TERES/SOFTWARE/A64-TERES/u-boot_new/drivers/mmc/mmc.c
Dimitar Gamishev 093685c7d8 u-boot
2017-10-13 14:02:55 +03:00

3038 lines
72 KiB
C

/*
* Copyright 2008, Freescale Semiconductor, Inc
* Andy Fleming
*
* Based vaguely on the Linux code
*
* SPDX-License-Identifier: GPL-2.0+
*/
#include <config.h>
#include <common.h>
#include <command.h>
#include <errno.h>
#include <mmc.h>
#include <part.h>
#include <malloc.h>
#include <linux/list.h>
#include <div64.h>
#include <sys_config.h>
#include <libfdt.h>
#include <fdt_support.h>
#include "mmc_private.h"
#include "sunxi_mmc.h"
#include "mmc_def.h"
#include "mmc_test.h"
//static struct list_head mmc_devices;
static int cur_dev_num = -1;
int mmc_send_ext_csd(struct mmc *mmc, char *ext_csd);
int mmc_decode_ext_csd(struct mmc *mmc,struct mmc_ext_csd *dec_ext_csd, char *ext_csd);
int mmc_do_switch(struct mmc *mmc, u8 set, u8 index, u8 value, u32 timeout);
static void mmc_set_bus_width(struct mmc *mmc, uint width);
extern int mmc_init_blk_ops(struct mmc *mmc);
extern unsigned int mmc_mmc_update_timeout(struct mmc *mmc);
extern char *spd_name[];
LIST_HEAD(mmc_devices);
int __weak board_mmc_getwp(struct mmc *mmc)
{
return -1;
}
int mmc_getwp(struct mmc *mmc)
{
int wp;
wp = board_mmc_getwp(mmc);
if (wp < 0) {
if (mmc->cfg->ops->getwp)
wp = mmc->cfg->ops->getwp(mmc);
else
wp = 0;
}
return wp;
}
int __board_mmc_getcd(struct mmc *mmc) {
return -1;
}
int board_mmc_getcd(struct mmc *mmc)__attribute__((weak,
alias("__board_mmc_getcd")));
int mmc_send_cmd(struct mmc *mmc, struct mmc_cmd *cmd, struct mmc_data *data)
{
int ret;
#ifdef CONFIG_MMC_TRACE
int i;
u8 *ptr;
MMCDBG("CMD_SEND:%d\n", cmd->cmdidx);
MMCDBG("\t\tARG\t\t\t 0x%08X\n", cmd->cmdarg);
MMCDBG("\t\tFLAG\t\t\t %d\n", cmd->flags);
ret = mmc->cfg->ops->send_cmd(mmc, cmd, data);
switch (cmd->resp_type) {
case MMC_RSP_NONE:
MMCDBG("\t\tMMC_RSP_NONE\n");
break;
case MMC_RSP_R1:
MMCDBG("\t\tMMC_RSP_R1,5,6,7 \t 0x%08X \n",
cmd->response[0]);
break;
case MMC_RSP_R1b:
MMCDBG("\t\tMMC_RSP_R1b\t\t 0x%08X \n",
cmd->response[0]);
break;
case MMC_RSP_R2:
MMCDBG("\t\tMMC_RSP_R2\t\t 0x%08X \n",
cmd->response[0]);
MMCDBG("\t\t \t\t 0x%08X \n",
cmd->response[1]);
MMCDBG("\t\t \t\t 0x%08X \n",
cmd->response[2]);
MMCDBG("\t\t \t\t 0x%08X \n",
cmd->response[3]);
MMCDBG("\n");
MMCDBG("\t\t\t\t\tDUMPING DATA\n");
for (i = 0; i < 4; i++) {
int j;
MMCDBG("\t\t\t\t\t%03d - ", i*4);
ptr = (u8 *)&cmd->response[i];
ptr += 3;
for (j = 0; j < 4; j++)
MMCDBG("%02X ", *ptr--);
MMCDBG("\n");
}
break;
case MMC_RSP_R3:
MMCDBG("\t\tMMC_RSP_R3,4\t\t 0x%08X \n",
cmd->response[0]);
break;
default:
MMCDBG("\t\tERROR MMC rsp not supported\n");
break;
}
#else
ret = mmc->cfg->ops->send_cmd(mmc, cmd, data);
#endif
return ret;
}
int mmc_send_status(struct mmc *mmc, int timeout)
{
struct mmc_cmd cmd;
int err, retries = 5;
#ifdef CONFIG_MMC_TRACE
int status;
#endif
cmd.cmdidx = MMC_CMD_SEND_STATUS;
cmd.resp_type = MMC_RSP_R1;
if (!mmc_host_is_spi(mmc))
cmd.cmdarg = mmc->rca << 16;
cmd.flags = 0;
do {
err = mmc_send_cmd(mmc, &cmd, NULL);
if (!err) {
if ((cmd.response[0] & MMC_STATUS_RDY_FOR_DATA) &&
(cmd.response[0] & MMC_STATUS_CURR_STATE) !=
MMC_STATE_PRG)
break;
else if (cmd.response[0] & MMC_STATUS_MASK) {
#if !defined(CONFIG_SPL_BUILD) || defined(CONFIG_SPL_LIBCOMMON_SUPPORT)
MMCINFO("Status Error: 0x%08X\n",
cmd.response[0]);
#endif
return COMM_ERR;
}
} else if (--retries < 0)
return err;
udelay(1000);
} while (timeout--);
#ifdef CONFIG_MMC_TRACE
status = (cmd.response[0] & MMC_STATUS_CURR_STATE) >> 9;
printf("CURR STATE:%d\n", status);
#endif
if (timeout <= 0) {
#if !defined(CONFIG_SPL_BUILD) || defined(CONFIG_SPL_LIBCOMMON_SUPPORT)
MMCINFO("Timeout waiting card ready\n");
#endif
return TIMEOUT;
}
if (cmd.response[0] & MMC_STATUS_SWITCH_ERROR) {
MMCINFO("Fail to switch to expected mode by SWITCH cmd\n");
return SWITCH_ERR;
}
if (cmd.response[0] & MMC_STATUS_ADDR_OUT_OF_RANGE) {
MMCINFO("Address out of range !!\n");
return -1;
}
return 0;
}
int mmc_set_blocklen(struct mmc *mmc, int len)
{
struct mmc_cmd cmd;
/*ddr mode not send blocklenth*/
if ((mmc->speed_mode == HS400) || (mmc->speed_mode == HSDDR52_DDR50)) {
return 0;
}
/*
if (mmc->card_caps & MMC_MODE_DDR_52MHz)
return 0;
*/
cmd.cmdidx = MMC_CMD_SET_BLOCKLEN;
cmd.resp_type = MMC_RSP_R1;
cmd.cmdarg = len;
cmd.flags = 0;
return mmc_send_cmd(mmc, &cmd, NULL);
}
int mmc_send_manual_stop(struct mmc *mmc)
{
struct mmc_cmd cmd;
int ret = 0;
cmd.cmdidx = MMC_CMD_STOP_TRANSMISSION;
cmd.cmdarg = 0;
cmd.resp_type = MMC_RSP_R1b;
cmd.flags = MMC_CMD_MANUAL; //let bsp send cmd12
ret = mmc_send_cmd(mmc, &cmd, NULL);
if (ret) {
MMCMSG(mmc, "mmc fail to send manual stop cmd\n");
return ret;
}
return 0;
}
struct mmc *find_mmc_device(int dev_num)
{
struct mmc *m;
struct list_head *entry;
list_for_each(entry, &mmc_devices) {
m = list_entry(entry, struct mmc, link);
if (m->block_dev.dev == dev_num)
return m;
}
#if !defined(CONFIG_SPL_BUILD) || defined(CONFIG_SPL_LIBCOMMON_SUPPORT)
MMCINFO("MMC Device %d not found\n", dev_num);
#endif
return NULL;
}
static int mmc_read_blocks(struct mmc *mmc, void *dst, lbaint_t start,
lbaint_t blkcnt)
{
struct mmc_cmd cmd;
struct mmc_data data;
int timeout = 1000;
if (blkcnt > 1)
cmd.cmdidx = MMC_CMD_READ_MULTIPLE_BLOCK;
else
cmd.cmdidx = MMC_CMD_READ_SINGLE_BLOCK;
if (mmc->high_capacity)
cmd.cmdarg = start;
else
cmd.cmdarg = start * mmc->read_bl_len;
cmd.resp_type = MMC_RSP_R1;
cmd.flags = 0;
data.dest = dst;
data.blocks = blkcnt;
data.blocksize = mmc->read_bl_len;
data.flags = MMC_DATA_READ;
if (mmc_send_cmd(mmc, &cmd, &data)) {
MMCMSG(mmc, "read block failed, %s %d\n", __FUNCTION__, __LINE__);
return 0;
}
if (blkcnt > 1) {
cmd.cmdidx = MMC_CMD_STOP_TRANSMISSION;
cmd.cmdarg = 0;
cmd.resp_type = MMC_RSP_R1b;
cmd.flags = 0;
if (mmc_send_cmd(mmc, &cmd, NULL)) {
#if !defined(CONFIG_SPL_BUILD) || defined(CONFIG_SPL_LIBCOMMON_SUPPORT)
MMCINFO("mmc fail to send stop cmd\n");
#endif
return 0;
}
/* Waiting for the ready status */
mmc_send_status(mmc, timeout);
}
return blkcnt;
}
ulong mmc_bread(int dev_num, lbaint_t start, lbaint_t blkcnt, void *dst)
{
lbaint_t cur, blocks_todo = blkcnt;
struct mmc *mmc = find_mmc_device(dev_num);
if (blkcnt == 0) {
MMCINFO("blkcnt should not be 0\n");
return 0;
}
if (!mmc) {
MMCINFO("Can not find mmc dev\n");
return 0;
}
if ((start + blkcnt) > mmc->block_dev.lba) {
#if !defined(CONFIG_SPL_BUILD) || defined(CONFIG_SPL_LIBCOMMON_SUPPORT)
MMCINFO("MMC: block number 0x" LBAF " exceeds max(0x" LBAF ")\n",
start + blkcnt, mmc->block_dev.lba);
#endif
return 0;
}
if (mmc_set_blocklen(mmc, mmc->read_bl_len)) {
MMCMSG(mmc, "Set block len failed\n");
return 0;
}
do {
cur = (blocks_todo > mmc->cfg->b_max) ?
mmc->cfg->b_max : blocks_todo;
if(mmc_read_blocks(mmc, dst, start, cur) != cur) {
MMCMSG(mmc, "block read failed, %s %d\n", __FUNCTION__, __LINE__);
return 0;
}
blocks_todo -= cur;
start += cur;
dst += cur * mmc->read_bl_len;
} while (blocks_todo > 0);
return blkcnt;
}
static int mmc_go_idle(struct mmc *mmc)
{
struct mmc_cmd cmd;
int err;
udelay(1000);
cmd.cmdidx = MMC_CMD_GO_IDLE_STATE;
cmd.cmdarg = 0;
cmd.resp_type = MMC_RSP_NONE;
cmd.flags = 0;
err = mmc_send_cmd(mmc, &cmd, NULL);
if (err) {
MMCINFO("go idle failed\n");
return err;
}
udelay(2000);
return 0;
}
static int sd_send_op_cond(struct mmc *mmc)
{
int timeout = 1000;
int err;
struct mmc_cmd cmd;
do {
cmd.cmdidx = MMC_CMD_APP_CMD;
cmd.resp_type = MMC_RSP_R1;
cmd.cmdarg = 0;
cmd.flags = 0;
err = mmc_send_cmd(mmc, &cmd, NULL);
if (err) {
MMCINFO("send app cmd failed\n");
return err;
}
cmd.cmdidx = SD_CMD_APP_SEND_OP_COND;
cmd.resp_type = MMC_RSP_R3;
/*
* Most cards do not answer if some reserved bits
* in the ocr are set. However, Some controller
* can set bit 7 (reserved for low voltages), but
* how to manage low voltages SD card is not yet
* specified.
*/
cmd.cmdarg = mmc_host_is_spi(mmc) ? 0 :
(mmc->cfg->voltages & 0xff8000);
if (mmc->version == SD_VERSION_2)
cmd.cmdarg |= OCR_HCS;
err = mmc_send_cmd(mmc, &cmd, NULL);
if (err) {
MMCINFO("send cmd41 failed\n");
return err;
}
udelay(1000);
} while ((!(cmd.response[0] & OCR_BUSY)) && timeout--);
if (timeout < 0) {
MMCINFO("wait card init failed\n");
return UNUSABLE_ERR;
}
if (mmc->version != SD_VERSION_2)
mmc->version = SD_VERSION_1_0;
if (mmc_host_is_spi(mmc)) { /* read OCR for spi */
cmd.cmdidx = MMC_CMD_SPI_READ_OCR;
cmd.resp_type = MMC_RSP_R3;
cmd.cmdarg = 0;
cmd.flags = 0;
err = mmc_send_cmd(mmc, &cmd, NULL);
if (err) {
MMCINFO("spi read ocr failed\n");
return err;
}
}
mmc->ocr = cmd.response[0];
mmc->high_capacity = ((mmc->ocr & OCR_HCS) == OCR_HCS);
mmc->rca = 0;
return 0;
}
/* We pass in the cmd since otherwise the init seems to fail */
static int mmc_send_op_cond_iter(struct mmc *mmc, struct mmc_cmd *cmd,
int use_arg)
{
int err;
cmd->cmdidx = MMC_CMD_SEND_OP_COND;
cmd->resp_type = MMC_RSP_R3;
cmd->cmdarg = 0; //0x40ff8000; //foresee
cmd->flags = 0;
if (use_arg && !mmc_host_is_spi(mmc)) {
cmd->cmdarg =
(mmc->cfg->voltages &
(mmc->op_cond_response & OCR_VOLTAGE_MASK)) |
(mmc->op_cond_response & OCR_ACCESS_MODE);
if (mmc->cfg->host_caps & MMC_MODE_HC)
cmd->cmdarg |= OCR_HCS;
}
err = mmc_send_cmd(mmc, cmd, NULL);
if (err) {
MMCINFO("read op condition failed\n");
return err;
}
mmc->op_cond_response = cmd->response[0];
return 0;
}
int mmc_send_op_cond(struct mmc *mmc)
{
struct mmc_cmd cmd;
int err, i;
/* Some cards seem to need this */
mmc_go_idle(mmc);
/* Asking to the card its capabilities */
mmc->op_cond_pending = 1;
for (i = 0; i < 2; i++) {
err = mmc_send_op_cond_iter(mmc, &cmd, i != 0);
if (err) {
MMCINFO("mmc send op cond failed\n");
return err;
}
/* exit if not busy (flag seems to be inverted) */
if (mmc->op_cond_response & OCR_BUSY)
return 0;
}
return IN_PROGRESS;
}
int mmc_complete_op_cond(struct mmc *mmc)
{
struct mmc_cmd cmd;
int timeout = 1000;
uint start;
int err;
mmc->op_cond_pending = 0;
start = get_timer(0);
do {
err = mmc_send_op_cond_iter(mmc, &cmd, 1);
if (err) {
MMCINFO("mmc send op cond failed\n");
return err;
}
if (get_timer(start) > timeout) {
MMCINFO("wait for mmc init failed\n");
return UNUSABLE_ERR;
}
udelay(100);
} while (!(mmc->op_cond_response & OCR_BUSY));
if (mmc_host_is_spi(mmc)) { /* read OCR for spi */
cmd.cmdidx = MMC_CMD_SPI_READ_OCR;
cmd.resp_type = MMC_RSP_R3;
cmd.cmdarg = 0;
cmd.flags = 0;
err = mmc_send_cmd(mmc, &cmd, NULL);
if (err) {
MMCINFO("spi read ocr failed\n");
return err;
}
}
mmc->version = MMC_VERSION_UNKNOWN;
mmc->ocr = cmd.response[0];
mmc->high_capacity = ((mmc->ocr & OCR_HCS) == OCR_HCS);
mmc->rca = 1;
return 0;
}
int mmc_send_ext_csd(struct mmc *mmc, char *ext_csd)
{
struct mmc_cmd cmd;
struct mmc_data data;
int err;
/* Get the Card Status Register */
cmd.cmdidx = MMC_CMD_SEND_EXT_CSD;
cmd.resp_type = MMC_RSP_R1;
cmd.cmdarg = 0;
cmd.flags = 0;
data.dest = (char *)ext_csd;
data.blocks = 1;
data.blocksize = MMC_MAX_BLOCK_LEN;
data.flags = MMC_DATA_READ;
err = mmc_send_cmd(mmc, &cmd, &data);
if(err)
MMCINFO("mmc send ext csd failed\n");
return err;
}
/* decode ext_csd */
int mmc_decode_ext_csd(struct mmc *mmc,
struct mmc_ext_csd *dec_ext_csd, char *ext_csd)
{
int err = 0;
if ((!ext_csd) || !(dec_ext_csd))
return 0;
/* Version is coded in the CSD_STRUCTURE byte in the EXT_CSD register */
dec_ext_csd->raw_ext_csd_structure = ext_csd[EXT_CSD_STRUCTURE];
dec_ext_csd->rev = ext_csd[EXT_CSD_REV];
if (dec_ext_csd->rev > 7) {
MMCINFO("unrecognised EXT_CSD revision %d\n", dec_ext_csd->rev);
err = -1;
goto out;
}
dec_ext_csd->raw_sectors[0] = ext_csd[EXT_CSD_SEC_CNT + 0];
dec_ext_csd->raw_sectors[1] = ext_csd[EXT_CSD_SEC_CNT + 1];
dec_ext_csd->raw_sectors[2] = ext_csd[EXT_CSD_SEC_CNT + 2];
dec_ext_csd->raw_sectors[3] = ext_csd[EXT_CSD_SEC_CNT + 3];
if (dec_ext_csd->rev >= 2) {
dec_ext_csd->sectors =
ext_csd[EXT_CSD_SEC_CNT + 0] << 0 |
ext_csd[EXT_CSD_SEC_CNT + 1] << 8 |
ext_csd[EXT_CSD_SEC_CNT + 2] << 16 |
ext_csd[EXT_CSD_SEC_CNT + 3] << 24;
}
dec_ext_csd->raw_card_type = ext_csd[EXT_CSD_CARD_TYPE];
dec_ext_csd->raw_erase_timeout_mult =
ext_csd[EXT_CSD_ERASE_TIMEOUT_MULT];
dec_ext_csd->raw_hc_erase_grp_size =
ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE];
if (dec_ext_csd->rev >= 3) {
dec_ext_csd->erase_group_def =
ext_csd[EXT_CSD_ERASE_GROUP_DEF];
dec_ext_csd->hc_erase_timeout = 300 *
ext_csd[EXT_CSD_ERASE_TIMEOUT_MULT];
dec_ext_csd->hc_erase_size =
ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE] << 10;
}
dec_ext_csd->raw_hc_erase_gap_size =
ext_csd[EXT_CSD_HC_WP_GRP_SIZE];
dec_ext_csd->raw_sec_trim_mult =
ext_csd[EXT_CSD_SEC_TRIM_MULT];
dec_ext_csd->raw_sec_erase_mult =
ext_csd[EXT_CSD_SEC_ERASE_MULT];
dec_ext_csd->raw_sec_feature_support =
ext_csd[EXT_CSD_SEC_FEATURE_SUPPORT];
dec_ext_csd->raw_trim_mult =
ext_csd[EXT_CSD_TRIM_MULT];
if (dec_ext_csd->rev >= 4) {
dec_ext_csd->sec_trim_mult =
ext_csd[EXT_CSD_SEC_TRIM_MULT];
dec_ext_csd->sec_erase_mult =
ext_csd[EXT_CSD_SEC_ERASE_MULT];
dec_ext_csd->sec_feature_support =
ext_csd[EXT_CSD_SEC_FEATURE_SUPPORT];
dec_ext_csd->trim_timeout = 300 *
ext_csd[EXT_CSD_TRIM_MULT];
}
dec_ext_csd->raw_erased_mem_count = ext_csd[EXT_CSD_ERASED_MEM_CONT];
/* eMMC v4.5 or later */
if (dec_ext_csd->rev >= 6) {
dec_ext_csd->generic_cmd6_time = 10 *
ext_csd[EXT_CSD_GENERIC_CMD6_TIME];
dec_ext_csd->power_off_longtime = 10 *
ext_csd[EXT_CSD_POWER_OFF_LONG_TIME];
} else {
dec_ext_csd->data_sector_size = 512;
}
out:
return err;
}
int mmc_update_phase(struct mmc *mmc)
{
return mmc->cfg->ops->update_phase(mmc);
}
static void mmc_set_ios(struct mmc *mmc)
{
if (mmc->cfg->ops->set_ios)
mmc->cfg->ops->set_ios(mmc);
}
int mmc_do_switch(struct mmc *mmc, u8 set, u8 index, u8 value, u32 timeout)
{
struct mmc_cmd cmd;
int ret;
cmd.cmdidx = MMC_CMD_SWITCH;
cmd.resp_type = MMC_RSP_R1b;
cmd.cmdarg = (MMC_SWITCH_MODE_WRITE_BYTE << 24) |
(index << 16) |
(value << 8);
cmd.flags = 0;
ret = mmc_send_cmd(mmc, &cmd, NULL);
if (ret) {
MMCINFO("mmc switch failed\n");
}
mmc_set_ios(mmc);
ret = mmc_update_phase(mmc);
if (ret) {
MMCINFO("update clock failed after send switch cmd\n");
return ret;
}
/* Waiting for the ready status */
ret = mmc_send_status(mmc, timeout);
if (ret) {
MMCINFO("mmc swtich status error\n");
return ret;
}
return 0;
}
int mmc_switch(struct mmc *mmc, u8 set, u8 index, u8 value)
{
int timeout = 1000;
return mmc_do_switch(mmc, set, index, value, timeout);
}
int mmc_mmc_switch_to_ds(struct mmc *mmc)
{
ALLOC_CACHE_ALIGN_BUFFER(char, ext_csd, MMC_MAX_BLOCK_LEN);
char cardtype;
int err;
if (mmc->speed_mode == DS26_SDR12) {
MMCINFO("already at DS26_SDR12 mode\n");
return 0;
}
/* Only version 4 supports high-speed */
if (!(mmc->cfg->host_caps & MMC_MODE_HS)) {
MMCINFO("host not support ds\n");
return -1;
}
err = mmc_send_ext_csd(mmc, ext_csd);
if (err){
MMCINFO("mmc get ext csd failed\n");
return err;
}
cardtype = ext_csd[196] & 0xff;
if (!(cardtype & EXT_CSD_CARD_TYPE_HS_26)) {
MMCINFO("mmc not support ds\n");
return -1;
}
err = mmc_switch(mmc, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_HS_TIMING, EXT_CSD_TIMING_BC);
if (err){
MMCINFO("mmc change to ds failed\n");
return err;
}
mmc->speed_mode = DS26_SDR12;
mmc->card_caps |= MMC_MODE_HS;
return 0;
}
int mmc_mmc_switch_to_hs(struct mmc *mmc)
{
ALLOC_CACHE_ALIGN_BUFFER(char, ext_csd, MMC_MAX_BLOCK_LEN);
char cardtype;
int err;
if (mmc->speed_mode == HSSDR52_SDR25) {
MMCINFO("already at HSSDR52_SDR25 mode\n");
return 0;
}
/* Only version 4 supports high-speed */
if (!(mmc->cfg->host_caps & HSSDR52_SDR25)) {
MMCINFO("host not support hs\n");
return -1;
}
err = mmc_send_ext_csd(mmc, ext_csd);
if (err){
MMCINFO("mmc get ext csd failed\n");
return err;
}
cardtype = ext_csd[196] & 0xff;
if (!(cardtype & (EXT_CSD_CARD_TYPE_HS|EXT_CSD_CARD_TYPE_DDR_52))) {
MMCINFO("mmc not support hs\n");
return -1;
}
err = mmc_switch(mmc, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_HS_TIMING, EXT_CSD_TIMING_HS);
if (err){
MMCINFO("mmc change to hs failed\n");
return err;
}
mmc->speed_mode = HSSDR52_SDR25;
mmc->card_caps |= MMC_MODE_HS_52MHz;
return 0;
}
int mmc_mmc_switch_to_hs200(struct mmc *mmc)
{
ALLOC_CACHE_ALIGN_BUFFER(char, ext_csd, MMC_MAX_BLOCK_LEN);
char cardtype;
int err;
if (mmc->speed_mode == HS200_SDR104) {
MMCINFO("already at HS200_SDR104 mode\n");
return 0;
}
/* Only version 4 supports high-speed */
if (!(mmc->cfg->host_caps & MMC_MODE_HS200)) {
MMCINFO("host not support hs200\n");
return -1;
}
err = mmc_send_ext_csd(mmc, ext_csd);
if (err){
MMCINFO("mmc get ext csd failed\n");
return err;
}
cardtype = ext_csd[196] & 0xff;
if (!(cardtype & EXT_CSD_CARD_TYPE_HS200)) {
MMCINFO("mmc not support hs200\n");
return -1;
}
err = mmc_switch(mmc, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_HS_TIMING, EXT_CSD_TIMING_HS200);
if (err){
MMCINFO("mmc change to hs200 failed\n");
return err;
}
mmc->speed_mode = HS200_SDR104;
mmc->card_caps |= MMC_MODE_HS200;
return 0;
}
int mmc_mmc_switch_to_hs400(struct mmc *mmc)
{
ALLOC_CACHE_ALIGN_BUFFER(char, ext_csd, MMC_MAX_BLOCK_LEN);
char cardtype;
int err;
if (mmc->speed_mode == HS400) {
MMCINFO("already at HS400 mode\n");
return 0;
}
/* Only version 4 supports high-speed */
if (!(mmc->cfg->host_caps & MMC_MODE_HS400)) {
MMCINFO("host not support hs400\n");
return -1;
}
err = mmc_send_ext_csd(mmc, ext_csd);
if (err){
MMCINFO("mmc get ext csd failed\n");
return err;
}
cardtype = ext_csd[196] & 0xff;
if (!(cardtype & EXT_CSD_CARD_TYPE_HS400)) {
MMCINFO("mmc not support hs400\n");
return -1;
}
err = mmc_switch(mmc, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_HS_TIMING, EXT_CSD_TIMING_HS400);
if (err){
MMCINFO("mmc change to hs400 failed\n");
return err;
}
mmc->speed_mode = HS400;
mmc->card_caps |= MMC_MODE_HS400;
return 0;
}
int mmc_mmc_switch_speed_mode(struct mmc *mmc, int spd_mode)
{
int ret = 0;
if (mmc_host_is_spi(mmc))
return 0;
if (spd_mode == DS26_SDR12)
ret = mmc_mmc_switch_to_ds(mmc);
else if (spd_mode == HSSDR52_SDR25)
ret = mmc_mmc_switch_to_hs(mmc);
else if (spd_mode == HS200_SDR104)
ret = mmc_mmc_switch_to_hs200(mmc);
else if (spd_mode == HS400)
ret = mmc_mmc_switch_to_hs400(mmc);
else {
ret = -1;
MMCINFO("error speed mode %d\n", spd_mode);
}
return ret;
}
static int mmc_check_buswidth(struct mmc *mmc, u32 emmc_hs_ddr, u32 bus_width)
{
int ret = 0;
MMCDBG("%s: bus:%d, ddr:%d, spd_md: %d-%s\n", __FUNCTION__, bus_width, emmc_hs_ddr?1:0, mmc->speed_mode, spd_name[mmc->speed_mode]);
if (bus_width == 1)
{
if ( (emmc_hs_ddr && (!IS_SD(mmc)) && (mmc->speed_mode == HSSDR52_SDR25)) \
|| ((!IS_SD(mmc)) && (mmc->speed_mode == HSDDR52_DDR50))
|| ((!IS_SD(mmc)) && (mmc->speed_mode == HS200_SDR104)) \
|| ((!IS_SD(mmc)) && (mmc->speed_mode == HS400)) ) /* don't consider SD3.0. tSD/fSD is SD2.0, 1-bit can be support */
{
ret = -1;
}
}
else if (bus_width == 4)
{
if (!(mmc->cfg->host_caps & MMC_MODE_4BIT))
ret = -1;
}
else if (bus_width == 8)
{
if (!(mmc->cfg->host_caps & MMC_MODE_8BIT))
ret = -1;
if (IS_SD(mmc))
ret = -1;
}
else
{
printf("error bus width %d!\n", bus_width);
ret = -1;
}
return ret;
}
int mmc_mmc_switch_bus_width(struct mmc *mmc, int spd_mode, int width)
{
int err = 0;
int emmc_hs_ddr = 0;
u32 set_val = 0;
/* before enter HS400 mode, emmc has been swtiched to HS-DDR mode with 8-bit bus.
so, don't change bus witdh again.
*/
if (spd_mode == HS400)
goto OUT;
if (spd_mode == HSDDR52_DDR50)
emmc_hs_ddr = 1;
err = mmc_check_buswidth(mmc, emmc_hs_ddr, width);
if (err) {
MMCINFO("wrong bus width(%d) for current speed mode\n", width);
return -1;
}
if (width == 1)
set_val = EXT_CSD_BUS_WIDTH_1;
else if (spd_mode == HSDDR52_DDR50)
{
if (width == 4)
set_val = EXT_CSD_BUS_DDR_4;
else if (width == 8)
set_val = EXT_CSD_BUS_DDR_8;
}
else if (width == 4)
set_val = EXT_CSD_BUS_WIDTH_4;
else if (width == 8)
set_val = EXT_CSD_BUS_WIDTH_8;
else
set_val = EXT_CSD_BUS_WIDTH_1;
err = mmc_switch(mmc, EXT_CSD_CMD_SET_NORMAL,
EXT_CSD_BUS_WIDTH,
set_val);
if (err) {
MMCINFO("mmc switch bus width failed\n");
return err;
}
if (spd_mode == HSDDR52_DDR50) {
mmc->speed_mode = HSDDR52_DDR50;
}
mmc_set_bus_width(mmc, width);
OUT:
return err;
}
int mmc_mmc_switch_bus_mode(struct mmc *mmc, int spd_mode, int width)
{
int err = 0;
int tmp_spd_md = 0;
if (IS_SD(mmc)) {
return 0;
}
if (spd_mode == HSDDR52_DDR50)
tmp_spd_md = HSSDR52_SDR25;
else
tmp_spd_md = spd_mode;
err = mmc_mmc_switch_speed_mode(mmc, tmp_spd_md);
if (err) {
MMCINFO("switch speed mode fail\n");
return err;
}
err = mmc_mmc_switch_bus_width(mmc, spd_mode, width);
if (err) {
MMCINFO("switch bus width fail\n");
return err;
}
if (spd_mode == HSDDR52_DDR50) {
mmc->speed_mode = HSDDR52_DDR50;
mmc->card_caps |= MMC_MODE_DDR_52MHz;
}
return err;
}
static int mmc_change_freq(struct mmc *mmc)
{
ALLOC_CACHE_ALIGN_BUFFER(char, ext_csd, MMC_MAX_BLOCK_LEN);
char cardtype;
int err;
int retry = 5;
struct sunxi_mmc_host *host = (struct sunxi_mmc_host *)mmc->priv;
mmc->card_caps = 0;
if (mmc_host_is_spi(mmc))
return 0;
/* Only version 4 supports high-speed */
if (mmc->version < MMC_VERSION_4)
return 0;
/* here we assume eMMC support 8 bit */
mmc->card_caps |= MMC_MODE_4BIT | MMC_MODE_8BIT;
err = mmc_send_ext_csd(mmc, ext_csd);
if (err) {
MMCINFO("mmc get ext csd failed\n");
return err;
}
cardtype = ext_csd[EXT_CSD_CARD_TYPE] & 0xFF;
/* update mmc->cfg->host_caps */
if (!(cardtype & EXT_CSD_CARD_TYPE_HS400)) {
host->cfg.host_caps &= (~MMC_MODE_HS400);
MMCINFO("mmc don't support HS400\n");
}
if (!(cardtype & EXT_CSD_CARD_TYPE_HS200)) {
host->cfg.host_caps &= (~MMC_MODE_HS200);
MMCINFO("mmc don't support HS200\n");
}
if (!(cardtype & EXT_CSD_CARD_TYPE_DDR_52)) {
host->cfg.host_caps &= (~MMC_MODE_DDR_52MHz);
MMCINFO("mmc don't support HSDDR\n");
}
/* retry for Toshiba emmc;for the first time Toshiba emmc change to HS
it will return response crc err,so retry */
do{
err = mmc_switch(mmc, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_HS_TIMING, EXT_CSD_TIMING_HS);
if(!err){
break;
}
MMCINFO("retry mmc switch(cmd6)\n");
} while(retry--);
if (err) {
MMCINFO("mmc change to hs failed\n");
return err; //return err == SWITCH_ERR ? 0 : err;
}
err = mmc_update_phase(mmc);
if (err)
{
MMCINFO("update clock failed\n");
return err;
}
/* Now check to see that it worked */
err = mmc_send_ext_csd(mmc, ext_csd);
if (err) {
MMCINFO("send ext csd faild\n");
return err;
}
/* No high-speed support */
if (!ext_csd[EXT_CSD_HS_TIMING]) {
MMCDBG("don't support hign speed mode\n");
return 0;
}
/* High Speed is set, there are two types: 52MHz and 26MHz */
if (cardtype & EXT_CSD_CARD_TYPE_HS) {
//if (cardtype & EXT_CSD_CARD_TYPE_DDR_52) {
// MMCDBG("%s: get ddr OK!\n", __FUNCTION__);
// mmc->card_caps |= MMC_MODE_DDR_52MHz;
// mmc->speed_mode = HSDDR52_DDR50;
//} else
{
mmc->speed_mode = HSSDR52_SDR25;
}
mmc->card_caps |= MMC_MODE_HS_52MHz | MMC_MODE_HS;
} else {
mmc->card_caps |= MMC_MODE_HS;
mmc->speed_mode = DS26_SDR12;
}
return 0;
}
static int mmc_set_capacity(struct mmc *mmc, int part_num)
{
switch (part_num) {
case 0:
mmc->capacity = mmc->capacity_user;
break;
case 1:
case 2:
mmc->capacity = mmc->capacity_boot;
break;
case 3:
mmc->capacity = mmc->capacity_rpmb;
break;
case 4:
case 5:
case 6:
case 7:
mmc->capacity = mmc->capacity_gp[part_num - 4];
break;
default:
return -1;
}
mmc->block_dev.lba = lldiv(mmc->capacity, mmc->read_bl_len);
return 0;
}
int mmc_select_hwpart(int dev_num, int hwpart)
{
struct mmc *mmc = find_mmc_device(dev_num);
int ret;
if (!mmc)
return -ENODEV;
if (mmc->part_num == hwpart)
return 0;
if (mmc->part_config == MMCPART_NOAVAILABLE) {
printf("Card doesn't support part_switch\n");
return -EMEDIUMTYPE;
}
ret = mmc_switch_part(dev_num, hwpart);
if (ret)
return ret;
mmc->part_num = hwpart;
return 0;
}
int mmc_getcd(struct mmc *mmc)
{
int cd;
cd = board_mmc_getcd(mmc);
if (cd < 0) {
if (mmc->cfg->ops->getcd)
cd = mmc->cfg->ops->getcd(mmc);
else
cd = 1;
}
return cd;
}
static int sd_switch(struct mmc *mmc, int mode, int group, u8 value, u8 *resp)
{
struct mmc_cmd cmd;
struct mmc_data data;
/* Switch the frequency */
cmd.cmdidx = SD_CMD_SWITCH_FUNC;
cmd.resp_type = MMC_RSP_R1;
cmd.cmdarg = (mode << 31) | 0xffffff;
cmd.cmdarg &= ~(0xf << (group * 4));
cmd.cmdarg |= value << (group * 4);
cmd.flags = 0;
data.dest = (char *)resp;
data.blocksize = 64;
data.blocks = 1;
data.flags = MMC_DATA_READ;
return mmc_send_cmd(mmc, &cmd, &data);
}
static int sd_change_freq(struct mmc *mmc)
{
int err;
struct mmc_cmd cmd;
ALLOC_CACHE_ALIGN_BUFFER(uint, scr, 2);
ALLOC_CACHE_ALIGN_BUFFER(uint, switch_status, 16);
struct mmc_data data;
int timeout;
struct sunxi_mmc_host *host = (struct sunxi_mmc_host *)mmc->priv;
mmc->card_caps = 0;
if (mmc_host_is_spi(mmc))
return 0;
/* Read the SCR to find out if this card supports higher speeds */
cmd.cmdidx = MMC_CMD_APP_CMD;
cmd.resp_type = MMC_RSP_R1;
cmd.cmdarg = mmc->rca << 16;
cmd.flags = 0;
err = mmc_send_cmd(mmc, &cmd, NULL);
if (err) {
MMCINFO("send app cmd failed\n");
return err;
}
cmd.cmdidx = SD_CMD_APP_SEND_SCR;
cmd.resp_type = MMC_RSP_R1;
cmd.cmdarg = 0;
cmd.flags = 0;
timeout = 3;
retry_scr:
data.dest = (char *)scr;
data.blocksize = 8;
data.blocks = 1;
data.flags = MMC_DATA_READ;
err = mmc_send_cmd(mmc, &cmd, &data);
if (err) {
if (timeout--)
goto retry_scr;
MMCINFO("send scr failed\n");
return err;
}
mmc->scr[0] = __be32_to_cpu(scr[0]);
mmc->scr[1] = __be32_to_cpu(scr[1]);
switch ((mmc->scr[0] >> 24) & 0xf) {
case 0:
mmc->version = SD_VERSION_1_0;
break;
case 1:
mmc->version = SD_VERSION_1_10;
break;
case 2:
mmc->version = SD_VERSION_2;
if ((mmc->scr[0] >> 15) & 0x1)
mmc->version = SD_VERSION_3;
break;
default:
mmc->version = SD_VERSION_1_0;
break;
}
if (mmc->scr[0] & SD_DATA_4BIT)
mmc->card_caps |= MMC_MODE_4BIT;
/* Version 1.0 doesn't support switching */
if (mmc->version == SD_VERSION_1_0)
return 0;
timeout = 4;
while (timeout--) {
err = sd_switch(mmc, SD_SWITCH_CHECK, 0, 1,
(u8 *)switch_status);
if (err) {
MMCINFO("check high speed status faild\n");
return err;
}
/* The high-speed function is busy. Try again */
if (!(__be32_to_cpu(switch_status[7]) & SD_HIGHSPEED_BUSY))
break;
}
/* If high-speed isn't supported, we return */
if (!(__be32_to_cpu(switch_status[3]) & SD_HIGHSPEED_SUPPORTED))
return 0;
/*
* If the host doesn't support SD_HIGHSPEED, do not switch card to
* HIGHSPEED mode even if the card support SD_HIGHSPPED.
* This can avoid furthur problem when the card runs in different
* mode between the host.
*/
if (!((mmc->cfg->host_caps & MMC_MODE_HS_52MHz) &&
(mmc->cfg->host_caps & MMC_MODE_HS)))
return 0;
err = sd_switch(mmc, SD_SWITCH_SWITCH, 0, 1, (u8 *)switch_status);
if (err) {
MMCINFO("switch to high speed failed\n");
return err;
}
mmc_set_ios(mmc);
err = mmc_update_phase(mmc);
if (err)
{
MMCINFO("update clock failed\n");
return err;
}
if ((__be32_to_cpu(switch_status[4]) & 0x0f000000) == 0x01000000) {
mmc->card_caps |= MMC_MODE_HS;
mmc->speed_mode = HSSDR52_SDR25;
}
/* 20140527-WJQ: disable some mmc->cfg->host_caps */
host->cfg.host_caps &= (~MMC_MODE_HS400);
host->cfg.host_caps &= (~MMC_MODE_HS200);
host->cfg.host_caps &= (~MMC_MODE_DDR_52MHz);
host->cfg.host_caps &= (~MMC_MODE_8BIT);
return 0;
}
/* frequency bases */
/* divided by 10 to be nice to platforms without floating point */
static const int fbase[] = {
10000,
100000,
1000000,
10000000,
};
/* Multiplier values for TRAN_SPEED. Multiplied by 10 to be nice
* to platforms without floating point.
*/
static const int multipliers[] = {
0, /* reserved */
10,
12,
13,
15,
20,
25,
30,
35,
40,
45,
50,
55,
60,
70,
80,
};
void mmc_set_clock(struct mmc *mmc, uint clock)
{
if (clock > mmc->cfg->f_max)
clock = mmc->cfg->f_max;
if (clock < mmc->cfg->f_min)
clock = mmc->cfg->f_min;
mmc->clock = clock;
mmc_set_ios(mmc);
}
static void mmc_set_bus_width(struct mmc *mmc, uint width)
{
mmc->bus_width = width;
mmc_set_ios(mmc);
}
int mmc_switch_boot_bus_cond(int dev_num, u32 boot_mode, u32 rst_bus_cond, u32 bus_width)
{
ALLOC_CACHE_ALIGN_BUFFER(char, ext_csd, MMC_MAX_BLOCK_LEN); //char ext_csd[512] = {0};
unsigned char boot_bus_cond = 0;
int ret = 0;
struct mmc *mmc = find_mmc_device(dev_num);
if (!mmc) {
MMCINFO("can not find mmc device\n");
return -1;
}
boot_bus_cond = (mmc->boot_bus_cond &
(~MMC_SWITCH_BOOT_MODE_MASK) & (~MMC_SWITCH_BOOT_RST_BUS_COND_MASK) & (~MMC_SWITCH_BOOT_BUS_WIDTH_MASK))
| ((boot_mode << 3) & MMC_SWITCH_BOOT_MODE_MASK)
| ((rst_bus_cond << 2) & MMC_SWITCH_BOOT_RST_BUS_COND_MASK)
| ((bus_width) & MMC_SWITCH_BOOT_BUS_WIDTH_MASK);
ret = mmc_switch(mmc, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_BOOT_BUS_COND, boot_bus_cond);
if(ret) {
MMCINFO("switch bus cond failed\n");
return -1;
}
ret = mmc_send_ext_csd(mmc, ext_csd);
if(ret) {
MMCINFO("send ext csd failed\n");
return -1;
}
MMCDBG("boot bus cond: 0x%x\n", ext_csd[EXT_CSD_BOOT_BUS_COND]);
if (boot_bus_cond != ext_csd[EXT_CSD_BOOT_BUS_COND]) {
MMCINFO("Set boot bus cond failed,now bus con is 0x%x\n",ext_csd[EXT_CSD_BOOT_BUS_COND]);
return -1;
}
mmc->boot_bus_cond = boot_bus_cond;
return ret;
}
int mmc_switch_boot_part(int dev_num, u32 boot_ack, u32 boot_part)
{
ALLOC_CACHE_ALIGN_BUFFER(char, ext_csd, MMC_MAX_BLOCK_LEN); //char ext_csd[512] = {0};
unsigned char part_config = 0;
int ret = 0;
struct mmc *mmc = find_mmc_device(dev_num);
if (!mmc){
MMCINFO("can not find mmc device\n");
return -1;
}
part_config = (mmc->part_config & (~MMC_SWITCH_PART_BOOT_PART_MASK) & (~MMC_SWITCH_PART_BOOT_ACK_MASK))
| ((boot_part << 3) & MMC_SWITCH_PART_BOOT_PART_MASK) | (boot_ack << 6);
ret = mmc_switch(mmc, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_PART_CONF,part_config);
if(ret){
MMCINFO("switch boot partd failed\n");
return -1;
}
ret = mmc_send_ext_csd(mmc, ext_csd);
if(ret){
MMCINFO("send ext csd failed\n");
return -1;
}
MMCDBG("part conf:0x%x\n",ext_csd[EXT_CSD_PART_CONF]);
if(part_config!=ext_csd[EXT_CSD_PART_CONF]) {
MMCINFO("switch boot part failed,now part conf is 0x%x\n",ext_csd[EXT_CSD_PART_CONF]);
return -1;
}
mmc->part_config = part_config;
return ret;
}
int mmc_switch_part(int dev_num, unsigned int part_num)
{
char ext_csd[512]={0};
unsigned char part_config = 0;
int ret = 0;
struct mmc *mmc = find_mmc_device(dev_num);
MMCDBG("Try to switch part \n");
if (!mmc){
MMCINFO("can not find mmc device\n");
return -1;
}
part_config = (mmc->part_config & ~PART_ACCESS_MASK)
| (part_num & PART_ACCESS_MASK);
ret = mmc_switch(mmc, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_PART_CONF,part_config);
if(ret){
MMCINFO("mmc switch part failed\n");
return -1;
}
ret = mmc_send_ext_csd(mmc, ext_csd);
if(ret){
MMCINFO("send ext csd failed\n");
return -1;
}
MMCDBG("part conf:0x%x\n",ext_csd[EXT_CSD_PART_CONF]);
if(part_config!=ext_csd[EXT_CSD_PART_CONF]) {
MMCINFO("switch boot part failed,now bus con is 0x%x\n",ext_csd[EXT_CSD_PART_CONF]);
return -1;
}
mmc->part_config = part_config;
MMCDBG("switch part succeed\n");
return ret;
}
static int mmc_startup(struct mmc *mmc)
{
int err, i;
uint mult, freq;
u64 cmult, csize, capacity;
struct mmc_cmd cmd;
ALLOC_CACHE_ALIGN_BUFFER(char, ext_csd, MMC_MAX_BLOCK_LEN);
int timeout = 1000;
int erase_gsz, erase_gmul;
int def_erase_grp_size, hc_erase_gpr_size;
int hc_erase_timeout;
// = {"DS26/SDR12", "HSSDR52/SDR25", "HSDDR52/DDR50", "HS200/SDR104", "HS400"};
#ifdef CONFIG_MMC_SPI_CRC_ON
if (mmc_host_is_spi(mmc)) { /* enable CRC check for spi */
cmd.cmdidx = MMC_CMD_SPI_CRC_ON_OFF;
cmd.resp_type = MMC_RSP_R1;
cmd.cmdarg = 1;
cmd.flags = 0;
err = mmc_send_cmd(mmc, &cmd, NULL);
if (err) {
MMCINFO("spi crc on off failed\n");
return err;
}
}
#endif
/* Put the Card in Identify Mode */
cmd.cmdidx = mmc_host_is_spi(mmc) ? MMC_CMD_SEND_CID :
MMC_CMD_ALL_SEND_CID; /* cmd not supported in spi */
cmd.resp_type = MMC_RSP_R2;
cmd.cmdarg = 0;
cmd.flags = 0;
err = mmc_send_cmd(mmc, &cmd, NULL);
if (err) {
MMCINFO("Put the Card in Identify Mode failed\n");
return err;
}
memcpy(mmc->cid, cmd.response, 16);
/*
* For MMC cards, set the Relative Address.
* For SD cards, get the Relatvie Address.
* This also puts the cards into Standby State
*/
if (!mmc_host_is_spi(mmc)) { /* cmd not supported in spi */
cmd.cmdidx = SD_CMD_SEND_RELATIVE_ADDR;
cmd.cmdarg = mmc->rca << 16;
cmd.resp_type = MMC_RSP_R6;
cmd.flags = 0;
err = mmc_send_cmd(mmc, &cmd, NULL);
if (err) {
MMCINFO("send rca failed\n");
return err;
}
if (IS_SD(mmc))
mmc->rca = (cmd.response[0] >> 16) & 0xffff;
}
/* Get the Card-Specific Data */
cmd.cmdidx = MMC_CMD_SEND_CSD;
cmd.resp_type = MMC_RSP_R2;
cmd.cmdarg = mmc->rca << 16;
cmd.flags = 0;
err = mmc_send_cmd(mmc, &cmd, NULL);
/* Waiting for the ready status */
mmc_send_status(mmc, timeout);
if (err) {
MMCINFO("get csd failed\n");
return err;
}
mmc->csd[0] = cmd.response[0];
mmc->csd[1] = cmd.response[1];
mmc->csd[2] = cmd.response[2];
mmc->csd[3] = cmd.response[3];
if (mmc->version == MMC_VERSION_UNKNOWN) {
int version = (cmd.response[0] >> 26) & 0xf;
switch (version) {
case 0:
mmc->version = MMC_VERSION_1_2;
break;
case 1:
mmc->version = MMC_VERSION_1_4;
break;
case 2:
mmc->version = MMC_VERSION_2_2;
break;
case 3:
mmc->version = MMC_VERSION_3;
break;
case 4:
mmc->version = MMC_VERSION_4;
break;
default:
mmc->version = MMC_VERSION_1_2;
break;
}
}
/* divide frequency by 10, since the mults are 10x bigger */
freq = fbase[(cmd.response[0] & 0x7)];
mult = multipliers[((cmd.response[0] >> 3) & 0xf)];
mmc->tran_speed = freq * mult;
mmc->dsr_imp = ((cmd.response[1] >> 12) & 0x1);
mmc->read_bl_len = 1 << ((cmd.response[1] >> 16) & 0xf);
if (IS_SD(mmc))
mmc->write_bl_len = mmc->read_bl_len;
else
mmc->write_bl_len = 1 << ((cmd.response[3] >> 22) & 0xf);
if (mmc->high_capacity) {
csize = (mmc->csd[1] & 0x3f) << 16
| (mmc->csd[2] & 0xffff0000) >> 16;
cmult = 8;
} else {
csize = (mmc->csd[1] & 0x3ff) << 2
| (mmc->csd[2] & 0xc0000000) >> 30;
cmult = (mmc->csd[2] & 0x00038000) >> 15;
}
mmc->capacity_user = (csize + 1) << (cmult + 2);
mmc->capacity_user *= mmc->read_bl_len;
mmc->capacity_boot = 0;
mmc->capacity_rpmb = 0;
for (i = 0; i < 4; i++)
mmc->capacity_gp[i] = 0;
if (mmc->read_bl_len > MMC_MAX_BLOCK_LEN)
mmc->read_bl_len = MMC_MAX_BLOCK_LEN;
if (mmc->write_bl_len > MMC_MAX_BLOCK_LEN)
mmc->write_bl_len = MMC_MAX_BLOCK_LEN;
if ((mmc->dsr_imp) && (0xffffffff != mmc->dsr)) {
cmd.cmdidx = MMC_CMD_SET_DSR;
cmd.cmdarg = (mmc->dsr & 0xffff) << 16;
cmd.resp_type = MMC_RSP_NONE;
if (mmc_send_cmd(mmc, &cmd, NULL))
printf("MMC: SET_DSR failed\n");
}
/* Select the card, and put it into Transfer Mode */
if (!mmc_host_is_spi(mmc)) { /* cmd not supported in spi */
cmd.cmdidx = MMC_CMD_SELECT_CARD;
cmd.resp_type = MMC_RSP_R1b;
cmd.cmdarg = mmc->rca << 16;
cmd.flags = 0;
err = mmc_send_cmd(mmc, &cmd, NULL);
if (err) {
MMCINFO("Select the card failed\n");
return err;
}
}
/* for some device(emmc), if the clock frequency is 400KHz when enter speed mode HS,
* the width of high pulse is too short to sample. this problem can be solved using higher
* clock frequency to enter HS. So we change clock frequency to 25MHz after card enter
* Data Transfer mode.
*/
mmc_set_clock(mmc, 25000000);
/*
* For SD, its erase group is always one sector
*/
mmc->erase_grp_size = 1;
mmc->part_config = MMCPART_NOAVAILABLE;
if (!IS_SD(mmc) && (mmc->version >= MMC_VERSION_4)) {
/* check ext_csd version and capacity */
err = mmc_send_ext_csd(mmc, ext_csd);
if (!err && (ext_csd[EXT_CSD_REV] >= 2)) {
/*
* According to the JEDEC Standard, the value of
* ext_csd's capacity is valid if the value is more
* than 2GB
*/
capacity = ext_csd[EXT_CSD_SEC_CNT] << 0
| ext_csd[EXT_CSD_SEC_CNT + 1] << 8
| ext_csd[EXT_CSD_SEC_CNT + 2] << 16
| ext_csd[EXT_CSD_SEC_CNT + 3] << 24;
capacity *= MMC_MAX_BLOCK_LEN;
if ((capacity >> 20) > 2 * 1024)
mmc->capacity_user = capacity;
}
switch (ext_csd[EXT_CSD_REV]) {
case 0:
mmc->version = MMC_VERSION_4;
break;
case 1:
mmc->version = MMC_VERSION_4_1;
break;
case 2:
mmc->version = MMC_VERSION_4_2;
break;
case 3:
mmc->version = MMC_VERSION_4_3;
break;
case 5:
mmc->version = MMC_VERSION_4_41;
break;
case 6:
mmc->version = MMC_VERSION_4_5;
break;
case 7:
mmc->version = MMC_VERSION_5_0;
break;
case 8:
mmc->version = MMC_VERSION_5_1;
default:
MMCINFO("Invalid ext_csd revision %d\n", ext_csd[192]);
break;
}
/*
* Get timeout value
*/
mmc_mmc_update_timeout(mmc);
/*
* Check whether GROUP_DEF is set, if yes, read out
* group size from ext_csd directly, or calculate
* the group size from the csd value.
*/
erase_gsz = (mmc->csd[2] & 0x00007c00) >> 10;
erase_gmul = (mmc->csd[2] & 0x000003e0) >> 5;
def_erase_grp_size = (erase_gsz + 1) * (erase_gmul + 1);
hc_erase_gpr_size = ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE] * MMC_MAX_BLOCK_LEN * 1024;
hc_erase_gpr_size = hc_erase_gpr_size / mmc->write_bl_len;
hc_erase_timeout = 300 * ext_csd[EXT_CSD_ERASE_TIMEOUT_MULT];
if (ext_csd[EXT_CSD_ERASE_GROUP_DEF] && hc_erase_gpr_size && hc_erase_timeout)
mmc->erase_grp_size = hc_erase_gpr_size;
else
mmc->erase_grp_size = def_erase_grp_size;
/*
* Host needs to enable ERASE_GRP_DEF bit if device is
* partitioned. This bit will be lost every time after a reset
* or power off. This will affect erase size.
*/
if ((ext_csd[EXT_CSD_PARTITIONING_SUPPORT] & PART_SUPPORT) &&
(ext_csd[EXT_CSD_PARTITIONS_ATTRIBUTE] & PART_ENH_ATTRIB)) {
err = mmc_switch(mmc, EXT_CSD_CMD_SET_NORMAL,
EXT_CSD_ERASE_GROUP_DEF, 1);
if (err)
return err;
mmc->erase_grp_size = hc_erase_gpr_size;
}
mmc->secure_feature = ext_csd[EXT_CSD_SEC_FEATURE_SUPPORT];
mmc->secure_removal_type = ext_csd[EXT_CSD_SECURE_REMOAL_TYPE];
/* store the partition info of emmc */
if ((ext_csd[EXT_CSD_PARTITIONING_SUPPORT] & PART_SUPPORT) ||
ext_csd[EXT_CSD_BOOT_MULT]) {
mmc->part_config = ext_csd[EXT_CSD_PART_CONF];
mmc->capacity_boot = ext_csd[EXT_CSD_BOOT_MULT] * 128 * 1024; //<< 17;
mmc->capacity_rpmb = ext_csd[EXT_CSD_RPMB_MULT] * 128 * 1024 ; //<< 17;
if (mmc->capacity_boot) {
mmc->boot_support = 1;
mmc->boot_bus_cond = ext_csd[EXT_CSD_BOOT_BUS_WIDTH];
} else {
MMCDBG("not PART_SUPPORT ext_csd[226] = %d\n",ext_csd[226]);
}
for (i = 0; i < 4; i++) {
int idx = EXT_CSD_GP_SIZE_MULT + i * 3;
mmc->capacity_gp[i] = ((u64)ext_csd[idx + 2] << 16) +
((u64)ext_csd[idx + 1] << 8) + (u64)ext_csd[idx];
mmc->capacity_gp[i] *= (u64)ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE];
mmc->capacity_gp[i] *= (u64)ext_csd[EXT_CSD_HC_WP_GRP_SIZE];
}
}
mmc->pre_eol_info = ext_csd[EXT_CSD_PRE_EOL_INFO];
mmc->dev_life_time_typea = ext_csd[EXT_CSD_DEVICE_LIFE_TIME_EST_TYP_A];
mmc->dev_life_time_typeb = ext_csd[EXT_CSD_DEVICE_LIFE_TIME_EST_TYP_B];
memcpy(&mmc->vendor_health_report[0], &ext_csd[EXT_CSD_VENDOR_HEALTH_REPORT], 32);
}
err = mmc_set_capacity(mmc, mmc->part_num);
if (err) {
MMCINFO("%s: set capcacity error\n", __FUNCTION__);
return err;
}
if (IS_SD(mmc))
err = sd_change_freq(mmc);
else
err = mmc_change_freq(mmc);
if (err) {
MMCINFO("change speed mode failed\n");
return err;
}
err = mmc_update_phase(mmc);
if (err)
{
MMCINFO("update clock failed\n");
return err;
}
MMCDBG("mmc->card_caps 0x%x, ddr caps: 0x%x\n", mmc->card_caps, mmc->card_caps & MMC_MODE_DDR_52MHz);
MMCINFO("host caps: 0x%x\n", mmc->cfg->host_caps);
/* Restrict card's capabilities by what the host can do */
mmc->card_caps &= mmc->cfg->host_caps;
MMCDBG("mmc->card_caps 0x%x, ddr caps: 0x%x\n", mmc->card_caps, mmc->card_caps & MMC_MODE_DDR_52MHz);
#if 0
if (!(mmc->card_caps & MMC_MODE_DDR_52MHz) && !IS_SD(mmc)) {
if (mmc->speed_mode == HSDDR52_DDR50)
mmc->speed_mode = HSSDR52_SDR25;
else
mmc->speed_mode = DS26_SDR12;
}
#endif
if (IS_SD(mmc)) {
if (mmc->card_caps & MMC_MODE_4BIT) {
cmd.cmdidx = MMC_CMD_APP_CMD;
cmd.resp_type = MMC_RSP_R1;
cmd.cmdarg = mmc->rca << 16;
cmd.flags = 0;
err = mmc_send_cmd(mmc, &cmd, NULL);
if (err) {
MMCINFO("send app cmd failed\n");
return err;
}
cmd.cmdidx = SD_CMD_APP_SET_BUS_WIDTH;
cmd.resp_type = MMC_RSP_R1;
cmd.cmdarg = 2;
cmd.flags = 0;
err = mmc_send_cmd(mmc, &cmd, NULL);
if (err){
MMCINFO("sd set bus width failed\n");
return err;
}
mmc_set_bus_width(mmc, 4);
}
if (mmc->card_caps & MMC_MODE_HS)
mmc->tran_speed = 50000000;
else
mmc->tran_speed = 25000000;
} else {
if (mmc->card_caps & MMC_MODE_8BIT) {
if (mmc->card_caps & MMC_MODE_DDR_52MHz){
MMCDBG("mmc 8bit bus ddr!!!!!! \n");
err = mmc_switch(mmc, EXT_CSD_CMD_SET_NORMAL,
EXT_CSD_BUS_WIDTH,
EXT_CSD_BUS_DDR_8);
if (err) {
MMCINFO("mmc switch bus width to ddr8 failed\n");
return err;
}
mmc_set_bus_width(mmc, 8);
} else {
err = mmc_switch(mmc, EXT_CSD_CMD_SET_NORMAL,
EXT_CSD_BUS_WIDTH,
EXT_CSD_BUS_WIDTH_8);
if (err){
MMCINFO("mmc switch bus width8 failed\n");
return err;
}
mmc_set_bus_width(mmc, 8);
}
}else if (mmc->card_caps & MMC_MODE_4BIT) {
if (mmc->card_caps & MMC_MODE_DDR_52MHz ) {
MMCINFO("mmc 4 bit bus ddr!!!!!! \n");
err = mmc_switch(mmc, EXT_CSD_CMD_SET_NORMAL,
EXT_CSD_BUS_WIDTH,
EXT_CSD_BUS_DDR_4);
if (err) {
MMCINFO("mmc switch bus width to ddr4 failed\n");
return err;
}
mmc_set_bus_width(mmc, 4);
} else {
err = mmc_switch(mmc, EXT_CSD_CMD_SET_NORMAL,
EXT_CSD_BUS_WIDTH,
EXT_CSD_BUS_WIDTH_4);
if (err){
MMCINFO("mmc switch bus width failed\n");
return err;
}
mmc_set_bus_width(mmc, 4);
}
}
if (mmc->card_caps & MMC_MODE_DDR_52MHz) {
mmc->io_mode = MMC_MODE_DDR_52MHz;
MMCDBG("set mmc io_mode to ddr mode, %x\n",mmc->io_mode);
mmc->tran_speed = 52000000;
} else if (mmc->card_caps & MMC_MODE_HS) {
if (mmc->card_caps & MMC_MODE_HS_52MHz)
mmc->tran_speed = 52000000;
else
mmc->tran_speed = 26000000;
} else {
mmc->tran_speed = 26000000;
}
}
MMCDBG("%s: set clock %d\n", __FUNCTION__, mmc->tran_speed);
mmc_set_clock(mmc, mmc->tran_speed);
/* fill in device description */
mmc->block_dev.lun = 0;
mmc->block_dev.type = 0;
mmc->block_dev.blksz = mmc->read_bl_len;
mmc->block_dev.log2blksz = LOG2(mmc->block_dev.blksz);
mmc->block_dev.lba = lldiv(mmc->capacity, mmc->read_bl_len);
if (IS_SD(mmc)){
sprintf(mmc->block_dev.vendor, "MID %02x PSN %08x",
mmc->cid[0] >> 24, (mmc->cid[2] << 8) | (mmc->cid[3] >> 24));
sprintf(mmc->block_dev.product, "PNM %c%c%c%c%c", mmc->cid[0] & 0xff,
(mmc->cid[1] >> 24), (mmc->cid[1] >> 16) & 0xff,
(mmc->cid[1] >> 8) & 0xff, mmc->cid[1] & 0xff);
sprintf(mmc->block_dev.revision, "PRV %d.%d", mmc->cid[2] >> 28,
(mmc->cid[2] >> 24) & 0xf);
} else {
sprintf(mmc->block_dev.vendor, "MID %06x PSN %04x%04x",
mmc->cid[0] >> 24, (mmc->cid[2] & 0xffff),
(mmc->cid[3] >> 16) & 0xffff);
sprintf(mmc->block_dev.product, "PNM %c%c%c%c%c%c", mmc->cid[0] & 0xff,
(mmc->cid[1] >> 24), (mmc->cid[1] >> 16) & 0xff,
(mmc->cid[1] >> 8) & 0xff, mmc->cid[1] & 0xff,
(mmc->cid[2] >> 24) & 0xff);
sprintf(mmc->block_dev.revision, "PRV %d.%d", (mmc->cid[2] >> 20) & 0xf,
(mmc->cid[2] >> 16) & 0xf);
}
MMCINFO("%s\n", mmc->block_dev.vendor);
MMCINFO("%s -- 0x%02x-%02x-%02x-%02x-%02x\n", mmc->block_dev.product,
(uint)(mmc->cid[0] & 0xff), (uint)(mmc->cid[1] >> 24),(uint)((mmc->cid[1] >> 16) & 0xff),
(uint)((mmc->cid[1] >> 8) & 0xff), (uint)(mmc->cid[1] & 0xff));
MMCINFO("%s\n", mmc->block_dev.revision);
if (IS_SD(mmc)) {
MMCINFO("MDT m-%d y-%d\n", ((mmc->cid[3] >> 8) & 0xF), (((mmc->cid[3] >> 12) & 0xFF) + 2000));
} else {
if (ext_csd[192] > 4) {
MMCINFO("MDT m-%d y-%d\n", ((mmc->cid[3] >> 12) & 0xF),
(((mmc->cid[3] >> 8) & 0xF) < 13) ? (((mmc->cid[3] >> 8) & 0xF) + 2013) : (((mmc->cid[3] >> 8) & 0xF) + 1997));
} else {
MMCINFO("MDT m-%d y-%d\n", ((mmc->cid[3] >> 12) & 0xF), (((mmc->cid[3] >> 8) & 0xF) + 1997));
}
}
if(!IS_SD(mmc)){
switch(mmc->version)
{
case MMC_VERSION_1_2:
MMCINFO("MMC v1.2\n");
break;
case MMC_VERSION_1_4:
MMCINFO("MMC v1.4\n");
break;
case MMC_VERSION_2_2:
MMCINFO("MMC v2.2\n");
break;
case MMC_VERSION_3:
MMCINFO("MMC v3.0\n");
break;
case MMC_VERSION_4:
MMCINFO("MMC v4.0\n");
break;
case MMC_VERSION_4_1:
MMCINFO("MMC v4.1\n");
break;
case MMC_VERSION_4_2:
MMCINFO("MMC v4.2\n");
break;
case MMC_VERSION_4_3:
MMCINFO("MMC v4.3\n");
break;
case MMC_VERSION_4_41:
MMCINFO("MMC v4.41\n");
break;
case MMC_VERSION_4_5:
MMCINFO("MMC v4.5\n");
break;
case MMC_VERSION_5_0:
MMCINFO("MMC v5.0\n");
break;
case MMC_VERSION_5_1:
MMCINFO("MMC v5.1\n");
default:
MMCINFO("Unknow MMC ver\n");
break;
}
}
mmc->clock_after_init = mmc->clock; //back up clock after mmc init
MMCINFO("speed mode : %s \n", spd_name[mmc->speed_mode]);
MMCINFO("clock : %d Hz\n", mmc->clock);
MMCINFO("bus_width : %d bit\n", mmc->bus_width);
MMCINFO("user capacity : "LBAFU" MB\n", mmc->block_dev.lba>>11);
if (!IS_SD(mmc)) {
MMCINFO("boot capacity : %lld KB\n", mmc->capacity_boot>>10);
MMCINFO("rpmb capacity : %lld KB\n", mmc->capacity_rpmb>>10);
}
MMCINFO("************SD/MMC %d init OK!!!************\n", mmc->cfg->host_no);
return 0;
}
static int mmc_send_if_cond(struct mmc *mmc)
{
struct mmc_cmd cmd;
int err;
cmd.cmdidx = SD_CMD_SEND_IF_COND;
/* We set the bit if the host supports voltages between 2.7 and 3.6 V */
cmd.cmdarg = ((mmc->cfg->voltages & 0xff8000) != 0) << 8 | 0xaa;
cmd.resp_type = MMC_RSP_R7;
cmd.flags = 0;
err = mmc_send_cmd(mmc, &cmd, NULL);
if (err) {
MMCINFO("mmc send if cond failed\n");
return err;
}
if ((cmd.response[0] & 0xff) != 0xaa)
return UNUSABLE_ERR;
else
mmc->version = SD_VERSION_2;
return 0;
}
/* not used any more */
int __deprecated mmc_register(struct mmc *mmc)
{
#if !defined(CONFIG_SPL_BUILD) || defined(CONFIG_SPL_LIBCOMMON_SUPPORT)
printf("%s is deprecated! use mmc_create() instead.\n", __func__);
#endif
return -1;
}
struct mmc *mmc_create(const struct mmc_config *cfg, void *priv)
{
struct mmc *mmc;
/* quick validation */
if (cfg == NULL || cfg->ops == NULL || cfg->ops->send_cmd == NULL ||
cfg->f_min == 0 || cfg->f_max == 0 || cfg->b_max == 0) {
MMCINFO("%s: input error\n", __FUNCTION__);
return NULL;
}
mmc = calloc(1, sizeof(*mmc));
if (mmc == NULL) {
MMCINFO("%s: request memory error\n\n", __FUNCTION__);
return NULL;
}
mmc->cfg = cfg;
mmc->priv = priv;
/* the following chunk was mmc_register() */
/* Setup dsr related values */
mmc->dsr_imp = 0;
mmc->dsr = 0xffffffff;
/* Setup the universal parts of the block interface just once */
mmc->block_dev.if_type = IF_TYPE_MMC;
mmc->block_dev.dev = mmc->cfg->host_no; //cur_dev_num++;
mmc->block_dev.removable = 1;
mmc_init_blk_ops(mmc);
/* setup initial part type */
mmc->block_dev.part_type = mmc->cfg->part_type;
INIT_LIST_HEAD(&mmc->link);
list_add_tail(&mmc->link, &mmc_devices);
return mmc;
}
void mmc_destroy(struct mmc *mmc)
{
/* only freeing memory for now */
free(mmc);
}
#ifdef CONFIG_PARTITIONS
block_dev_desc_t *mmc_get_dev(int dev)
{
struct mmc *mmc = find_mmc_device(dev);
if (!mmc || mmc_init(mmc))
return NULL;
return &mmc->block_dev;
}
#endif
int mmc_start_init(struct mmc *mmc)
{
int err;
int work_mode = uboot_spare_head.boot_data.work_mode;
struct boot_sdmmc_private_info_t *priv_info =
(struct boot_sdmmc_private_info_t *)(uboot_spare_head.boot_data.sdcard_spare_data);
/* we pretend there's no card when init is NULL */
if (mmc_getcd(mmc) == 0 || mmc->cfg->ops->init == NULL) {
mmc->has_init = 0;
#if !defined(CONFIG_SPL_BUILD) || defined(CONFIG_SPL_LIBCOMMON_SUPPORT)
printf("MMC: no card present\n");
#endif
return NO_CARD_ERR;
}
if (mmc->has_init) {
MMCINFO("Has init\n");
return 0;
}
/* made sure it's not NULL earlier */
err = mmc->cfg->ops->init(mmc);
if (err) {
MMCINFO("mmc->init error\n");
return err;
}
mmc_set_bus_width(mmc, 1);
mmc_set_clock(mmc, 1);
/* Reset the Card */
err = mmc_go_idle(mmc);
if (err) {
MMCINFO("mmc go idle error\n");
return err;
}
/* The internal partition reset to user partition(0) at every CMD0*/
mmc->part_num = 0;
if (work_mode == WORK_MODE_BOOT)
{
MMCINFO("media type 0x%x\n", priv_info->card_type);
if (priv_info->card_type == CARD_TYPE_SD)
{
MMCINFO("************Try SD card %d************\n", mmc->cfg->host_no);
/* Test for SD version 2 */
err = mmc_send_if_cond(mmc);
/* Now try to get the SD card's operating condition */
err = sd_send_op_cond(mmc);
if (err && err != IN_PROGRESS) {
#if !defined(CONFIG_SPL_BUILD) || defined(CONFIG_SPL_LIBCOMMON_SUPPORT)
printf("SD Card did not respond to voltage select!\n");
#endif
MMCINFO("************SD/MMC %d init error!!!************\n", mmc->cfg->host_no);
return UNUSABLE_ERR;
}
}
else if (priv_info->card_type == CARD_TYPE_MMC)
{
MMCINFO("************Try MMC card %d************\n", mmc->cfg->host_no);
err = mmc_send_op_cond(mmc);
if (err && err != IN_PROGRESS) {
#if !defined(CONFIG_SPL_BUILD) || defined(CONFIG_SPL_LIBCOMMON_SUPPORT)
printf("MMC Card did not respond to voltage select!\n");
#endif
MMCINFO("************SD/MMC %d init error!!!************\n", mmc->cfg->host_no);
return UNUSABLE_ERR;
}
}
else
{
MMCINFO("Wrong media type 0x%x\n", priv_info->card_type);
MMCINFO("************Try SD card %d************\n", mmc->cfg->host_no);
/* Test for SD version 2 */
err = mmc_send_if_cond(mmc);
/* Now try to get the SD card's operating condition */
err = sd_send_op_cond(mmc);
/* If the command timed out, we check for an MMC card */
if (err == -1) { //if (err == TIMEOUT) {
MMCINFO("************Try MMC card %d************\n", mmc->cfg->host_no);
err = mmc_send_op_cond(mmc);
if (err && err != IN_PROGRESS) {
#if !defined(CONFIG_SPL_BUILD) || defined(CONFIG_SPL_LIBCOMMON_SUPPORT)
printf("Card did not respond to voltage select!\n");
#endif
MMCINFO("************SD/MMC %d init error!!!************\n", mmc->cfg->host_no);
return UNUSABLE_ERR;
}
}
}
}
else
{
MMCINFO("************Try SD card %d************\n", mmc->cfg->host_no);
/* Test for SD version 2 */
err = mmc_send_if_cond(mmc);
/* Now try to get the SD card's operating condition */
err = sd_send_op_cond(mmc);
/* If the command timed out, we check for an MMC card */
if (err == -1) { //if (err == TIMEOUT) {
MMCINFO("************Try MMC card %d************\n", mmc->cfg->host_no);
err = mmc_send_op_cond(mmc);
if (err && err != IN_PROGRESS) {
#if !defined(CONFIG_SPL_BUILD) || defined(CONFIG_SPL_LIBCOMMON_SUPPORT)
printf("Card did not respond to voltage select!\n");
#endif
MMCINFO("************SD/MMC %d init error!!!************\n", mmc->cfg->host_no);
return UNUSABLE_ERR;
}
}
}
if (err == IN_PROGRESS)
mmc->init_in_progress = 1;
return err;
}
static int mmc_complete_init(struct mmc *mmc)
{
int err = 0;
if (mmc->op_cond_pending)
err = mmc_complete_op_cond(mmc);
if (!err)
err = mmc_startup(mmc);
if (err) {
MMCINFO("************SD/MMC %d init error!!!************\n", mmc->cfg->host_no);
mmc->has_init = 0;
} else {
mmc->has_init = 1;
MMCDBG("startup ok\n");
}
mmc->init_in_progress = 0;
err = sunxi_switch_to_best_bus(mmc);
if (err) {
MMCINFO("switch to best speed mode fail\n");
return err;
}
init_part(&mmc->block_dev); /* it will send cmd17 */
return err;
}
#if 0
static int mmc_update_sdly_to_sysconfig(struct mmc *mmc)
{
int rval = 0;
struct tune_sdly *sdly = (struct tune_sdly *)uboot_spare_head.boot_data.sdcard_spare_data;
u32 f3210, f7654;
f3210 = sdly->tm4_smx_fx[0*2 + 0]; //sdly->tm4_sm0_f3210;
if (script_parser_patch("mmc2_para", "sdc_tm4_sm0_freq0", &f3210, 1) == SCRIPT_PARSER_OK) {
script_parser_fetch("mmc2_para", "sdc_tm4_sm0_freq0", &rval, 1);
MMCINFO("set kernel %s %d ok\n", "sdc_tm4_sm0_freq0", rval);
} else {
MMCINFO("set kernel %s failed\n", "sdc_tm4_sm0_freq0");
}
f7654 = sdly->tm4_smx_fx[0*2 + 1]; // sdly->tm4_sm0_f7654;
if (script_parser_patch("mmc2_para", "sdc_tm4_sm0_freq1", &f7654, 1) == SCRIPT_PARSER_OK) {
script_parser_fetch("mmc2_para", "sdc_tm4_sm0_freq1", &rval, 1);
MMCINFO("set kernel %s %d ok\n", "sdc_tm4_sm0_freq1", rval);
} else {
MMCINFO("set kernel %s failed\n", "sdc_tm4_sm0_freq1");
}
f3210 = sdly->tm4_smx_fx[1*2 + 0]; // sdly->tm4_sm1_f3210;
if (script_parser_patch("mmc2_para", "sdc_tm4_sm1_freq0", &f3210, 1) == SCRIPT_PARSER_OK) {
script_parser_fetch("mmc2_para", "sdc_tm4_sm1_freq0", &rval, 1);
MMCINFO("set kernel %s %d ok\n", "sdc_tm4_sm1_freq0", rval);
} else {
MMCINFO("set kernel %s failed\n", "sdc_tm4_sm1_freq0");
}
f7654 = sdly->tm4_smx_fx[1*2 + 1]; //sdly->tm4_sm1_f7654;
if (script_parser_patch("mmc2_para", "sdc_tm4_sm1_freq1", &f7654, 1) == SCRIPT_PARSER_OK) {
script_parser_fetch("mmc2_para", "sdc_tm4_sm1_freq1", &rval, 1);
MMCINFO("set kernel %s %d ok\n", "sdc_tm4_sm1_freq1", rval);
} else {
MMCINFO("set kernel %s failed\n", "sdc_tm4_sm1_freq1");
}
f3210 = sdly->tm4_smx_fx[2*2 + 0]; //sdly->tm4_sm2_f3210;
if (script_parser_patch("mmc2_para", "sdc_tm4_sm2_freq0", &f3210, 1) == SCRIPT_PARSER_OK) {
script_parser_fetch("mmc2_para", "sdc_tm4_sm2_freq0", &rval, 1);
MMCINFO("set kernel %s %d ok\n", "sdc_tm4_sm2_freq0", rval);
} else {
MMCINFO("set kernel %s failed\n", "sdc_tm4_sm2_freq0");
}
f7654 = sdly->tm4_smx_fx[2*2 + 1]; //sdly->tm4_sm2_f7654;
if (script_parser_patch("mmc2_para", "sdc_tm4_sm2_freq1", &f7654, 1) == SCRIPT_PARSER_OK) {
script_parser_fetch("mmc2_para", "sdc_tm4_sm2_freq1", &rval, 1);
MMCINFO("set kernel %s %d ok\n", "sdc_tm4_sm2_freq1", rval);
} else {
MMCINFO("set kernel %s failed\n", "sdc_tm4_sm2_freq1");
}
f3210 = sdly->tm4_smx_fx[3*2 + 0]; //sdly->tm4_sm3_f3210;
if (script_parser_patch("mmc2_para", "sdc_tm4_sm3_freq0", &f3210, 1) == SCRIPT_PARSER_OK) {
script_parser_fetch("mmc2_para", "sdc_tm4_sm3_freq0", &rval, 1);
MMCINFO("set kernel %s %d ok\n", "sdc_tm4_sm3_freq0", rval);
} else {
MMCINFO("set kernel %s failed\n", "sdc_tm4_sm3_freq0");
}
f7654 = sdly->tm4_smx_fx[3*2 + 1]; //sdly->tm4_sm3_f7654;
if (script_parser_patch("mmc2_para", "sdc_tm4_sm3_freq1", &f7654, 1) == SCRIPT_PARSER_OK) {
script_parser_fetch("mmc2_para", "sdc_tm4_sm3_freq1", &rval, 1);
MMCINFO("set kernel %s %d ok\n", "sdc_tm4_sm3_freq1", rval);
} else {
MMCINFO("set kernel %s failed\n", "sdc_tm4_sm3_freq1");
}
f3210 = sdly->tm4_smx_fx[4*2 + 0]; //sdly->tm4_sm4_f3210;
if (script_parser_patch("mmc2_para", "sdc_tm4_sm4_freq0", &f3210, 1) == SCRIPT_PARSER_OK) {
script_parser_fetch("mmc2_para", "sdc_tm4_sm4_freq0", &rval, 1);
MMCINFO("set kernel %s %d ok\n", "sdc_tm4_sm4_freq0", rval);
} else {
MMCINFO("set kernel %s failed\n", "sdc_tm4_sm4_freq0");
}
f7654 = sdly->tm4_smx_fx[4*2 + 1]; //sdly->tm4_sm4_f7654;
if (script_parser_patch("mmc2_para", "sdc_tm4_sm4_freq1", &f7654, 1) == SCRIPT_PARSER_OK) {
script_parser_fetch("mmc2_para", "sdc_tm4_sm4_freq1", &rval, 1);
MMCINFO("set kernel %s %d ok\n", "sdc_tm4_sm4_freq1", rval);
} else {
MMCINFO("set kernel %s failed\n", "sdc_tm4_sm4_freq1");
}
return 0;
}
#else
static void mmc_update_sdly_to_sysconfig(struct mmc *mmc)
{
int ret = 0;
int nodeoffset;
char prop_path[128] = {0};
struct boot_sdmmc_private_info_t *priv_info =
(struct boot_sdmmc_private_info_t *)(uboot_spare_head.boot_data.sdcard_spare_data);
struct tune_sdly *sdly = &(priv_info->tune_sdly);
u32 f3210, f7654;
strcpy(prop_path, "mmc2");
nodeoffset = fdt_path_offset(working_fdt, prop_path);
if (nodeoffset < 0) {
MMCINFO("can't find node \"%s\",will add new node\n", prop_path);
goto __ERRRO_END;
}
#if 0
ret = fdt_getprop_u32(working_fdt, nodeoffset, "", &prop_val);
if(ret < 0){
goto __ERRRO_END;
}
#endif
f3210 = sdly->tm4_smx_fx[0*2 + 0]; //sdly->tm4_sm0_f3210;
ret = fdt_setprop_u32(working_fdt, nodeoffset, "sdc_tm4_sm0_freq0", f3210);
if(ret < 0) {
MMCINFO("update dtb fail, sdc_tm4_sm0_freq0, %d\n", ret);
goto __ERRRO_END;
}
f7654 = sdly->tm4_smx_fx[0*2 + 1]; // sdly->tm4_sm0_f7654;
ret = fdt_setprop_u32(working_fdt, nodeoffset, "sdc_tm4_sm0_freq1", f7654);
if(ret < 0) {
MMCINFO("update dtb fail, sdc_tm4_sm0_freq1, %d\n", ret);
goto __ERRRO_END;
}
f3210 = sdly->tm4_smx_fx[1*2 + 0]; //sdly->tm4_sm0_f3210;
ret = fdt_setprop_u32(working_fdt, nodeoffset, "sdc_tm4_sm1_freq0", f3210);
if(ret < 0) {
MMCINFO("update dtb fail, sdc_tm4_sm1_freq0, %d\n", ret);
goto __ERRRO_END;
}
f7654 = sdly->tm4_smx_fx[1*2 + 1]; // sdly->tm4_sm0_f7654;
ret = fdt_setprop_u32(working_fdt, nodeoffset, "sdc_tm4_sm1_freq1", f7654);
if(ret < 0) {
MMCINFO("update dtb fail, sdc_tm4_sm1_freq1, %d\n", ret);
goto __ERRRO_END;
}
f3210 = sdly->tm4_smx_fx[2*2 + 0]; //sdly->tm4_sm0_f3210;
ret = fdt_setprop_u32(working_fdt, nodeoffset, "sdc_tm4_sm2_freq0", f3210);
if(ret < 0) {
MMCINFO("update dtb fail, sdc_tm4_sm2_freq0, %d\n", ret);
goto __ERRRO_END;
}
f7654 = sdly->tm4_smx_fx[2*2 + 1]; // sdly->tm4_sm0_f7654;
ret = fdt_setprop_u32(working_fdt, nodeoffset, "sdc_tm4_sm2_freq1", f7654);
if(ret < 0) {
MMCINFO("update dtb fail, sdc_tm4_sm2_freq1, %d\n", ret);
goto __ERRRO_END;
}
f3210 = sdly->tm4_smx_fx[3*2 + 0]; //sdly->tm4_sm0_f3210;
ret = fdt_setprop_u32(working_fdt, nodeoffset, "sdc_tm4_sm3_freq0", f3210);
if(ret < 0) {
MMCINFO("update dtb fail, sdc_tm4_sm3_freq0, %d\n", ret);
goto __ERRRO_END;
}
f7654 = sdly->tm4_smx_fx[3*2 + 1]; // sdly->tm4_sm0_f7654;
ret = fdt_setprop_u32(working_fdt, nodeoffset, "sdc_tm4_sm3_freq1", f7654);
if(ret < 0) {
MMCINFO("update dtb fail, sdc_tm4_sm3_freq1, %d\n", ret);
goto __ERRRO_END;
}
f3210 = sdly->tm4_smx_fx[4*2 + 0]; //sdly->tm4_sm0_f3210;
ret = fdt_setprop_u32(working_fdt, nodeoffset, "sdc_tm4_sm4_freq0", f3210);
if(ret < 0) {
MMCINFO("update dtb fail, sdc_tm4_sm4_freq0, %d\n", ret);
goto __ERRRO_END;
}
f7654 = sdly->tm4_smx_fx[4*2 + 1]; // sdly->tm4_sm0_f7654;
ret = fdt_setprop_u32(working_fdt, nodeoffset, "sdc_tm4_sm4_freq1", f7654);
if(ret < 0) {
MMCINFO("update dtb fail, sdc_tm4_sm4_freq1, %d\n", ret);
goto __ERRRO_END;
}
return ;
__ERRRO_END:
MMCINFO("fdt err returned %s\n", fdt_strerror(ret));
return ;
}
#endif
static void _mmc_life_time_est(u8 est_val)
{
if (est_val == 0)
printf("Not defined\n");
else if (est_val == 0x01)
printf("0%%-10%% life time used\n");
else if (est_val == 0x02)
printf("10%%-20%% life time used\n");
else if (est_val == 0x03)
printf("20%%-30%% life time used\n");
else if (est_val == 0x04)
printf("30%%-40%% life time used\n");
else if (est_val == 0x05)
printf("40%%-50%% life time used\n");
else if (est_val == 0x06)
printf("50%%-60%% life time used\n");
else if (est_val == 0x07)
printf("60%%-70%% life time used\n");
else if (est_val == 0x08)
printf("70%%-80%% life time used\n");
else if (est_val == 0x09)
printf("80%%-90%% life time used\n");
else if (est_val == 0x0A)
printf("90%%-100%% life time used\n");
else if (est_val == 0x0B)
printf("Exceeded its max estimated life time\n");
else
printf("Reserved\n");
}
static int mmc_mmc_parse_health_report(struct mmc *mmc)
{
int i, j, k;
u32 tmp, cnt;
if (!(MMC_VERSION_MMC & mmc->version) || (((mmc->version>>8) & 0xf) != 0x5)) /* not emmc 5.x */
return 0;
/*pre_eol_info[267]*/
MMCINFO("EOL Info(Rev blks): ");
if (mmc->pre_eol_info == 0x01)
printf("Normal\n");
else if (mmc->pre_eol_info == 0x02)
printf("Warning, consumed 80%% of rev blocks\n");
else if (mmc->pre_eol_info == 0x03)
printf("Urgent!!\n");
else if (mmc->pre_eol_info == 0x04) {
if ((mmc->cid[0]>>24) == MMC_MID_SANDISK)
printf("EOL!!");
else
printf("Reserved");
} else {
printf("Not Defined or Reserved\n");
}
/* life_time_est_typ-a[268] */
MMCINFO("Wear out(type A): ");
_mmc_life_time_est(mmc->dev_life_time_typea);
/* life_time_est_typ-a[269] */
MMCINFO("Wear out(type B): ");
_mmc_life_time_est(mmc->dev_life_time_typeb);
if ((mmc->cid[0]>>24) == MMC_MID_HYNIX)
{
MMCINFO("Runtime Bad Blk: ");
for (i=0; i<4; i++) /* max 4 CE */
{
cnt = 0;
for (j=0; j<4; j++) /* 4 byte per CE */
{
tmp = mmc->vendor_health_report[i*4+j];
for (k=1; k<=j; k++)
tmp *= 0x100;
cnt += tmp;
}
printf("%d ", cnt);
}
printf("\n");
MMCINFO("Factory Bad Blk: ");
for (i=0; i<4; i++) /* max 4 CE */
{
cnt = 0;
for (j=0; j<4; j++) /* 4 byte per CE */
{
tmp = mmc->vendor_health_report[16+ i*4+j];
for (k=1; k<=j; k++)
tmp *= 0x100;
cnt += tmp;
}
printf("%d ", cnt);
}
printf("\n");
}
return 0;
}
int mmc_init_boot(struct mmc *mmc)
{
int err = 0;
int work_mode = uboot_spare_head.boot_data.work_mode;
MMCDBG("=============== start mmc_init_boot...\n");
mmc->msglevel = 0x1;
if (!mmc->init_in_progress)
err = mmc_start_init(mmc);
if (!err || err == IN_PROGRESS)
err = mmc_complete_init(mmc);
if((work_mode == WORK_MODE_BOOT)
&& (mmc->cfg->platform_caps.sample_mode == AUTO_SAMPLE_MODE) )
mmc_update_sdly_to_sysconfig(mmc);
/* update some feature */
if (mmc->cfg->platform_caps.drv_wipe_feature & DRV_PARA_DISABLE_EMMC_SANITIZE)
mmc->secure_feature &= (~EXT_CSD_SEC_SANITIZE);
else if (mmc->cfg->platform_caps.drv_wipe_feature & DRV_PARA_DISABLE_EMMC_SECURE_PURGE)
mmc->secure_feature &= (~EXT_CSD_SEC_ER_EN);
else if (mmc->cfg->platform_caps.drv_wipe_feature & DRV_PARA_DISABLE_EMMC_TRIM)
mmc->secure_feature &= (~EXT_CSD_SEC_GB_CL_EN);
MMCINFO("erase_grp_size : 0x%xWrBlk*0x%x=0x%x Byte\n",
mmc->erase_grp_size, mmc->write_bl_len, mmc->erase_grp_size*mmc->write_bl_len);
//MMCINFO("erase_to: %d ms\n", mmc->erase_timeout);
//MMCINFO("trim_discard_to: %d ms\n", mmc->trim_discard_timeout);
//MMCINFO("secure_tirm_to: %d ms\n", mmc->secure_erase_timeout);
//MMCINFO("secure_erase_to: %d ms\n", mmc->secure_trim_timeout);
MMCDBG("support sanitze : %d \n", mmc->secure_feature & EXT_CSD_SEC_SANITIZE);
MMCDBG("support trim : %d \n", mmc->secure_feature & EXT_CSD_SEC_GB_CL_EN);
MMCDBG("support secure purge op: %d \n", mmc->secure_feature & EXT_CSD_SEC_ER_EN);
MMCDBG("secure removal type : 0x%x\n", mmc->secure_removal_type);
MMCINFO("secure_feature : 0x%x\n", mmc->secure_feature);
MMCINFO("secure_removal_type : 0x%x\n", mmc->secure_removal_type);
if (!IS_SD(mmc)) {
mmc_mmc_parse_health_report(mmc);
}
//MMCINFO("========================================\n\n");
MMCDBG("=============== end mmc_init_boot\n");
return err;
}
int mmc_init_product(struct mmc *mmc)
{
int err = 0;
mmc->msglevel = 0x0;
mmc->do_tuning = 0x1;
retry:
MMCDBG("=============== start mmc_init_product...\n");
err = mmc->cfg->ops->init(mmc);
if (err) {
MMCINFO("mmc->init error\n");
return err;
}
mmc_set_bus_width(mmc, 1); /* mmc->clock is zero now!! */
mmc_set_clock(mmc, 1);
/* Reset the Card */
err = mmc_go_idle(mmc);
if (err){
MMCINFO("mmc go idle error\n");
return err;
}
/* The internal partition reset to user partition(0) at every CMD0*/
mmc->part_num = 0;
MMCINFO("************Try SD card %d************\n",mmc->cfg->host_no);
/* Test for SD version 2 */
err = mmc_send_if_cond(mmc);
if(err && !sunxi_need_rty(mmc)) {
goto retry;
}
/* Now try to get the SD card's operating condition */
err = sd_send_op_cond(mmc);
if (err && !sunxi_need_rty(mmc)) {
goto retry;
}
/* If the command timed out, we check for an MMC card */
if (err == -1) {
if (!sunxi_need_rty(mmc)) {
goto retry;
}
MMCINFO("************Try MMC card %d************\n",mmc->cfg->host_no);
err = mmc_send_op_cond(mmc);
if (mmc->op_cond_pending)
err = mmc_complete_op_cond(mmc);
if (err && !sunxi_need_rty(mmc)) {
goto retry;
}
if (err) {
MMCINFO("Card did not respond to voltage select!\n");
MMCINFO("************SD/MMC %d init error!************\n",mmc->cfg->host_no);
return UNUSABLE_ERR;
}
}
err = mmc_startup(mmc);
if (err) {
MMCINFO("************SD/MMC %d init error!************\n",mmc->cfg->host_no);
mmc->has_init = 0;
} else {
mmc->has_init = 1;
}
if (err && !sunxi_need_rty(mmc)) {
goto retry;
}
if (!IS_SD(mmc)) {
mmc_mmc_parse_health_report(mmc);
}
err = sunxi_write_tuning(mmc);
if (err) {
MMCINFO("Write pattern failed\n");
return err;
}
err = sunxi_bus_tuning(mmc);
if (err) {
MMCINFO("bus tuning fail, err %d\n", err);
return err;
}
mmc->msglevel = 0x1;
mmc->do_tuning = 0x0;
err = sunxi_switch_to_best_bus(mmc);
if (err) {
MMCINFO("switch to best speed mode fail\n");
return err;
}
init_part(&mmc->block_dev);
MMCDBG("=============== end mmc_init_product\n");
return err;
}
int mmc_init(struct mmc *mmc)
{
int err = IN_PROGRESS;
unsigned start;
int work_mode = uboot_spare_head.boot_data.work_mode;
#ifdef MMC_INTERNAL_TEST
int ret = 0;
#endif
if (mmc->has_init) {
MMCINFO("Has init\n");
tick_printf("---%s %d %s\n", __FILE__, __LINE__, __FUNCTION__);
return 0;
}
start = get_timer(0);
MMCDBG("==================== work mode: %d %d, sample_mode:%d\n", \
work_mode, WORK_MODE_BOOT, mmc->cfg->platform_caps.sample_mode);
if ((mmc->cfg->platform_caps.sample_mode == AUTO_SAMPLE_MODE)
&& (work_mode != WORK_MODE_BOOT)) {
err = mmc_init_product(mmc);
} else {
err = mmc_init_boot(mmc);
}
if (err) {
MMCINFO("%s: mmc init fail, err %d\n", __FUNCTION__, err);
goto ERR_RET;
}
#ifdef MMC_INTERNAL_TEST
ret = mmc_t_rwc(mmc, 3000, 10);
if (ret) {
MMCINFO("%s: mmc_t_rwc fail\n", __FUNCTION__);
}
#endif
debug("%s: %d, time %lu\n", __func__, err, get_timer(start));
ERR_RET:
return err;
}
int mmc_set_dsr(struct mmc *mmc, u16 val)
{
mmc->dsr = val;
return 0;
}
/*
* CPU and board-specific MMC initializations. Aliased function
* signals caller to move on
*/
static int __def_mmc_init(bd_t *bis)
{
return -1;
}
int cpu_mmc_init(bd_t *bis) __attribute__((weak, alias("__def_mmc_init")));
int board_mmc_init(bd_t *bis) __attribute__((weak, alias("__def_mmc_init")));
#if !defined(CONFIG_SPL_BUILD) || defined(CONFIG_SPL_LIBCOMMON_SUPPORT)
void print_mmc_devices(char separator)
{
struct mmc *m;
struct list_head *entry;
list_for_each(entry, &mmc_devices) {
m = list_entry(entry, struct mmc, link);
printf("%s: %d", m->cfg->name, m->block_dev.dev);
if (entry->next != &mmc_devices)
printf("%c ", separator);
}
printf("\n");
}
#else
void print_mmc_devices(char separator) { }
#endif
int get_mmc_num(void)
{
return cur_dev_num;
}
void mmc_set_preinit(struct mmc *mmc, int preinit)
{
mmc->preinit = preinit;
}
static void do_preinit(void)
{
struct mmc *m;
struct list_head *entry;
list_for_each(entry, &mmc_devices) {
m = list_entry(entry, struct mmc, link);
if (m->preinit)
mmc_start_init(m);
}
}
int mmc_initialize(bd_t *bis)
{
cur_dev_num = 0;
if (board_mmc_init(bis) < 0)
cpu_mmc_init(bis);
#ifndef CONFIG_SPL_BUILD
print_mmc_devices(',');
#endif
do_preinit();
return 0;
}
int mmc_exit(void)
{
int err;
int sdc_no = 2;
struct mmc *mmc = find_mmc_device(sdc_no);
if (mmc == NULL) {
MMCINFO("mmc %d not find, so not exit\n", sdc_no);
return -1;
}
MMCINFO("mmc exit start\n");
#if 0
mmc_mmc_switch_bus_mode(mmc, HSSDR52_SDR25, 8);
mmc_mmc_switch_bus_mode(mmc, DS26_SDR12, 8);
#endif
err = mmc->cfg->ops->init(mmc);
if (err){
MMCINFO("mmc->init error\n");
MMCINFO("mmc %d exit failed\n", mmc->cfg->host_no);
return err;
}
mmc_set_bus_width(mmc, 1);
mmc_set_clock(mmc, 1);
/* Reset the Card */
err = mmc_go_idle(mmc);
if (err){
MMCINFO("mmc go idle error\n");
MMCINFO("mmc %d exit failed\n", mmc->cfg->host_no);
return err;
}
/* The internal partition reset to user partition(0) at every CMD0*/
mmc->part_num = 0;
if (IS_SD(mmc))
{
/* Test for SD version 2 */
err = mmc_send_if_cond(mmc);
/* Now try to get the SD card's operating condition */
err = sd_send_op_cond(mmc);
if (err) {
MMCINFO("sd card did not respond to ocr!\n");
MMCINFO("mmc %d exit failed\n", mmc->cfg->host_no);
return UNUSABLE_ERR;
}
}
else
{
/* If the command timed out, we check for an MMC card */
err = mmc_send_op_cond(mmc);
if (mmc->op_cond_pending)
err = mmc_complete_op_cond(mmc);
if (err) {
MMCINFO("mmc card did not respond to voltage select!\n");
MMCINFO("mmc %d exit failed\n", mmc->cfg->host_no);
return UNUSABLE_ERR;
}
}
MMCINFO("mmc %d exit ok\n", mmc->cfg->host_no);
return err;
}
#ifdef CONFIG_SUPPORT_EMMC_BOOT
/*
* This function changes the size of boot partition and the size of rpmb
* partition present on EMMC devices.
*
* Input Parameters:
* struct *mmc: pointer for the mmc device strcuture
* bootsize: size of boot partition
* rpmbsize: size of rpmb partition
*
* Returns 0 on success.
*/
int mmc_boot_partition_size_change(struct mmc *mmc, unsigned long bootsize,
unsigned long rpmbsize)
{
int err;
struct mmc_cmd cmd;
/* Only use this command for raw EMMC moviNAND. Enter backdoor mode */
cmd.cmdidx = MMC_CMD_RES_MAN;
cmd.resp_type = MMC_RSP_R1b;
cmd.cmdarg = MMC_CMD62_ARG1;
err = mmc_send_cmd(mmc, &cmd, NULL);
if (err) {
debug("mmc_boot_partition_size_change: Error1 = %d\n", err);
return err;
}
/* Boot partition changing mode */
cmd.cmdidx = MMC_CMD_RES_MAN;
cmd.resp_type = MMC_RSP_R1b;
cmd.cmdarg = MMC_CMD62_ARG2;
err = mmc_send_cmd(mmc, &cmd, NULL);
if (err) {
debug("mmc_boot_partition_size_change: Error2 = %d\n", err);
return err;
}
/* boot partition size is multiple of 128KB */
bootsize = (bootsize * 1024) / 128;
/* Arg: boot partition size */
cmd.cmdidx = MMC_CMD_RES_MAN;
cmd.resp_type = MMC_RSP_R1b;
cmd.cmdarg = bootsize;
err = mmc_send_cmd(mmc, &cmd, NULL);
if (err) {
debug("mmc_boot_partition_size_change: Error3 = %d\n", err);
return err;
}
/* RPMB partition size is multiple of 128KB */
rpmbsize = (rpmbsize * 1024) / 128;
/* Arg: RPMB partition size */
cmd.cmdidx = MMC_CMD_RES_MAN;
cmd.resp_type = MMC_RSP_R1b;
cmd.cmdarg = rpmbsize;
err = mmc_send_cmd(mmc, &cmd, NULL);
if (err) {
debug("mmc_boot_partition_size_change: Error4 = %d\n", err);
return err;
}
return 0;
}
/*
* Modify EXT_CSD[177] which is BOOT_BUS_WIDTH
* based on the passed in values for BOOT_BUS_WIDTH, RESET_BOOT_BUS_WIDTH
* and BOOT_MODE.
*
* Returns 0 on success.
*/
int mmc_set_boot_bus_width(struct mmc *mmc, u8 width, u8 reset, u8 mode)
{
int err;
err = mmc_switch(mmc, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_BOOT_BUS_WIDTH,
EXT_CSD_BOOT_BUS_WIDTH_MODE(mode) |
EXT_CSD_BOOT_BUS_WIDTH_RESET(reset) |
EXT_CSD_BOOT_BUS_WIDTH_WIDTH(width));
if (err)
return err;
return 0;
}
/*
* Modify EXT_CSD[179] which is PARTITION_CONFIG (formerly BOOT_CONFIG)
* based on the passed in values for BOOT_ACK, BOOT_PARTITION_ENABLE and
* PARTITION_ACCESS.
*
* Returns 0 on success.
*/
int mmc_set_part_conf(struct mmc *mmc, u8 ack, u8 part_num, u8 access)
{
int err;
err = mmc_switch(mmc, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_PART_CONF,
EXT_CSD_BOOT_ACK(ack) |
EXT_CSD_BOOT_PART_NUM(part_num) |
EXT_CSD_PARTITION_ACCESS(access));
if (err)
return err;
return 0;
}
/*
* Modify EXT_CSD[162] which is RST_n_FUNCTION based on the given value
* for enable. Note that this is a write-once field for non-zero values.
*
* Returns 0 on success.
*/
int mmc_set_rst_n_function(struct mmc *mmc, u8 enable)
{
return mmc_switch(mmc, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_RST_N_FUNCTION,
enable);
}
#endif