts->wq, &ts->work);
#ifdef GSL_TIMER
mod_timer(&ts->gsl_timer, jiffies + msecs_to_jiffies(30));
#endif
return IRQ_HANDLED;
}
static int gsl_ts_init_ts(struct i2c_client *client, struct gsl_ts *ts)
{
struct input_dev *input_device;
int rc = 0;
dprintk(DEBUG_INIT,"[GSLX680] Enter %s\n", __func__);
ts->dd = &devices[ts->device_id];
if (ts->device_id == 0) {
ts->dd->data_size = MAX_FINGERS * ts->dd->touch_bytes + ts->dd->touch_meta_data;
ts->dd->touch_index = 0;
}
ts->touch_data = kzalloc(ts->dd->data_size, GFP_KERNEL);
if (!ts->touch_data) {
pr_err("%s: Unable to allocate memory\n", __func__);
return -ENOMEM;
}
ts->prev_touches = 0;
input_device = input_allocate_device();
if (!input_device) {
rc = -ENOMEM;
goto error_alloc_dev;
}
ts->input_dev = input_device;
input_device->name = GSLX680_I2C_NAME;
input_device->id.bustype = BUS_I2C;
input_device->dev.parent = &client->dev;
input_set_drvdata(input_device, ts);
#ifdef REPORT_DATA_ANDROID_4_0
__set_bit(EV_ABS, input_device->evbit);
__set_bit(EV_KEY, input_device->evbit);
__set_bit(EV_REP, input_device->evbit);
__set_bit(INPUT_PROP_DIRECT, input_device->propbit);
input_mt_init_slots(input_device, (MAX_CONTACTS+1));
#else
input_set_abs_params(input_device,ABS_MT_TRACKING_ID, 0, (MAX_CONTACTS+1), 0, 0);
set_bit(EV_ABS, input_device->evbit);
set_bit(EV_KEY, input_device->evbit);
#endif
#ifdef FOR_TSLIB_TEST
set_bit(BTN_TOUCH, input_device->keybit);
#endif
#ifdef HAVE_TOUCH_KEY
input_device->evbit[0] = BIT_MASK(EV_KEY);
for (i = 1; i <= MAX_KEY_NUM; i++)
set_bit(i, input_device->keybit);
#endif
set_bit(ABS_MT_POSITION_X, input_device->absbit);
set_bit(ABS_MT_POSITION_Y, input_device->absbit);
set_bit(ABS_MT_TOUCH_MAJOR, input_device->absbit);
set_bit(ABS_MT_WIDTH_MAJOR, input_device->absbit);
input_set_abs_params(input_device,ABS_MT_POSITION_X, 0, SCREEN_MAX_X, 0, 0);
input_set_abs_params(input_device,ABS_MT_POSITION_Y, 0, SCREEN_MAX_Y, 0, 0);
input_set_abs_params(input_device,ABS_MT_TOUCH_MAJOR, 0, PRESS_MAX, 0, 0);
input_set_abs_params(input_device,ABS_MT_WIDTH_MAJOR, 0, 200, 0, 0);
ts->wq = create_singlethread_workqueue("kworkqueue_ts");
if (!ts->wq) {
dev_err(&client->dev, "Could not create workqueue\n");
goto error_wq_create;
}
flush_workqueue(ts->wq);
INIT_WORK(&ts->work, gsl_ts_xy_worker);
rc = input_register_device(input_device);
if (rc)
goto error_unreg_device;
return 0;
error_unreg_device:
destroy_workqueue(ts->wq);
error_wq_create:
input_free_device(input_device);
error_alloc_dev:
kfree(ts->touch_data);
return rc;
}
static void glsX680_resume_events (struct work_struct *work)
{
#ifndef GSL_TIMER
int ret;
#endif
gslX680_shutdown_high();
msleep(10);
reset_chip(glsX680_i2c);
startup_chip(glsX680_i2c);
check_mem_data(glsX680_i2c);
#ifndef GSL_TIMER
ret = input_set_int_enable(&(config_info.input_type), 1);
if (ret < 0)
dprintk(DEBUG_SUSPEND,"%s irq disable failed\n", __func__);
#endif
}
static int gsl_ts_suspend(struct i2c_client *client, pm_message_t mesg)
{
#ifndef GSL_TIMER
int ret;
#endif
struct gsl_ts *ts = i2c_get_clientdata(client);
dprintk(DEBUG_SUSPEND,"%s,start\n",__func__);
cancel_work_sync(&glsX680_resume_work);
flush_workqueue(gslX680_resume_wq);
#ifndef CONFIG_HAS_EARLYSUSPEND
ts->is_suspended = true;
#endif
#ifdef GSL_TIMER
dprintk(DEBUG_SUSPEND,"gsl_ts_suspend () : delete gsl_timer\n");
del_timer(&ts->gsl_timer);
#endif
if(ts->is_suspended == true ){
#ifndef GSL_TIMER
ret = input_set_int_enable(&(config_info.input_type), 0);
if (ret < 0)
dprintk(DEBUG_SUSPEND,"%s irq disable failed\n", __func__);
#endif
flush_workqueue(gslX680_resume_wq);
cancel_work_sync(&ts->work);
flush_workqueue(ts->wq);
gslX680_shutdown_low();
}
return 0;
}
static int gsl_ts_resume(struct i2c_client *client)
{
struct gsl_ts *ts = i2c_get_clientdata(client);
dprintk(DEBUG_SUSPEND,"CONFIG_HAS_EARLYSUSPEND:%s,start\n",__func__);
queue_work(gslX680_resume_wq, &glsX680_resume_work);
#ifdef GSL_TIMER
dprintk(DEBUG_SUSPEND, "gsl_ts_resume () : add gsl_timer\n");
init_timer(&ts->gsl_timer);
ts->gsl_timer.expires = jiffies + msecs_to_jiffies(100);
add_timer(&ts->gsl_timer);
#endif
ts->is_suspended = true;
return 0;
}
#ifdef CONFIG_HAS_EARLYSUSPEND
static void gsl_ts_early_suspend(struct early_suspend *h)
{
#ifndef GSL_TIMER
int ret;
#endif
struct gsl_ts *ts = container_of(h, struct gsl_ts, early_suspend);
dprintk(DEBUG_SUSPEND,"CONFIG_HAS_EARLYSUSPEND:Enter %s\n", __func__);
cancel_work_sync(&glsX680_resume_work);
flush_workqueue(gslX680_resume_wq);
#ifdef GSL_TIMER
dprintk(DEBUG_SUSPEND,"gsl_ts_suspend () : delete gsl_timer\n");
del_timer(&ts->gsl_timer);
#endif
ts->is_suspended = false;
#ifndef GSL_TIMER
ret = input_set_int_enable(&(config_info.input_type), 0);
if (ret < 0)
dprintk(DEBUG_SUSPEND,"%s irq disable failed\n", __func__);
#endif
cancel_work_sync(&ts->work);
flush_workqueue(ts->wq);
gslX680_shutdown_low();
}
static void gsl_ts_late_resume(struct early_suspend *h)
{
#ifndef GSL_TIMER
int ret;
#endif
struct gsl_ts *ts = container_of(h, struct gsl_ts, early_suspend);
dprintk(DEBUG_SUSPEND,"CONFIG_HAS_EARLYSUSPEND: Enter %s\n", __func__);
#ifndef CONFIG_PM
gsl_ts_resume(ts->client);
#else
if(ts->is_suspended == false){
gslX680_shutdown_high();
msleep(10);
reset_chip(glsX680_i2c);
startup_chip(glsX680_i2c);
#ifndef GSL_TIMER
ret = input_set_int_enable(&(config_info.input_type), 1);
if (ret < 0)
dprintk(DEBUG_SUSPEND,"%s irq disable failed\n", __func__);
#endif
}
#endif
printk("ts->is_suspended:%d\n",ts->is_suspended);
}
#endif
static void glsX680_init_events (struct work_struct *work)
{
int ret = 0;
gslX680_chip_init();
init_chip(glsX680_i2c);
check_mem_data(glsX680_i2c);
#ifndef GSL_TIMER
config_info.dev = &(ts_init->input_dev->dev);
ret = input_request_int(&(config_info.input_type), gsl_ts_irq,
CTP_IRQ_MODE, ts_init);
if (ret) {
printk( "gsl_probe: request irq failed\n");
}
#else
printk( "add gsl_timer\n");
init_timer(&ts_init->gsl_timer);
ts_init->gsl_timer.expires = jiffies + msecs_to_jiffies(500);
ts_init->gsl_timer.function = &gsl_ts_irq;
ts_init->gsl_timer.data = (unsigned long)ts_init;
add_timer(&ts_init->gsl_timer);
#endif
return;
}
static int gsl_ts_probe(struct i2c_client *client,
const struct i2c_device_id *id)
{
struct gsl_ts *ts;
int rc;
dprintk(DEBUG_INIT,"GSLX680 Enter %s\n", __func__);
if (!i2c_check_functionality(client->adapter, I2C_FUNC_I2C)) {
dev_err(&client->dev, "I2C functionality not supported\n");
return -ENODEV;
}
ts = kzalloc(sizeof(*ts), GFP_KERNEL);
if (!ts){
printk("allocate data fail!\n");
return -ENOMEM;
}
gslX680_wq = create_singlethread_workqueue("gslX680_init");
if (gslX680_wq == NULL) {
printk("create gslX680_wq fail!\n");
return -ENOMEM;
}
gslX680_resume_wq = create_singlethread_workqueue("gslX680_resume");
if (gslX680_resume_wq == NULL) {
printk("create gslX680_resume_wq fail!\n");
return -ENOMEM;
}
glsX680_i2c = client;
ts->client = client;
ts->device_id = id->driver_data;
ts->is_suspended = false;
ts->int_pending = false;
mutex_init(&ts->sus_lock);
rc = gsl_ts_init_ts(client, ts);
if (rc < 0) {
dev_err(&client->dev, "GSLX680 init failed\n");
goto error_mutex_destroy;
}
ts_init = ts;
queue_work(gslX680_wq, &glsX680_init_work);
i2c_set_clientdata(ts->client,ts);
/* create debug attribute */
rc = device_create_file(&ts->input_dev->dev, &dev_attr_debug_enable);
gslX680_debug_mask = 0;
device_enable_async_suspend(&client->dev);
#ifdef CONFIG_HAS_EARLYSUSPEND
ts->early_suspend.level = EARLY_SUSPEND_LEVEL_DISABLE_FB + 1;
ts->early_suspend.suspend = gsl_ts_early_suspend;
ts->early_suspend.resume = gsl_ts_late_resume;
register_early_suspend(&ts->early_suspend);
#endif
dprintk(DEBUG_INIT,"[GSLX680] End %s\n", __func__);
return 0;
error_mutex_destroy:
mutex_destroy(&ts->sus_lock);
input_free_device(ts->input_dev);
kfree(ts);
return rc;
}
static int gsl_ts_remove(struct i2c_client *client)
{
struct gsl_ts *ts = i2c_get_clientdata(client);
printk("==gsl_ts_remove=\n");
#ifdef CONFIG_HAS_EARLYSUSPEND
unregister_early_suspend(&ts->early_suspend);
#endif
device_remove_file(&ts->input_dev->dev, &dev_attr_debug_enable);
device_init_wakeup(&client->dev, 0);
cancel_work_sync(&ts->work);
cancel_work_sync(&glsX680_init_work);
cancel_work_sync(&glsX680_resume_work);
#ifndef GSL_TIMER
input_free_int(&(config_info.input_type), ts);
#else
del_timer(&ts->gsl_timer);
#endif
destroy_workqueue(ts->wq);
destroy_workqueue(gslX680_wq);
destroy_workqueue(gslX680_resume_wq);
input_unregister_device(ts->input_dev);
mutex_destroy(&ts->sus_lock);
kfree(ts->touch_data);
kfree(ts);
return 0;
}
static const struct i2c_device_id gsl_ts_id[] = {
{GSLX680_I2C_NAME, 0},
{}
};
MODULE_DEVICE_TABLE(i2c, gsl_ts_id);
static struct i2c_driver gsl_ts_driver = {
.class = I2C_CLASS_HWMON,
.driver = {
.name = GSLX680_I2C_NAME,
.owner = THIS_MODULE,
},
.probe = gsl_ts_probe,
.remove = gsl_ts_remove,
.id_table = gsl_ts_id,
.suspend = gsl_ts_suspend,
.resume = gsl_ts_resume,
.detect = ctp_detect,
.address_list = normal_i2c,
};
static int ctp_get_system_config(void)
{
ctp_print_info(config_info,DEBUG_INIT);
fwname = config_info.name;
dprintk(DEBUG_INIT,"%s:fwname:%s\n",__func__,fwname);
fw_index = gsl_find_fw_idx(fwname);
if (fw_index == -1) {
printk("gslx680: no matched TP firmware(%s)!\n", fwname);
return 0;
}
twi_id = config_info.twi_id;
screen_max_x = config_info.screen_max_x;
screen_max_y = config_info.screen_max_y;
revert_x_flag = config_info.revert_x_flag;
revert_y_flag = config_info.revert_y_flag;
exchange_x_y_flag = config_info.exchange_x_y_flag;
if((screen_max_x == 0) || (screen_max_y == 0)){
printk("%s:read config error!\n",__func__);
return 0;
}
return 1;
}
static int __init gsl_ts_init(void)
{
int ret = -1;
dprintk(DEBUG_INIT,"****************************************************************\n");
if (input_fetch_sysconfig_para(&(config_info.input_type))) {
printk("%s: ctp_fetch_sysconfig_para err.\n", __func__);
return 0;
} else {
ret = input_init_platform_resource(&(config_info.input_type));
if (0 != ret) {
printk("%s:ctp_ops.init_platform_resource err. \n", __func__);
}
}
if (config_info.ctp_used == 0) {
printk("*** ctp_used set to 0 !\n");
printk("*** if use ctp,please put the sys_config.fex ctp_used set to 1. \n");
return 0;
}
if (!ctp_get_system_config()) {
printk("%s:read config fail!\n",__func__);
return ret;
}
ctp_wakeup(1,0);
ret = i2c_add_driver(&gsl_ts_driver);
dprintk(DEBUG_INIT,"****************************************************************\n");
return ret;
}
static void __exit gsl_ts_exit(void)
{
printk("==gsl_ts_exit==\n");
i2c_del_driver(&gsl_ts_driver);
input_free_platform_resource(&(config_info.input_type));
return;
}
late_initcall(gsl_ts_init);
module_exit(gsl_ts_exit);
module_param_named(debug_mask,debug_mask,int,0644);
MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("GSLX680 touchscreen controller driver");
MODULE_AUTHOR("Guan Yuwei, guanyuwei@basewin.com");
MODULE_ALIAS("platform:gsl_ts");