OSHW-DEIMOS/SOFTWARE/A64-TERES/linux-a64/drivers/hwmon/lm80.c
Dimitar Gamishev f9b0e7a283 linux
2017-10-13 14:07:04 +03:00

733 lines
22 KiB
C

/*
* lm80.c - From lm_sensors, Linux kernel modules for hardware
* monitoring
* Copyright (C) 1998, 1999 Frodo Looijaard <frodol@dds.nl>
* and Philip Edelbrock <phil@netroedge.com>
*
* Ported to Linux 2.6 by Tiago Sousa <mirage@kaotik.org>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#include <linux/module.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/jiffies.h>
#include <linux/i2c.h>
#include <linux/hwmon.h>
#include <linux/hwmon-sysfs.h>
#include <linux/err.h>
#include <linux/mutex.h>
/* Addresses to scan */
static const unsigned short normal_i2c[] = { 0x28, 0x29, 0x2a, 0x2b, 0x2c, 0x2d,
0x2e, 0x2f, I2C_CLIENT_END };
/* Many LM80 constants specified below */
/* The LM80 registers */
#define LM80_REG_IN_MAX(nr) (0x2a + (nr) * 2)
#define LM80_REG_IN_MIN(nr) (0x2b + (nr) * 2)
#define LM80_REG_IN(nr) (0x20 + (nr))
#define LM80_REG_FAN1 0x28
#define LM80_REG_FAN2 0x29
#define LM80_REG_FAN_MIN(nr) (0x3b + (nr))
#define LM80_REG_TEMP 0x27
#define LM80_REG_TEMP_HOT_MAX 0x38
#define LM80_REG_TEMP_HOT_HYST 0x39
#define LM80_REG_TEMP_OS_MAX 0x3a
#define LM80_REG_TEMP_OS_HYST 0x3b
#define LM80_REG_CONFIG 0x00
#define LM80_REG_ALARM1 0x01
#define LM80_REG_ALARM2 0x02
#define LM80_REG_MASK1 0x03
#define LM80_REG_MASK2 0x04
#define LM80_REG_FANDIV 0x05
#define LM80_REG_RES 0x06
#define LM96080_REG_CONV_RATE 0x07
#define LM96080_REG_MAN_ID 0x3e
#define LM96080_REG_DEV_ID 0x3f
/*
* Conversions. Rounding and limit checking is only done on the TO_REG
* variants. Note that you should be a bit careful with which arguments
* these macros are called: arguments may be evaluated more than once.
* Fixing this is just not worth it.
*/
#define IN_TO_REG(val) (clamp_val(((val) + 5) / 10, 0, 255))
#define IN_FROM_REG(val) ((val) * 10)
static inline unsigned char FAN_TO_REG(unsigned rpm, unsigned div)
{
if (rpm == 0)
return 255;
rpm = clamp_val(rpm, 1, 1000000);
return clamp_val((1350000 + rpm * div / 2) / (rpm * div), 1, 254);
}
#define FAN_FROM_REG(val, div) ((val) == 0 ? -1 : \
(val) == 255 ? 0 : 1350000/((div) * (val)))
static inline long TEMP_FROM_REG(u16 temp)
{
long res;
temp >>= 4;
if (temp < 0x0800)
res = 625 * (long) temp;
else
res = ((long) temp - 0x01000) * 625;
return res / 10;
}
#define TEMP_LIMIT_FROM_REG(val) (((val) > 0x80 ? \
(val) - 0x100 : (val)) * 1000)
#define TEMP_LIMIT_TO_REG(val) clamp_val((val) < 0 ? \
((val) - 500) / 1000 : ((val) + 500) / 1000, 0, 255)
#define DIV_FROM_REG(val) (1 << (val))
/*
* Client data (each client gets its own)
*/
struct lm80_data {
struct device *hwmon_dev;
struct mutex update_lock;
char error; /* !=0 if error occurred during last update */
char valid; /* !=0 if following fields are valid */
unsigned long last_updated; /* In jiffies */
u8 in[7]; /* Register value */
u8 in_max[7]; /* Register value */
u8 in_min[7]; /* Register value */
u8 fan[2]; /* Register value */
u8 fan_min[2]; /* Register value */
u8 fan_div[2]; /* Register encoding, shifted right */
u16 temp; /* Register values, shifted right */
u8 temp_hot_max; /* Register value */
u8 temp_hot_hyst; /* Register value */
u8 temp_os_max; /* Register value */
u8 temp_os_hyst; /* Register value */
u16 alarms; /* Register encoding, combined */
};
/*
* Functions declaration
*/
static int lm80_probe(struct i2c_client *client,
const struct i2c_device_id *id);
static int lm80_detect(struct i2c_client *client, struct i2c_board_info *info);
static void lm80_init_client(struct i2c_client *client);
static int lm80_remove(struct i2c_client *client);
static struct lm80_data *lm80_update_device(struct device *dev);
static int lm80_read_value(struct i2c_client *client, u8 reg);
static int lm80_write_value(struct i2c_client *client, u8 reg, u8 value);
/*
* Driver data (common to all clients)
*/
static const struct i2c_device_id lm80_id[] = {
{ "lm80", 0 },
{ "lm96080", 1 },
{ }
};
MODULE_DEVICE_TABLE(i2c, lm80_id);
static struct i2c_driver lm80_driver = {
.class = I2C_CLASS_HWMON,
.driver = {
.name = "lm80",
},
.probe = lm80_probe,
.remove = lm80_remove,
.id_table = lm80_id,
.detect = lm80_detect,
.address_list = normal_i2c,
};
/*
* Sysfs stuff
*/
#define show_in(suffix, value) \
static ssize_t show_in_##suffix(struct device *dev, \
struct device_attribute *attr, char *buf) \
{ \
int nr = to_sensor_dev_attr(attr)->index; \
struct lm80_data *data = lm80_update_device(dev); \
if (IS_ERR(data)) \
return PTR_ERR(data); \
return sprintf(buf, "%d\n", IN_FROM_REG(data->value[nr])); \
}
show_in(min, in_min)
show_in(max, in_max)
show_in(input, in)
#define set_in(suffix, value, reg) \
static ssize_t set_in_##suffix(struct device *dev, \
struct device_attribute *attr, const char *buf, size_t count) \
{ \
int nr = to_sensor_dev_attr(attr)->index; \
struct i2c_client *client = to_i2c_client(dev); \
struct lm80_data *data = i2c_get_clientdata(client); \
long val; \
int err = kstrtol(buf, 10, &val); \
if (err < 0) \
return err; \
\
mutex_lock(&data->update_lock);\
data->value[nr] = IN_TO_REG(val); \
lm80_write_value(client, reg(nr), data->value[nr]); \
mutex_unlock(&data->update_lock);\
return count; \
}
set_in(min, in_min, LM80_REG_IN_MIN)
set_in(max, in_max, LM80_REG_IN_MAX)
#define show_fan(suffix, value) \
static ssize_t show_fan_##suffix(struct device *dev, \
struct device_attribute *attr, char *buf) \
{ \
int nr = to_sensor_dev_attr(attr)->index; \
struct lm80_data *data = lm80_update_device(dev); \
if (IS_ERR(data)) \
return PTR_ERR(data); \
return sprintf(buf, "%d\n", FAN_FROM_REG(data->value[nr], \
DIV_FROM_REG(data->fan_div[nr]))); \
}
show_fan(min, fan_min)
show_fan(input, fan)
static ssize_t show_fan_div(struct device *dev, struct device_attribute *attr,
char *buf)
{
int nr = to_sensor_dev_attr(attr)->index;
struct lm80_data *data = lm80_update_device(dev);
if (IS_ERR(data))
return PTR_ERR(data);
return sprintf(buf, "%d\n", DIV_FROM_REG(data->fan_div[nr]));
}
static ssize_t set_fan_min(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
int nr = to_sensor_dev_attr(attr)->index;
struct i2c_client *client = to_i2c_client(dev);
struct lm80_data *data = i2c_get_clientdata(client);
unsigned long val;
int err = kstrtoul(buf, 10, &val);
if (err < 0)
return err;
mutex_lock(&data->update_lock);
data->fan_min[nr] = FAN_TO_REG(val, DIV_FROM_REG(data->fan_div[nr]));
lm80_write_value(client, LM80_REG_FAN_MIN(nr + 1), data->fan_min[nr]);
mutex_unlock(&data->update_lock);
return count;
}
/*
* Note: we save and restore the fan minimum here, because its value is
* determined in part by the fan divisor. This follows the principle of
* least surprise; the user doesn't expect the fan minimum to change just
* because the divisor changed.
*/
static ssize_t set_fan_div(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
int nr = to_sensor_dev_attr(attr)->index;
struct i2c_client *client = to_i2c_client(dev);
struct lm80_data *data = i2c_get_clientdata(client);
unsigned long min, val;
u8 reg;
int err = kstrtoul(buf, 10, &val);
if (err < 0)
return err;
/* Save fan_min */
mutex_lock(&data->update_lock);
min = FAN_FROM_REG(data->fan_min[nr],
DIV_FROM_REG(data->fan_div[nr]));
switch (val) {
case 1:
data->fan_div[nr] = 0;
break;
case 2:
data->fan_div[nr] = 1;
break;
case 4:
data->fan_div[nr] = 2;
break;
case 8:
data->fan_div[nr] = 3;
break;
default:
dev_err(&client->dev,
"fan_div value %ld not supported. Choose one of 1, 2, 4 or 8!\n",
val);
mutex_unlock(&data->update_lock);
return -EINVAL;
}
reg = (lm80_read_value(client, LM80_REG_FANDIV) & ~(3 << (2 * (nr + 1))))
| (data->fan_div[nr] << (2 * (nr + 1)));
lm80_write_value(client, LM80_REG_FANDIV, reg);
/* Restore fan_min */
data->fan_min[nr] = FAN_TO_REG(min, DIV_FROM_REG(data->fan_div[nr]));
lm80_write_value(client, LM80_REG_FAN_MIN(nr + 1), data->fan_min[nr]);
mutex_unlock(&data->update_lock);
return count;
}
static ssize_t show_temp_input1(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct lm80_data *data = lm80_update_device(dev);
if (IS_ERR(data))
return PTR_ERR(data);
return sprintf(buf, "%ld\n", TEMP_FROM_REG(data->temp));
}
#define show_temp(suffix, value) \
static ssize_t show_temp_##suffix(struct device *dev, \
struct device_attribute *attr, char *buf) \
{ \
struct lm80_data *data = lm80_update_device(dev); \
if (IS_ERR(data)) \
return PTR_ERR(data); \
return sprintf(buf, "%d\n", TEMP_LIMIT_FROM_REG(data->value)); \
}
show_temp(hot_max, temp_hot_max);
show_temp(hot_hyst, temp_hot_hyst);
show_temp(os_max, temp_os_max);
show_temp(os_hyst, temp_os_hyst);
#define set_temp(suffix, value, reg) \
static ssize_t set_temp_##suffix(struct device *dev, \
struct device_attribute *attr, const char *buf, size_t count) \
{ \
struct i2c_client *client = to_i2c_client(dev); \
struct lm80_data *data = i2c_get_clientdata(client); \
long val; \
int err = kstrtol(buf, 10, &val); \
if (err < 0) \
return err; \
\
mutex_lock(&data->update_lock); \
data->value = TEMP_LIMIT_TO_REG(val); \
lm80_write_value(client, reg, data->value); \
mutex_unlock(&data->update_lock); \
return count; \
}
set_temp(hot_max, temp_hot_max, LM80_REG_TEMP_HOT_MAX);
set_temp(hot_hyst, temp_hot_hyst, LM80_REG_TEMP_HOT_HYST);
set_temp(os_max, temp_os_max, LM80_REG_TEMP_OS_MAX);
set_temp(os_hyst, temp_os_hyst, LM80_REG_TEMP_OS_HYST);
static ssize_t show_alarms(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct lm80_data *data = lm80_update_device(dev);
if (IS_ERR(data))
return PTR_ERR(data);
return sprintf(buf, "%u\n", data->alarms);
}
static ssize_t show_alarm(struct device *dev, struct device_attribute *attr,
char *buf)
{
int bitnr = to_sensor_dev_attr(attr)->index;
struct lm80_data *data = lm80_update_device(dev);
if (IS_ERR(data))
return PTR_ERR(data);
return sprintf(buf, "%u\n", (data->alarms >> bitnr) & 1);
}
static SENSOR_DEVICE_ATTR(in0_min, S_IWUSR | S_IRUGO,
show_in_min, set_in_min, 0);
static SENSOR_DEVICE_ATTR(in1_min, S_IWUSR | S_IRUGO,
show_in_min, set_in_min, 1);
static SENSOR_DEVICE_ATTR(in2_min, S_IWUSR | S_IRUGO,
show_in_min, set_in_min, 2);
static SENSOR_DEVICE_ATTR(in3_min, S_IWUSR | S_IRUGO,
show_in_min, set_in_min, 3);
static SENSOR_DEVICE_ATTR(in4_min, S_IWUSR | S_IRUGO,
show_in_min, set_in_min, 4);
static SENSOR_DEVICE_ATTR(in5_min, S_IWUSR | S_IRUGO,
show_in_min, set_in_min, 5);
static SENSOR_DEVICE_ATTR(in6_min, S_IWUSR | S_IRUGO,
show_in_min, set_in_min, 6);
static SENSOR_DEVICE_ATTR(in0_max, S_IWUSR | S_IRUGO,
show_in_max, set_in_max, 0);
static SENSOR_DEVICE_ATTR(in1_max, S_IWUSR | S_IRUGO,
show_in_max, set_in_max, 1);
static SENSOR_DEVICE_ATTR(in2_max, S_IWUSR | S_IRUGO,
show_in_max, set_in_max, 2);
static SENSOR_DEVICE_ATTR(in3_max, S_IWUSR | S_IRUGO,
show_in_max, set_in_max, 3);
static SENSOR_DEVICE_ATTR(in4_max, S_IWUSR | S_IRUGO,
show_in_max, set_in_max, 4);
static SENSOR_DEVICE_ATTR(in5_max, S_IWUSR | S_IRUGO,
show_in_max, set_in_max, 5);
static SENSOR_DEVICE_ATTR(in6_max, S_IWUSR | S_IRUGO,
show_in_max, set_in_max, 6);
static SENSOR_DEVICE_ATTR(in0_input, S_IRUGO, show_in_input, NULL, 0);
static SENSOR_DEVICE_ATTR(in1_input, S_IRUGO, show_in_input, NULL, 1);
static SENSOR_DEVICE_ATTR(in2_input, S_IRUGO, show_in_input, NULL, 2);
static SENSOR_DEVICE_ATTR(in3_input, S_IRUGO, show_in_input, NULL, 3);
static SENSOR_DEVICE_ATTR(in4_input, S_IRUGO, show_in_input, NULL, 4);
static SENSOR_DEVICE_ATTR(in5_input, S_IRUGO, show_in_input, NULL, 5);
static SENSOR_DEVICE_ATTR(in6_input, S_IRUGO, show_in_input, NULL, 6);
static SENSOR_DEVICE_ATTR(fan1_min, S_IWUSR | S_IRUGO,
show_fan_min, set_fan_min, 0);
static SENSOR_DEVICE_ATTR(fan2_min, S_IWUSR | S_IRUGO,
show_fan_min, set_fan_min, 1);
static SENSOR_DEVICE_ATTR(fan1_input, S_IRUGO, show_fan_input, NULL, 0);
static SENSOR_DEVICE_ATTR(fan2_input, S_IRUGO, show_fan_input, NULL, 1);
static SENSOR_DEVICE_ATTR(fan1_div, S_IWUSR | S_IRUGO,
show_fan_div, set_fan_div, 0);
static SENSOR_DEVICE_ATTR(fan2_div, S_IWUSR | S_IRUGO,
show_fan_div, set_fan_div, 1);
static DEVICE_ATTR(temp1_input, S_IRUGO, show_temp_input1, NULL);
static DEVICE_ATTR(temp1_max, S_IWUSR | S_IRUGO, show_temp_hot_max,
set_temp_hot_max);
static DEVICE_ATTR(temp1_max_hyst, S_IWUSR | S_IRUGO, show_temp_hot_hyst,
set_temp_hot_hyst);
static DEVICE_ATTR(temp1_crit, S_IWUSR | S_IRUGO, show_temp_os_max,
set_temp_os_max);
static DEVICE_ATTR(temp1_crit_hyst, S_IWUSR | S_IRUGO, show_temp_os_hyst,
set_temp_os_hyst);
static DEVICE_ATTR(alarms, S_IRUGO, show_alarms, NULL);
static SENSOR_DEVICE_ATTR(in0_alarm, S_IRUGO, show_alarm, NULL, 0);
static SENSOR_DEVICE_ATTR(in1_alarm, S_IRUGO, show_alarm, NULL, 1);
static SENSOR_DEVICE_ATTR(in2_alarm, S_IRUGO, show_alarm, NULL, 2);
static SENSOR_DEVICE_ATTR(in3_alarm, S_IRUGO, show_alarm, NULL, 3);
static SENSOR_DEVICE_ATTR(in4_alarm, S_IRUGO, show_alarm, NULL, 4);
static SENSOR_DEVICE_ATTR(in5_alarm, S_IRUGO, show_alarm, NULL, 5);
static SENSOR_DEVICE_ATTR(in6_alarm, S_IRUGO, show_alarm, NULL, 6);
static SENSOR_DEVICE_ATTR(fan1_alarm, S_IRUGO, show_alarm, NULL, 10);
static SENSOR_DEVICE_ATTR(fan2_alarm, S_IRUGO, show_alarm, NULL, 11);
static SENSOR_DEVICE_ATTR(temp1_max_alarm, S_IRUGO, show_alarm, NULL, 8);
static SENSOR_DEVICE_ATTR(temp1_crit_alarm, S_IRUGO, show_alarm, NULL, 13);
/*
* Real code
*/
static struct attribute *lm80_attributes[] = {
&sensor_dev_attr_in0_min.dev_attr.attr,
&sensor_dev_attr_in1_min.dev_attr.attr,
&sensor_dev_attr_in2_min.dev_attr.attr,
&sensor_dev_attr_in3_min.dev_attr.attr,
&sensor_dev_attr_in4_min.dev_attr.attr,
&sensor_dev_attr_in5_min.dev_attr.attr,
&sensor_dev_attr_in6_min.dev_attr.attr,
&sensor_dev_attr_in0_max.dev_attr.attr,
&sensor_dev_attr_in1_max.dev_attr.attr,
&sensor_dev_attr_in2_max.dev_attr.attr,
&sensor_dev_attr_in3_max.dev_attr.attr,
&sensor_dev_attr_in4_max.dev_attr.attr,
&sensor_dev_attr_in5_max.dev_attr.attr,
&sensor_dev_attr_in6_max.dev_attr.attr,
&sensor_dev_attr_in0_input.dev_attr.attr,
&sensor_dev_attr_in1_input.dev_attr.attr,
&sensor_dev_attr_in2_input.dev_attr.attr,
&sensor_dev_attr_in3_input.dev_attr.attr,
&sensor_dev_attr_in4_input.dev_attr.attr,
&sensor_dev_attr_in5_input.dev_attr.attr,
&sensor_dev_attr_in6_input.dev_attr.attr,
&sensor_dev_attr_fan1_min.dev_attr.attr,
&sensor_dev_attr_fan2_min.dev_attr.attr,
&sensor_dev_attr_fan1_input.dev_attr.attr,
&sensor_dev_attr_fan2_input.dev_attr.attr,
&sensor_dev_attr_fan1_div.dev_attr.attr,
&sensor_dev_attr_fan2_div.dev_attr.attr,
&dev_attr_temp1_input.attr,
&dev_attr_temp1_max.attr,
&dev_attr_temp1_max_hyst.attr,
&dev_attr_temp1_crit.attr,
&dev_attr_temp1_crit_hyst.attr,
&dev_attr_alarms.attr,
&sensor_dev_attr_in0_alarm.dev_attr.attr,
&sensor_dev_attr_in1_alarm.dev_attr.attr,
&sensor_dev_attr_in2_alarm.dev_attr.attr,
&sensor_dev_attr_in3_alarm.dev_attr.attr,
&sensor_dev_attr_in4_alarm.dev_attr.attr,
&sensor_dev_attr_in5_alarm.dev_attr.attr,
&sensor_dev_attr_in6_alarm.dev_attr.attr,
&sensor_dev_attr_fan1_alarm.dev_attr.attr,
&sensor_dev_attr_fan2_alarm.dev_attr.attr,
&sensor_dev_attr_temp1_max_alarm.dev_attr.attr,
&sensor_dev_attr_temp1_crit_alarm.dev_attr.attr,
NULL
};
static const struct attribute_group lm80_group = {
.attrs = lm80_attributes,
};
/* Return 0 if detection is successful, -ENODEV otherwise */
static int lm80_detect(struct i2c_client *client, struct i2c_board_info *info)
{
struct i2c_adapter *adapter = client->adapter;
int i, cur, man_id, dev_id;
const char *name = NULL;
if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA))
return -ENODEV;
/* First check for unused bits, common to both chip types */
if ((lm80_read_value(client, LM80_REG_ALARM2) & 0xc0)
|| (lm80_read_value(client, LM80_REG_CONFIG) & 0x80))
return -ENODEV;
/*
* The LM96080 has manufacturer and stepping/die rev registers so we
* can just check that. The LM80 does not have such registers so we
* have to use a more expensive trick.
*/
man_id = lm80_read_value(client, LM96080_REG_MAN_ID);
dev_id = lm80_read_value(client, LM96080_REG_DEV_ID);
if (man_id == 0x01 && dev_id == 0x08) {
/* Check more unused bits for confirmation */
if (lm80_read_value(client, LM96080_REG_CONV_RATE) & 0xfe)
return -ENODEV;
name = "lm96080";
} else {
/* Check 6-bit addressing */
for (i = 0x2a; i <= 0x3d; i++) {
cur = i2c_smbus_read_byte_data(client, i);
if ((i2c_smbus_read_byte_data(client, i + 0x40) != cur)
|| (i2c_smbus_read_byte_data(client, i + 0x80) != cur)
|| (i2c_smbus_read_byte_data(client, i + 0xc0) != cur))
return -ENODEV;
}
name = "lm80";
}
strlcpy(info->type, name, I2C_NAME_SIZE);
return 0;
}
static int lm80_probe(struct i2c_client *client,
const struct i2c_device_id *id)
{
struct lm80_data *data;
int err;
data = devm_kzalloc(&client->dev, sizeof(struct lm80_data), GFP_KERNEL);
if (!data)
return -ENOMEM;
i2c_set_clientdata(client, data);
mutex_init(&data->update_lock);
/* Initialize the LM80 chip */
lm80_init_client(client);
/* A few vars need to be filled upon startup */
data->fan_min[0] = lm80_read_value(client, LM80_REG_FAN_MIN(1));
data->fan_min[1] = lm80_read_value(client, LM80_REG_FAN_MIN(2));
/* Register sysfs hooks */
err = sysfs_create_group(&client->dev.kobj, &lm80_group);
if (err)
return err;
data->hwmon_dev = hwmon_device_register(&client->dev);
if (IS_ERR(data->hwmon_dev)) {
err = PTR_ERR(data->hwmon_dev);
goto error_remove;
}
return 0;
error_remove:
sysfs_remove_group(&client->dev.kobj, &lm80_group);
return err;
}
static int lm80_remove(struct i2c_client *client)
{
struct lm80_data *data = i2c_get_clientdata(client);
hwmon_device_unregister(data->hwmon_dev);
sysfs_remove_group(&client->dev.kobj, &lm80_group);
return 0;
}
static int lm80_read_value(struct i2c_client *client, u8 reg)
{
return i2c_smbus_read_byte_data(client, reg);
}
static int lm80_write_value(struct i2c_client *client, u8 reg, u8 value)
{
return i2c_smbus_write_byte_data(client, reg, value);
}
/* Called when we have found a new LM80. */
static void lm80_init_client(struct i2c_client *client)
{
/*
* Reset all except Watchdog values and last conversion values
* This sets fan-divs to 2, among others. This makes most other
* initializations unnecessary
*/
lm80_write_value(client, LM80_REG_CONFIG, 0x80);
/* Set 11-bit temperature resolution */
lm80_write_value(client, LM80_REG_RES, 0x08);
/* Start monitoring */
lm80_write_value(client, LM80_REG_CONFIG, 0x01);
}
static struct lm80_data *lm80_update_device(struct device *dev)
{
struct i2c_client *client = to_i2c_client(dev);
struct lm80_data *data = i2c_get_clientdata(client);
int i;
int rv;
int prev_rv;
struct lm80_data *ret = data;
mutex_lock(&data->update_lock);
if (data->error)
lm80_init_client(client);
if (time_after(jiffies, data->last_updated + 2 * HZ) || !data->valid) {
dev_dbg(&client->dev, "Starting lm80 update\n");
for (i = 0; i <= 6; i++) {
rv = lm80_read_value(client, LM80_REG_IN(i));
if (rv < 0)
goto abort;
data->in[i] = rv;
rv = lm80_read_value(client, LM80_REG_IN_MIN(i));
if (rv < 0)
goto abort;
data->in_min[i] = rv;
rv = lm80_read_value(client, LM80_REG_IN_MAX(i));
if (rv < 0)
goto abort;
data->in_max[i] = rv;
}
rv = lm80_read_value(client, LM80_REG_FAN1);
if (rv < 0)
goto abort;
data->fan[0] = rv;
rv = lm80_read_value(client, LM80_REG_FAN_MIN(1));
if (rv < 0)
goto abort;
data->fan_min[0] = rv;
rv = lm80_read_value(client, LM80_REG_FAN2);
if (rv < 0)
goto abort;
data->fan[1] = rv;
rv = lm80_read_value(client, LM80_REG_FAN_MIN(2));
if (rv < 0)
goto abort;
data->fan_min[1] = rv;
prev_rv = rv = lm80_read_value(client, LM80_REG_TEMP);
if (rv < 0)
goto abort;
rv = lm80_read_value(client, LM80_REG_RES);
if (rv < 0)
goto abort;
data->temp = (prev_rv << 8) | (rv & 0xf0);
rv = lm80_read_value(client, LM80_REG_TEMP_OS_MAX);
if (rv < 0)
goto abort;
data->temp_os_max = rv;
rv = lm80_read_value(client, LM80_REG_TEMP_OS_HYST);
if (rv < 0)
goto abort;
data->temp_os_hyst = rv;
rv = lm80_read_value(client, LM80_REG_TEMP_HOT_MAX);
if (rv < 0)
goto abort;
data->temp_hot_max = rv;
rv = lm80_read_value(client, LM80_REG_TEMP_HOT_HYST);
if (rv < 0)
goto abort;
data->temp_hot_hyst = rv;
rv = lm80_read_value(client, LM80_REG_FANDIV);
if (rv < 0)
goto abort;
data->fan_div[0] = (rv >> 2) & 0x03;
data->fan_div[1] = (rv >> 4) & 0x03;
prev_rv = rv = lm80_read_value(client, LM80_REG_ALARM1);
if (rv < 0)
goto abort;
rv = lm80_read_value(client, LM80_REG_ALARM2);
if (rv < 0)
goto abort;
data->alarms = prev_rv + (rv << 8);
data->last_updated = jiffies;
data->valid = 1;
data->error = 0;
}
goto done;
abort:
ret = ERR_PTR(rv);
data->valid = 0;
data->error = 1;
done:
mutex_unlock(&data->update_lock);
return ret;
}
module_i2c_driver(lm80_driver);
MODULE_AUTHOR("Frodo Looijaard <frodol@dds.nl> and "
"Philip Edelbrock <phil@netroedge.com>");
MODULE_DESCRIPTION("LM80 driver");
MODULE_LICENSE("GPL");